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A b s t r a c t :  A semi-empirical theory of  nuclear masses and deformations is presented. The potential 
energy of  a nucleus, considered as a function of  N, Z and the nuclear shape, is assumed to be 
given by the liquid-drop model, modified by a shell correction. The shell correction is a simple 
function of  N and Z and is supposed to disappear as the nucleus is distorted away f rom the 
spherical shape. The resulting semi-empirical expression for the nuclear deformation energy 
has seven adjustable parameters,  four in the liquid-drop part  and three in the shell correction. 
By making the deformation energy stationary with respect to distortions, the equilibrium 
deformations (i.e., the quadrupole moments)  and the ground-state masses of  nuclei are derived 
as functions of  N and Z. In addition, f rom unstable shapes of  equilibrium corresponding to 
saddle-point configurations, barrier energies for nuclear fission are deduced. The predictions 
of  the theory are compared with some 1200 experimental nuclear masses, 240 quadrupole 
moments  and 40 fission barriers. The results lead, on the one hand, to a re-assessment of  the 
accuracy of  the liquid-drop model and a firmer determination of  its characteristic constants 
and, on the other, to  a semi-quantitative understanding of  the effects of  shell structure on nuclear 
masses and deformations. A number  of  minor  anomalies are isolated, one apparently related 
to the so-called Wigner term in the binding energy and one relevant for the understanding of  
fission barriers. Applications to the analysis of  the centrifugal stretching of  nuclei and to the 
possible existence of  "islands of  stability" in the region of  super-heavy nuclei are mentioned. 
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1. Introduction 

This paper  is the result  o f  an a t t empt  to gain a s imple under s t and ing  of  the pr inc ipa l  

effects of  shell s t ructure on the masses  and  equi l ibr ium configurat ions  o f  nuclei  t. 

A p a r t  f rom shell effects,  a good  represen ta t ion  of  the t rends  in nuclear  masses  may  

be ob ta ined  by using the mode l  o f  a charged  l iquid d rop  possess ing a surface tens ion  

(see fig. 1 and ref. 1)). The  stable equi l ibr ium shapes pred ic ted  by this mode l  are 

spherical .  In  recent  years  a vast  a m o u n t  of  in fo rmat ion  has been accumula ted  on the 

detai ls  of  the devia t ions  o f  nuclear  masses  f rom a smooth  l iqu id -drop  fo rmula  and  

on the devia t ions  o f  nuclear  shapes f rom a sphere.  The na ture  of  the devia t ions  o f  the 

masses  is i l lustrated in figs. 21 (a) and  22(a) in append ix  A.3. We note  the dips  in the mass  

devia t ions  for nuclei  with magic  numbers  o f  neut rons  or  p ro tons ,  and  the rise and  

fall  of  the masses  between magic  numbers .  This rise and fall  is somet imes fair ly 

smoo th  (e.g., between the magic  numbers  N or  Z = 28 and 50, and  between N = 50 

and  82), and  somet imes  it is in te r rup ted  by  an approx ima te  f la t tening-out  of  the mass  

devia t ions .  This occurs  in the region o f  the rare ear ths  ( N  ~ 88 to N ~ 112) and  

again  for  heavy nuclei  ( N  >= 136). I t  is also in these regions o f  the per iod ic  table  tha t  

s t rongly  de fo rmed  nuclei  are observed,  s table g round  state de fo rmat ions  appear ing  

and  d i sappear ing  in the n e i g h b o u r h o o d  o f  the above  neut rons  numbers  (see fig. 

23(a) in append ix  A.3).  These features  are assoc ia ted  with nuclear  shell s tructure,  and  

bo th  qual i ta t ive  cons idera t ions  and  deta i led  studies o f  ind iv idua l  nuclei  have been 

repor ted  that  a t t empt  to relate the observat ions  to the detai ls  of  nuclear  level d iag rams  

and to the compet i t ion  between long-range  and  pa i r ing  forces in nuclei  (see,  for ex- 
ample ,  refs. 2-4)) .  

In  the present  pape r  we shall  a im at  a semi-quant i ta t ive  account  of  the two pr inc ipa l  

features of  the exper imenta l  t rends  (bumps  in the mass  deviat ions between magic  

numbers  and f lat tened b u m p s  accompan ied  by de format ions )  in terms of  a pr imit ive  

semi-empir ica l  theory  o f  nuclear  masses  based  on two phys ica l  ingredients:  

t The present paper is part of a University of California Lawrence Radiation Laboratory report, 
UCRL-11980, which also contains a table of nuclear properties based on the theory developed 
here. 
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(i) The bumps in the masses are associated with a "bunching" of energy levels in 
a spherical nuclear potential, the filling of a bunch corresponding to a closed-shell 
configuration. 

(ii) The above bunching, being associated with the spherical shape of the nuclear 
potential, will disappear for a sufficiently distorted configuration. 
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Fig. l.  The mass decrements of  97 beta-stable nuclei are compared with the smooth curve cor- 
responding to the liquid-drop part of  our mass formula. Note that the over-all trend of the decre- 
ments is reproduced throughout the periodic table, including the light nuclei. The scatter of the 

points is due to shell effects. 

The first of these ingredients underlies the work of  Mozer s) on nuclear masses, 
and, with a more detailed specification of the bunching of levels, also the recent work 
of  Ktimmel e t  al. 6). 

The second ingredient expresses the requirement that for very distorted nuclear 
shapes the bunching of levels characteristic of the known magic numbers would be 
destroyed owing to the removal of degeneracies associated with the spherical shape. 
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We shall formalize the above two requirements by writing down a correction to 
the liquid-drop formula for the mass of a nucleus (a function of N, Z and the nuclear 
shape), the correction being such a function of N and Z as to embody the first re- 
quirement, and such a function of shape as to embody the second requirement. (The 
second requirement is simply the vanishing of the correction for large distortions). 

The resulting expression for the mass of a nucleus will be, like the original liquid- 
drop formula, a function of N, Z and shape. In this sense it will be more than a mass 
formula, aiming to reproduce only the experimental nuclear masses. It will be a semi- 
empirical theory of the nuclear potential energy considered as a function of deforma- 
tion. As a result, by minimizing the mass with respect to the shape, we will be able 
to deduce, in addition to the ground state masses of nuclei, also their equilibrium 
deformations. Furthermore, a discussion of the distortion energy in nuclear fission, 
in particular of the fission barriers, will be possible. 

The plan of this paper is as follows: In sect. 2 we explain briefly the qualitative 
features of the mass formula. In sects. 3 and 4 we go through the derivation of the 
functional form of the shell correction. This enables us to present in sect. 5 the 
detailed appearance of the mass formula and to derive analytical expressions for the 
predicted masses and deformations of nuclei. Sect. 6 explains how the adjustable 
parameters were fitted from experimental data. Sect. 7 discusses in ten subsections 
various results following from our semi-empirical theory. Sect. 8 summarizes the 
paper. 

2. Qualitative Considerations 

The semi-empirical mass equation, whose derivation will be explained in sects. 3-5, 
has the following form: 

M(N, Z, shape) = Ml iqu id  drop + Mshells 

~--- Mliquid drop(N, Z ,  shape) 
+ Cs(N, Z)e -(distOrtiOn)z]a2. (1)  

The last term is the shell correction and is a product of an over-all amplitude 
factor C, a dimensionless function s(N, Z) and an attenuating factor exp[-(distor- 
tion)2/a 2] of range a. The function s(N, Z), one form of which will be derived in 
sect. 3, has the general appearance of negative dips at magic numbers, with positive 
bumps in between. The attenuating factor makes the whole shell correction disap- 
pear with increasing distortion of the nucleus. The "distortion" in eq. (1) is the root- 
mean-square value of the deviation of the radius vector R(O, dp), specifying the 
nuclear surface, from its average value Ro; i.e., 

(distortion)2 = (f iR)2 = ~I df2(R-Ro)  2 ' 

i) 
the integrations being over the solid angle 4zc. The Gaussian form of the attenuating 
factor is discussed in sect. 4. 
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For a spherical shape (5R)2 is zero and the shell correction is Cs(N, Z),  which we 
shall denote by S(N, Z). The function S(N; Z) thus represents what the effects of 
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Fig. 2. The deformation energy deduced f rom our mass formula is shown in its dependence on a 
deformation parameter 0 (a measure of  the eccentricity of  the spheroidal nuclear shapes). The case 
of  t74Hf illustrates how a positive Gaussian bump, representing shell effects, when superimposed on 
a liquid-drop restoring potential, leads to a stable prolate equilibrium shape. (The oblate shape, 
corresponding to negative 0, is unstable with respect to ellipsoidal distortions not displayed in this 
figure.) The case of  ~°sPb shows how a negative Gaussian bump leads to a relatively undeformable 
closed-shell configuration, with an anomalously high fission barrier. (The barrier shown in this 
figure is somewhat  higher than our formula actually predicts, because all the graphs were obtained 
- for ease of  illustration - f rom an approximation valid only for moderate 0 values. See appendix A. 1.) 
The case of  ~anU shows the effect of  a positive bump in lowering the fission barrier, which in the next 
two cases (A = 260 and A = 280) leads to nuclei virtually unstable against fission. The case of  
A = 310 illustrates a nucleus that has been stabilized against fission by a hypothetical doubly magic 

number  at N = 184, Z = 126. 

shells would be in a nucleus whose shape was forced to be spherical. The shape 
dependence of the shell correction is contained in the factor exp[-(6R)Z/a2].  

The precise form of the liquid-drop part of the mass formula is not of importance 
for the present qualitative discussion. In developing our mass formula we first 
considered a conventional liquid-drop expression consisting of volume, surface and 
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electrostatic energies (and an even-odd correction), but we later incorporated one 
or two refinements. 

Without going into the details of  either the liquid-drop part of the mass formula 
or of the precise form of the shell function S(N, Z), we may deduce the principal 
qualitative consequences of the expression (1) that follow from the fact that the shell 
correction S(N, Z) changes from generally negative values in the vicinity of magic 
numbers to generally positive values in between. 

We note that the liquid-drop formula predicts a stable spherical equilibrium shape 
for a nucleus and that, according to eq. (1), this is still the case when the shell function 
S(N, Z) is negative. The result of using eq. (1) in the vicinity of the closed shells is, 
therefore, a spherical nucleus with unusual stability (see the curve for 2°spb in fig. 2). 
On the other hand if, between magic numbers, S(N, Z) should become sufficiently 
positive, the stabilizing tendency of the liquid-drop part of the mass formula will be 
overcome by the opposite tendency of the shell correction, and the spherical shape 
will become unstable. Since, however, the shell correction is assumed to  disappear 
for large distortions, the decrease in mass will only continue up to about the range 
a of the attenuating function, after which the liquid-drop part will take over and the 
mass will, once again, increase. (We are disregarding the possibility of fission, which 
will be considered later). The result will then be a stable, non-spherical configura- 
tion - see the curve for 174Hf in fig. 2. From this figure it may also be deduced that, 
according to eq. (1), the mass of a nucleus in the deformed configuration is less than 
the sum of the liquid-drop mass and the shell correction for the spherical configuration. 
Since this latter quantity, considered as a function of N and Z, has the appearance 
of  bumps between magic numbers, the transition from spherical to non-spherical 
equilibrium shapes will be accompanied by a flattening-out of the bumps. 

These qualitative features follow from the form of eq. (1). It is possible to go 
somewhat further without specifying more closely the function S(N, Z). The general 
theory of the "exchange of stabilities" between different families of equilibrium 
configurations of a system (see, for example, refs. 7-9)) shows that at the moment 
when the nature of the equilibrium of the sphere changes from stable to unstable 
with the increase of S above a critical value Sc~t the resulting stable deformations 
are, at first, proportional to +(S--S~rit) ~. (For details see appendix 1). This means 
that the deformations come in abruptly, with a vertical tangent, when plotted as a 
function of the excess over the critical condition. Similarly, when in the second half 
of a shell, S is about to decrease below So,it the deformations will disappear abruptly 
with a vertical tangent. 

On the other hand, with the finite-range attenuating function assumed in eq. (1), 
the stable deformations will only very slowly - logarithmically - exceed in order of 
magnitude the range of the attenuating function, once the value of S,has exceeded 
appreciably the critical value. The result is then that the mass formula (1) will 
predict deformations appearing and disappearing suddenly at certain critical points 
between magic numbers and fairly constant in between. 
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We note finally that since stable deformations will appear only if the shell function 
S ( N ,  Z )  exceeds a certain minimum value, sufficient to overcome the stabilizing effect 
of  the liquid-drop part  ofeq .  (1), deformations will not, in general, be found between 
all magic numbers. They will be most likely to appear either when S is particularly 
large (regions of  the periodic table away from magic neutron or proton numbers), 
or when the liquid-drop stabilizing effect is small (region of heavy nuclei). 

These qualitative features, which follow more or less directly from our two physical 
assumptions, appear to bear some resemblance to the experimental behaviour of  
nuclear masses and deformations, and we shall examine in sect. 7 the degree of 
quantitative agreement that may be attained using a particularly simple form of 
S ( N ,  Z ) ,  which we shall now derive. 

3. The Shell Function S(N, Z) 

We shall derive an expression for the shell correction A E  = S ( N ,  Z )  by con- 
sidering it to be the result of the bunching of an originally smooth distribution of 
single-particle levels into one that consists of groups of levels corresponding to the 
observed magic numbers. The shell correction will be taken to be the difference 
between a sum over single-particle contributions in the bunched and unbunched 
situations: 

A E  = ~ e i ( b u n c h e d ) -  ~ e i ( u n b u n c h e d ) ,  (2) 

where gi are the single-particle contributions to the total energy. The spectrum of 
these single-particle contributions could be chosen with varying degrees of refine- 
ment, an extreme approach being one in which it was made to correspond as closely 
as possible with single-particle levels in a nuclear potential of  the type studied by 
Nilsson 10). Another, purely empirical, approach would be to specify the level 
:spectrum by means of a large number of adjustable parameters, to be fixed with 
reference to the experimental masses 6). In this paper, aimed at the greatest possible 
simplicity, we shall consider the case in which the unbunched level spectrum in eq. 
(2) corresponds to that of  an ideal degenerate Fermi gas, and the bunched spectrum 
results from cutting up the smooth spectrum into groups, with populations cor- 
responding to the sizes of  shells between magic numbers, and then compressing each 
group so as to produce a series of  bands with gaps at magic numbers. 

3.1. COMPLETE BUNCHING 

Consider first the extreme case in which the bands are completely bunched into 
degenerate levels whose positions are specified by t l ,  t z • "h " " " as reckoned from the 
bot tom of the potential well (see fig. 3). A nucleus is thus supposed to consist of  
neutrons and protons, each with its bunched spectrum of levels (these could be dif- 
ferent for the neutrons and protons). The size of  the well - the same for neutrons 
and protons - is assumed to be proportional to the total number of particles, A 
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(equal to N + Z ) .  This means that for nuclei with N = Z = {A, the smooth Fermi 
gas would fill the well to a constant depth, independent of A and equal to the Fermi 
e n e r g y  t F of a "standard nucleus". [This is related to the nuclear radius constant 

r0 by t F --  (£8=){(hz/2Mr~), where M is the nucleon mass.] The maximum energies 
of  the Fermi gases representing the neutrons and protons in the unbunched case are 
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Fig. 3. Schematic diagram of a Fermi-gas spectrum of levels (on the left), cut up into bands cor- 
responding to magic numbers,  and bunched. The degree of  bunching is 100% on the right and 17.5 % 

in the centre; this is the degree of  bunching deduced f rom experiment. 

then tN = tF(N/½A) ~ and tz = tF(Z/½A) ~, according to the proportionality of the 
kinetic energy to the two-thirds power of the particle number for a Fermi gas. From 
this proportionality it also follows that the energy of the nth neutron in a well of  
fixed size (i.e., for a given A) is given by t, where 

t 
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and the total (kinetic) energy of all N neutrons in the unbunched case is given by 

f l  ~ t--~N~ (Nn~dn. (3) tdn = N~do 

(We shall use integrals instead of sums since the discreteness of  particles will be dis- 
regarded.) 

In the bunched case (see fig. 3) all levels between M,_ 1 and Mi are at the same 
energy t,, and all particles between M~_~ and M, are therefore contributing at a 
constant rate in the integration f rom n = 0 to n = N; the rate of  contribution, 
regarded as a function of n, is a series of  constants h, one for each shell. We may 
consequently write the total energy of the neutrons in the bunched case as an in- 

tegral f rom zero to N over a "staircase function" tstairease(r/), consisting of steps of 
constant height h between magic numbers. Introducing a dimensionless staircase 
function q(n) defined in terms of tst.i ..... (n) through 

ts,.i  . . . . .  ( n )  = q ( n ) ,  
N ~ 

we may write the total neutron kinetic energy in the bunched case in a way analogous 
to eq. (3) as 

t N 

where 

N ~ 
q(n) = q i = - - t l  for Mi_l  < n < M;. 

tN 

The difference in energy between the bunched and unbunched cases (associated 
with the neutrons) is then 

Considering the protons in the well to be bunched like the neutrons the total kinetic 
energy difference between the bunched and unbunched cases may be written as 

where 

dE = ~ F(N)+ Z ~t~ F(Z) = t F F(N)+ F(Z)t±~ " (4) 
\ 2 x ~ . .  ' 

F(N) = [q(n)-n~]dn. 

At this stage various degrees of  refinement are still possible in the choice of  the 
staircase function q(n). For  example all the levels h,  and consequently all the values 



10 w . D .  M Y E R S  A N D  W . '  J .  S W I A T E C K I  

qi, might be regarded as adjustable parameters, possibly different for neutrons and 

protons. This, although a plausible approach in a purely empirical description of  
nuclear masses, introduces rather more freedom than is necessary, because a completely 

arbitrary distribution of the values h would include systems bearing no resemblance 
whatever to a nucleus of approximately constant density and constant energy per 

particle. I f  the system represented by the bunched spectrum is to bear some resem- 
blance to nuclei, the levels h should remain in the general neighbourhood of the 
unbunched bands that they are supposed to represent. One possible idealization is 

to put each t~ at the average position (i.e., at the centre of gravity) of the unbunched 
band that it represents. This prescription would imply that q~ is the average value of  

n ~ between n = M~_ 1 and n = M~, or, explicitly 

n},dn 
Mi -- M i -  

q i -  ~-~ 5 M i - M ~ _  1 

L dn 
i - I  

This choice of q~ specifies completely one form of the shell correction - see fig. 4. 
The resulting expression for AE, considered as a function of N and Z, has the ap- 

pearance of cushion-like bumps between lines corresponding to the magic numbers. 
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F(N) or F(Z). (In the case illustrated the over-all shift parameter c is zero.) 
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So far no adjustable parameters have been introduced into the expression for 
A E  (not counting the magic numbers M~, which are considered as given). Three 
straightforward generalizations are possible which introduce two adjustable para- 
meters but do not complicate essentially the form of the shell correction. 

3.2. INCOMPLETE BUNCHING 

If, instead of completely degenerate levels t~, we consider partially bunched bands, 
the shell correction A E  will be modified. Consider the case in which the width of each 
band is (1 - b )  times its unbunched width, so that b may  be regarded as a "bunching 
factor" - no bunching corresponding to b = 0 and complete bunching to b = 1. 
I f  the compression of  the bands in fig, 3 is taken to be  "uniform" in the sense that the 
position of each level in the energy spectrum varies linearly with b, it follows im- 
mediately that the energy difference A E  is simply proportional to b. Thus the effect 
of partial bunching is to replace tr in eq. (4) by btF, where b is the degree of bunching. 

3.3. POTENTIAL ENERGY AND ITS VELOCITY DEPENDENCE 

Eq. (4) was derived by considering the differences in kinetic energies for a gas of  
independent particles with a bunched and unbunched spectrum. For independent 
particles in an external potential well of constant depth the potential energy is the 
same for all particles and independent of the bunching, so that the inclusion of  the 
potential energy would leave the energy difference A E  unchanged. The situation is, 
however, more complicated, since it is necessary to have a velocity-dependent 
potential well if a self-consistent Fermi=gas description of a saturating system, like 
a nucleus, is attempted. (See, for example, the discussion in ref. t 1)). (For a velocity- 
independent well the binding energy per particle cannot be made equal to the 
separation energy, and summing the energies of the individual particles in order to 
represent the total energy of  such a system implies an internal inconsistency.) A 
velocity-dependent potential will affect our expression for A E  since the modification 
of the kinetic energies implied by the bunching of the levels will 'also affect the depths 
felt by the particles and consequently modify the potential energy. The assumption 
of  a general velocity dependence would complicate our expression for AE. but in the 
commonly used approximation in which the depth of the potential varies linearly 
with the kinetic energy of  the particle, the modification in A E  is, fortunately, trivial. 
Thus, if the well depth is taken as 

v = v o + k t ,  

where vo and k are constants, and if the contribution of a particle to the total energy 
is taken as its kinetic energy t plus (l/n) times the average potential v it experiences 
(n would be 2 for two-body forces), the total energy would be made up of contribu- 
tions of the form 

e = + 1+ t. 
n 
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If  now we assume the spectrum of the kinetic energies t to be bunched, the effect 
of the bunching will be [1 + (k/n)] times what it was in the case k = 0, corresponding 
to no velocity dependence. Hence the functional form of AE in eq. (4) is unaffected, 
the factor btv being simply replaced by [1 + (k/n)]bt r. 

In what follows we shall lump the product of [1 + (k/n)], b and t F into one adjus- 
table parameter C (of the dimensions of energy). 

3.4. PREDOMINANT SIGN OF AE 

If, after putting the bunched levels h at the centre of gravity of the unbunched 
bands, the whole bunched spectrum is moved bodily down by a constant, we obtain 
a somewhat more general expression for the shell correction. It is still of the form 
of eq. (4) but the staircase function is now defined by the constants 

3 M~-M~_ 1 c 
- - - - ¢ ,  for M~_I < n <M~,  
5 Mi-- Mi-  1 27 

where c is an adjustable over-all-shift parameter. (The factor 2 -~ is introduced for 
future notational convenience.) The freedom gained by the introduction of c makes 
it possible to vary the over-all behaviour of AE from a predominantly positive to a 
predominantly negative function. Contrary to what one miglit, perhaps, have ex- 
pected, the choice c = 0 (bunched levels at average positions) does not result in a 
correction AE that is about equally often positive as negative, but in one that is 
entirely positive except at doubly magic numbers (N, Z both magic), at which it is 
zero. This becomes clear if one notes that for N and Z magic the total energy in the 
bunched case is made up of contributions from filled bands, each band being at 
what its average position was before the bunching; consequently the energy is, by 
definition, unaffected by tae bunching. It is only the energy of an uncompleted band 
that wilt be affected and the effect of bunching will always be positive since the 
centre of gravity of an uncompleted band of levels is raised by bunching. The ex- 
pression (4) for AE represents, therefore, a correction consisting entirely of positive 
bumps. The introduction of the parameter c allows one to lower  the correction, 
making it sometimes positive and sometimes negative. The explicit dependence on 
N and Z of the modification introduced by c is readily seen to be equal to 

1 - f ~ c d n - f ~ c d n .  

2 ~ (½A) ~- ' 

i.e., equal to -- cA ~. 
As we shall see, the introduction of an over-all shift into the spectrum of levels is 

clearly demanded by the data. To date we have been unsuccessful in providing a 
theoretical justification for such a shift or in making an estimate from first principles 
of its magnitude. We feel that such an estimate ought to be possible from a careful 
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analysis of the behaviour of the centre of gravity of a group of levels, originally 
degenerate, when the degeneracy is removed by a deformation of the system. 

The final form of the function s(N, Z) arrived at in this section, is summarized 
below 

s(N, Z) - F(N)+F(Z) cA_~, 
(½A) 

f l r ~- " F(N) -- [q(n)-n jcln, 

q(n) - 3_ M~-M~_~_, for M~-I < n < M,. (5) 
Mz-M~_I 

We took the magic numbers as Mi = 2, 8, 14 (or 20), 28, 50, 82, 126, 184 for both 
neutrons and protons. The quantity Mo is defined as zero. For purposes of illustra- 
tion we also took N = 258 to be a magic number - see subsect. 7.8. We note that 
since q(n) is a constant between M~_ 1 and M i the dependence of F(N) on N is of the 
form: (const) + ( c o n s t ) N - ~ N  ~. Explicitly, 

F(N) " 3  ~ = q , (N-M,-1) -y (N -M~_I), for M,_~ < N < M,. 

At magic numbers F(Mi) assumes the value zero. The appearance of S(N, Z), 
equal to C times s(N, Z), is illustrated in figs. 5 and 6. The first shows a contour plot 
of SIN, Z);  the second shows S(N, Z) taken along a smooth line in the N, Z plane, 
following approximately the valley of fi-stability, and given by Green's expression 
(ref. t), p. 250): 

0.4A 2 
N - Z -  

A + 200 " 

4. The Deformability of Nuclei and the Attenuating Function 

A detailed description of the shape-dependence of shell anomalies in the nuclear 
binding energy would be a most difficult task entailing the consideration of details 
of nuclear structure. Our choice of a simple short-range function (a Gaussian) for 
the description of the damping out of shell effects has been guided by qualitative 
considerations, supplemented by a model calculation (due to Hill and Wheeler) of 
non-interacting particles in a cubical box (ref. 14), p. 1124). 

The idea that there should be an attenuating function at all is, of  course, the 
result of  the observation that the known shell effects are associated with degeneracies 
characteristic of the spherical shape and should disappear with distortions away from 
the sphere. The basis of the whole of our treatment is that - apart from special con- 
figurations characterized by special symmetries - the nuclear deformation energy 
should follow a smooth, statistical, average behaviour (to which a liquid-drop 
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formula represents an adequate approximation), This concept of  an average, amor- 
phous state of a piece o f  irregularly shaped nuclear matter, characterized by an ap- 
proximately constant volume density and a relatively thin surface region, provides 
the background for our discussion of nuclear deformabilities. Thus when attempting 
to trace out the energy of a nucleus as a function of deformation from a sphere we 
claim to be able to predict the average behaviour of the potential-energy curve as 
soon as the special degeneracies associated with the spherical shape have been broken 
down. This behaviour should be that of the amorphous, standard piece of nuclear 
matter, given by a suitable smooth (liquid-drop) formula. This requirement - a 
kind of  correspondence principle - ought to provide a stabilizing factor in discussions 
of nuclear deformabilities. As soon as special degeneracies have been broken down, 
a smooth, familiar, predictable trend ought to set in. 

5 

0 

u ~ -  5 

- I 0  
z z ~  

20 40  60 80  I00  

Neulron" number 

, , ! , I ~  , [ 

120 140 160 180 200 

Fig. 6. The shell function S(Z, N) is shown along Green's approximation tO the valley of stability 
(solid line). The dot-and-dash line corresponds to the critical value Scm which, when exceeded, leads 
to the appearance of deformations and a flattening-out of the humps in S, given by the dashed lines. 

This "correspondence principle" for nuclear deformabilities - the existence of a 
definite asymptotic behaviour for larger deformations - appears not to have been 
exploited in  existing discussions of nuclear deformabilities. The reason for this is 
probably that the majority of calculations of nuclear deformabilities have been made 
with the aid of a non-isotropic harmonic oscillator potential. This potential, although 
excellent for many purposes, is grossly inadequate in that it fails to represent a basic 
nuclear property, namely the saturating character of nuclear matter, i.e., the existence 
of an approximately constant nuclear density and a relatively thin nuclear surface. It is 
nuclear saturation that makes possible the division of a nucleus into a volume and 
surface region and the interpretation of average trends of nuclear masses in terms of 
a liquid-drop model. The oscillator nuclear potential, being all "'surface", gives up 
from the beginning this basic aspect of nuclear structure. As a result, the possibility 
of establishing a connection between the deformabilities calculated on the basis of 
oscillator levels and the liquid-drop deformabilities is forfeited. We believe that any 
calculation of  deformabilities based on the oscillator potential is subject to an 
arbitrariness which cannot be removed until the non-saturating character of this 
potential has been remedied. 
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Assuming the correctness of  the notion of an asymptotic, average behaviour of a 
distorted nucleus, the qualitative characteristics of the shape dependence of a shell 
effect become, of necessity, that of a local (positive or negative) "dimple" in the 
potential-energy surface. 3"he location of the dimple corresponds to the special 
configuration responsible for the shell effect, the most familiar such configuration 
being the sphere. 

As regards the choice of the functional form of the dimple we have been guided 
by qualitative considerations. Since the shell effect should be destroyed by any de- 
formation (e.g., a prolate or oblate quadrupole deformation, or a surface ripple of  a 
higher multipole order) we have chosen for our deformation variable the root-mean- 
square of the deviation of the surface from a sphere, a quantity which incorporates 
indiscriminately all types of deformation. In fact the attenuation of a shell effect 
will surely depend in some specific way on the form of the deformation; in the absence 
of information on this dependence, our choice of the indiscriminate root-mean-square 
deviation may be regarded as an interim one, to be modified when future analysis 
brings out the need for a more refined treatment. 

As regards the choice of a constant range in the attenuating function (a range 
independent of  the nuclear size), we were guided by the expectation that the amount 
of  distortion of  a nuclear surface from a sphere required to destroy a shell effect 
would be of the order of magnitude of the Fermi wavelength 2 of the fastest particle 
in the nucleus. For a Fermi gas at a fixed density this length is a constant. The 
quantity ~ is a characteristic length, by means of which the Fermi gas can "feel out" 
deviations of the nuclear surface from a sphere, and we expect it to be a natural unit 
in which such deviations should be measured. 

This argument can be made more precise by means of dimensional analysis. A 
nucleus is characterized by two quantities of the dimensions of a length, its radius 
R and the average spacing between nucleons (or the Fermi wavelength ~;). Hence 
its energy as a function of a deformation magnitude A R  (say the root-mean-square 
deviation considered above) should be expressible as 

This is a function of  two arguments. If, however, we consider the usual expansion 
in powers of ~C/R, or A -~, the above function may be written, to leading order, as a 
sum of two functions of one variable (see below) 

The second term, independent of the microscopic quantity ~, may be identified as an 
over-all deformability (e.g., given by a surface energy). The first term, representing 
the deviation from this asymptotic behaviour, is the shell correction, whose charac- 
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teristic range is seen to be the constant 1. To prove the decomposition of F note that 
if R/~. is sufficiently large it is possible to choose a deformation ARt such that 
AR~/~ >> 1 but AR~/R << 1. It follows that 

7) 0 ) 

for AR > ARI:F (AR, 7 )  (oo, ) . 

Assuming that the limits denoted by F(AR/~, 0) and F(oo, AR/R) as well as F(oo, 0) 
exist, we may readily verify that the combination 

constitutes an approximation to the function F(AR/~, AR/R). Thus, evaluating the 
difference ~ - F i n  the two cases AR < AR1 and AR > ARt, we have 

for AR < ARI: cb-F = F ( AR, O)+F(o%O)-F(oo, O)-F (A~R, 0 ) = 0 ,  

for AR > AR,: ~b-F = F(oo, O)+F (oo, A~) -F(oo, O)-F (oo, A~) = 0. 

Hence the function ~, a sum of a function of AR/2~ and a function of dR~R, is, 
under the conditions stated, an approximation to the function F(AR/~, AR/R). 

The considerations of this section may be illustrated by a study of the deformability 
of a cubic box, containing a Fermi gas of independent particles. This example is due 
to Hill and Wheeler ~4) and we shall present a somewhat revised discussion of their 
results. 

Fig. 7 shows a plot of the energy of a box, filled with 60 spinless particles, as a 
function of a deformation that stretches one side c and squeezes the other two a and 
b in a volume-preserving manner 

a = L e  - ~ ,  b = L e  - ~ ,  c =Le% 

The potential is constant inside the box and infinite outside, so that the wave functions 
of the particles are sines and cosines and the total energy is given by a sum of squares 
of positive integers l, m, n 

h~n 2 [12 mZ n21 
E -  Z e ~ +e-~ .  + 2ML 2 l, ,,, ,, 

(M is the particle mass). Each of the parabola-like curves in fig. 7 shows the behaviour 
of the energy for a given choice of "orbitals" (a given assignment of the quantum 
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numbers/ ,  m, n) for the 60 particles. The scalloPed envelope of the parabolas would 
then be the lowest deformation energy corresponding to allowing the particles to 
re-adj ast themselves to the lowest possible orbitals for each deformation. The dashed 
curve represents the trend of the deformability calculated in the average, amorphous, 
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rapid d e f o r m a t i o n  

/ / L'L'L~e-~/2 
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iFe ;m ~,Dc~,~° I,/J//Le- a"  
t--Le°  

I ~ I 

0 . 0  0.1 0 . 2  0 .5  0 . 4  

• Deformat ion,  a 

Fig. 7. A plot  o f  the  de fo rmat ion  energy o f  60 particles in a rec tangular  box  of  vo lume L 3, as a func t ion  
o f  a deformat ion  pa ramete r  ~. The  parabola- l ike curves co r r e spond  to keeping the  single-particle 
orbitals  fixed; their envelope builds up a sca l loped curve cor responding  to a min ima l  de fo rmat ion  

potential ,  which  is compared  with a statistical calculat ion (dashed curve).  

statistical approximation carried out to an order in A -~ in which volume and surface 
energies are retained, ~ Only the curvature of the dashed curve  is signifieant - the 
absolute position has been adjusted to facilitate comparison with the scalloped curve. 
(To calculate the absolute position of the dashed curve, terms of higher order in 
A -~ would have to be retained.) 

The equation of the dashed curve may be deduced from the second term in Hill 
and Wheeler's equation appearing at the top of p. 1125 of ref. 14). The above authors 
identify this term with a surface energy which they write in the form (S/32~)(6~2N/V) ~, 
N being the number of particles in the box, V the volume and S the surface area. 
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Hill and Wheeler, in constructing their fig. 12 (on which our fig. 7 is based), take the 
volume of the box to be rc 3 so that its surface is S = 2=2e-=+4rc2e ~ .  Hence, with 
N = 60, they find for the surface energy (ref. 14), p. 1125, caption to fig. 12): 

(7) zv e-  ~ + 2e~ ) = zc ° . . 
16 ]-6 (3+¼~2 ") 

= 328 + 82cd, approximately. 

This is the expression or, which our dashed curve is based (apart from an arbitrary 
shift upward). Hill and Wheeler's dashed curve labelled "Predicted by Surface 

Tension Argument" disagrees with our dashed curve for a reason that we do not 
understand; we have used Hill and Wheeler's own expression for what they call the 

surface energy. 
Concerning the separate question whether this expression should be identified With 

a surface energy we would refer to ref. al), especially the discussion in sect. 5. The 
essence of that discussion is that for a Fermi gas of particles in a box with infinitely 

high walls the particle density is confined effectively to a somewhat smaller box 
whose surface is at a distance ~(3rc)2 inside the potential box (2 is the wavelength 
of  the fastest particle in the gas). I t  then follows that if the volume of the outer box 

is kept constant with deformation the volume of the inner one is not quite constant; 
it decreases by an amount proportional to the increase of the surface area. As a result 

the density of the Fermi gas increases slightly and, since the kinetic energy by itself 
is not stationary with respect to density changes, the volume energy of the system 
increases. This compression being proportional to the increase in surface area, the 
associated energy change is also proportional to the change in area and thus makes 
a spurious contribution to the true surface energy. In the case of a box with infinite 
walls these contributions can all be calculated explicitly, with the result that of the 

expression identified by Hill and Wheeler as a surface energy, four-fifths arises from 
the compression of the system and one-fifth from the true surface energy. 

[The surface energy of a Fermi gas characterized by a Fermi energy tr and enclosed 
in a box with infinitely steep sides may be deduced from ref. 31) and re-written in 
the form 

4~roZ7 3~z [3 \  + = / - !  
~ \ 7 ~ /  

where 4 3 ~-7cr o is the volume per particle and ~ the surface energy per unit area. The 
energy due to the compression of the box, if expressed - incorrectly - as a con- 
tribution to the surface energy is found to be 

4~r° Ys~u~i°~ 10 
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The sum of the two expressions leads to a value of (;~ + ]~spurious) which agrees with the 
quantity that Hill and Wheeler denote by Ok~n on p. 1125, ref. 14). The ratio 
7/(7 + 7~p~rio~s) was given in ref. 31), p. 235, as 0.194. The correct value is ~ exactly]. 

The fact that a slight compression of a system whose energy is not stationary with 
respect to density changes may introduce large spurious contributions to the surface 
energy is very important for the correct interpretation of calculations dealing with 
the deformability of single-particle systems. It does not invalidate, however, the 
illustrative value of Hill and Wheeler's box, which shows the relation of single- 
particle calculations to the deformability obtained in the amorphous, statistical ap- 
proximation, provided both calculations are made under the same conditions. Thus 
our fig. 7 shows this relation when both calculations are made for a box of constant 
volume (and so four-fifths of the rise of the dashed curve is due to compression and 
one-fifth to surface tension). 

With this understanding we may still conclude that the amorphous, asymptotic 
deformability represents rather well the trend of the single-particle calculation, 
except for a sizable deviation near the cubical shape ~ = 0. The reason for this 
deviation is itself instructive. It turns out that 60 happens to be a magic number for 
particles in a cubic box, and the special stability of the cubical shape in fig. 7 is a 
reflection of this shell effect. We can thus see in fig. 7 not only how the amorphous .de- 
formability reproduces the single-particle calculations, but also how the special 
stability of a closed shell is destroyed by a deformation. In the case illustrated in fig. 7, 
at least, the representation of the shell effect by a Gaussian function of distortion 
would appear not to be misleading. We may even verify that the range of the negative 
bump in fig, 7 is of the order of magnitude of the range of our Gaussian attenuating 
function. Thus we readily calculate that the mean-square deviation of the surface 
of a box from the cube is given by ~LZe 2 (for small g). With four particles per state 
(neutrons and protons with two spin directions) the box with 60 filled orbitals cor- 
responds to a nucleus with 240 particles, and hence the volume per particle is given 

1 3 4 3 by y ~ L o ,  equal to 5-Trro, say. Using this relation between L and ro we may rewrite 
the mean-square deviation as ½(40re) ~ r ~  2. Imagining the bump in fig. 7 to  be re- 
presented by a Gaussian and estimating by eye that its amplitude is halved at g = 0.04 
or 0.05, we find for the range a of the Gaussian the relation 

a (0.04 or 0.05)(407@ 
- -  ~ ' = (0.17 or 0 . 2 6 ) ,  

r0 2 ~ In 2 

which is to be compared with a/ro = 0.27, for the attenuating function in our mass 
formula (see sect. 6). 

There are now available more refined calculations z-4)  which study the deforma- 
bility of nuclei by starting with single-particle levels in an oscillator potential and 
consider the effect of residual interactions between the particles. The effect of these 
interactions is to smooth out the scallops in fig. 7 and the result, as regards the 
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damping-out of  shell effects, appears to improve the correspondence with a smooth 
attenuation function superimposed on an asymptotic trend of the deformation 
energy. 

5. The Mass Formula 

Assuming the shell function from sect. 3 and a Gaussian attenuating function 
(sect. 4), the shell correction Mshen s is now completely defined through eqs. (1) and 
(5). I t  contains three adjustable parameters: the amplitude parameter  C, the shift 
or base-line parameter  c and the range parameter  a. In this section we shall combine 
the shell correction with a four-parameter liquid-drop formula to obtain 

M(N, Z, shape) = Mn N +  MIt Z-k- (volume energy) + (surface energy) 

+ (Coulomb energy) + b + S(N, Z ) e x p [ -  (bR)Z/aa]. (6) 

In the above, M n is the neutron mass and MH the mass of  the hydrogen atom. Further, 
we shall take 

volume energy = - c 1 A, 

surface energy = c2A~f(shape). 

Here el is the volume binding energy per particle, whose dependence on nuclear 
composition will be taken as 

E C 1 : a 1 I - - K  

where at  and tc are constants. The surface-energy coefficient e2, equal to 4rCro 2 times 
the nuclear surface energy per unit area, will be taken to depend on nuclear composi- 
tion in the same way as c 1 

C2 a2 I i _ t  c N - Z  2 

-- ( T )  I ' 
We adopt  this form for the surface energy not because we can discern any evidence 
for it in the nuclear masses, but because the expression 

E 2 ] (alA - a2 A-~) 1 -- tc 

is an intrinsically more reasonable three-parameter binding-energy formula, in which 
the surface and volume energies vary in a parallel manner and, in particular, vanish 
simultaneously for a large neutron excess. (Conventional formulae without a com- 
position-dependent surface energy correspond to a surface tension that retains its 
full standard value even when the neutron excess has made the volume binding 
vanish, and all cohesion has been lost.) 
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The second minor modification that we shall adopt will be that instead of the 
formula 

3 e 2 Z 2 g(shape) 

5 r o A ~ 

for the electrostatic energy, we shall take the following expression: 

electrostatic energy - 3 e z  Z2g(shape)- 7z2 e2(d) 2Z2 
5 ro A 2- ro )-" 

As will be shown in appendix A.2, the second term corrects the electrostatic energy of 
an arbitrarily shaped drop for a diffuseness of the charge distribution. The correction 
is to lowest order in the surface-thickness parameter d in a Fermi (Woods-Saxon) 
type of distribution specifying the fall-off of the charge density across the surface 
of the drop. According to the Stanford electron-scattering experiments d is given by 
(2.4)/(2 In 9) = 0.5461 fm. 

The above modification in the electrostatic energy is again not made on account 
of any evidence from the nuclear masses but because it incorporates a well-established 
property of nuclei without introducing additional parameters and without complica- 
ting appreciably the mass equation. 

The term 6 in eq. (6) is an even-odd correction, which we shall take as __ 11/A ~ 
MeV for odd or even nuclei and zero for odd-mass nuclei 12). 

The function f (shape) gives the dependence of the surface energy on shape and 
is equal to the dimensionless ratio of the surface area of the shape in question to 
the area of the original sphere. The function g (shape) is the dimensionless ratio of 
the electrostatic energy of a distorted sharp distribution to that of the sphere. 

The shape dependence of the mass in eq. (6) comes in through the liquid-drop 
functionsf (shape) and g (shape) and through the attenuating factor exp [ -  (6R)2/a 2 ]. 
If  we choose to describe the shape of the nucleus by 

R(O, ¢) = Ro[1 + Z E aa. t~.(0, ¢)], 

we find 

where 

( f i R )  2 = R o 2 fi2 
4~ 

#2 = Z Z iaJ  2, (7) 

f i +  - - ( ] ( ] L  ' 2 - 1 ' ' 2 + 2 " '  = laa.l'2 +higher" powers of a,~u, 
8re 

5(2-1) [a~ulZ+higher powers of az,. 
g = 1 - ~ 4rc(2~ + 1) 
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In the case of  an axially symmetric shape, described by 

we have 

R(0) = RoI-1 + Y, a.e.(cos 0)], (8) 
n 

2 • ~ an 
(6R)Z = R2 2 n + l '  

( n - 0 ( ~ + 2 )  
f =  1+  ~ 2(2n+1)  an + . . . .  

5 ( ~ - 1 )  

g = 1 -  Z (2~ + 1) 2 a~ + . . . .  

The higher powers in these expansions may be found in refs. 9, 13). In particular, if  

only aa is retained, we have 

( 6 R )  2 ~ 2  1 2 
= / ~ o ~ - a 2 ,  

f ~ - - 2  2 4 3 
= 1 t T a 2 - - T g y a 2  + . . . ,  

4 1 2 4 3 
g = . t - - ~ - a 2 - - T ~ - a 2 +  . . . .  

In the case of  an ellipsoidal shape described with the aid of  a deformation para- 
meter o- and a shape parameter  2, related to the semi-axes a, b, c by 

a = Ro exp[a cos (y-~=)] ,  

b = Ro exp[a cos(7+2~)1, 

c = Ro exp[a cos 7], 

we find, using ref. 15), 

= RoTa ( 1 - t o "  cos 37)+higher powers of  a, (~5R)2  21 2 

f ~ - - 2  2 2 3 = ,+~-a  --2~-a cos 32+higher  powers of  o-, 
t 1 2 1 3 g = ~ - v a  - T o y a  cos 3v+higher  powers of  o.. 

Because our definition of (6R) ~ is more directly related to f12 than to a 2, it is con- 
venient for our purposes to retain f12 (or rather a multiple thereof) as a deformation 
variable in place of  o .2 even for ellipsoidal distortions. According to ref. 25) the rela- 
tion between a 2 and f12 is 

f12 ~ 4 2 1 3=a ( l - v a  cos 37+higher powers of o.) 

and if we introduce (5/4~)fl 2 as our variable, denoted by a2, we may write the last set 
of  equations for (aR) 2, f, and {/as 

(6R)2 ~ 2 ~  2 
= / ~ 0 y g , ,  

f = 1+2~  2 .  lo~s~ 3 cos 32+higher powers of  ~, 
"~ 1 2 4- 3 g = l - s - ~  --TCTa Cos 37+higher powers of  c~. 



24 w . D .  MYERS AND W, J. SWIATECKI 

The deformation magnitude ~, proportional to the root-mean-square deviation of the 
surface from a sphere, is to first order equal to or, and for axially symmetric shapes 
described by eq. (8) is identical with az.  The explicit form of  our mass equation for 
small ellipsoidal deformations is thus 

M ( N , Z ; ~ , y )  = M n N + M n Z - c l A  ~- 2 2 + c 2 A~(1 +~e  - 1-~-~ 3 cos 37) 

Z z Z 2 
- y ~  - ~ - ~  cos 3 7 ) - c ¢ - -  + c 3 - - ( 1  1 2  ¢ 3 

A 

+ S(Zv-, Z) exp ( - ~%o  ~) + 3, (9) 

where 

3 e 2 
c 3 = - - - ~  

5 r o 

C 4 ~ ~ -  r o  

In order to display more clearly the dependence of the mass on deformation we 
introduce the deformation magnitude 07 defined as ~/~o, and re-write eq. (9) in the 
form 

M = M o  + EO 2 - FO 3 cos 37 + Se-  0~, (10) 

where 

Z 2 Z 2 
M o  M . N + M H Z  ~ - -  = - c t A + c 2 A  +c3 A ~ - c 4 - A  +b,  

E = k5,~2~1 - s " 3  ~ _  0~ = 2e2A-~(1-x)o~z ,  

F = ~ c 2 A } + c a  ~ eg = ~ -0  sc2 A}(l+ax)c~g. 

In the above, M o is the mass of an undistorted liquid drop, E a coefficient specifying 
the stiffness of the liquid drop against small spheroidal distortions (and hence related 
in a simple way to the fissility parameter x, defined as the Coulomb energy term 
c3 Z 2 / A  ~ divided by twice the surface energy e2 A ~ - see appendix A.2). The coefficient 
F specifies the cubic term in the liquid-drop formula (through which also the 7- 
dependence enters). 

As noted in sect. 2 the mass formula (10) will predict spherical equillibrium shapes 
if S is negative, but the stability of the sphere may be lost if S becomes sufficiently 
positive. The explicit discussion of the resulting equilibrium shapes and masses is 
particularly simple if the cubic term in F is disregarded. This is a fairly good ap- 
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proximation for nuclei throughout the periodic table (except for distortions so large 
that fission comes into consideration). We shall neglect for the moment the cubic 
term; the full eq. (10) is discussed in appendix A.I. 

The condition for the instability of the sphere, and for the appearance of non- 
spherical equilibrium shapes is 

~0 a o=o < O. 

On carrying out the differentiation this condition may be written in the form S > Sc~,, 
where So,it is simply given by E, the coefficient of the quadratic term in eq. (10). 
Explicitly we have 

Scrit = 2c2(a/ro)2(1 -- x). 

The quantity S~t  is a smooth function of N and Z (very nearly a straight line in a 
plot against x). In regions of the periodic table where the bumps in the shell function 
S(N, Z)  exceed this smooth function, deformed equilibrium shapes will appear. 

The equilibrium configurations are defined by the conditions OM/QO = 0 and 
#M/gy = 0. The second equation is always satisfied by 7 - - 0 ,  +½re, or _+2zr. 
With the choice of ? -- 0 the first equation becomes 

EO-~FO2-SOe -°~ --- 0, (11) 

o r  

EO- SOe -°~ = 0, (12) 

if F is neglected. Eq. (12) is satisfied either by 0 = 0 (the spherical configuration) or 
by 

0 = "}- [ l n  (S/Scrit)] ~. (13)  

This equilibrium deformation 0 is thus a very slowly varying function of S/Scrit, 
except when S is close to S~rit, in which case 0 becomes proportional to _+ (S-Scrit) 5, 
a result anticipated in sect. 2. 

In the quadratic approximation the mass of a stably deformed nucleus is found 
by substituting eq. (13) in eq. (10), with the F term omitted. The result is 

M = Mo + Serit "-[- Scrit In (S/Serit). (14) 

Thus the original shell correction for a spherical nucleus, in the form of a bumpy 
function S(N, Z), is replaced, for nuclei with stable deformations, by the flat func- 
tion S, rlt(N, Z), augmented by the almost-flat function Soritln(S/Sc~it). The net 
effect is the flattening-out of those parts of the bumps in S(N, Z)  that exceed the 
quantity Sea,t, the flattening-out being to a level somewhat in excess of this smooth 
function of N and Z (see fig. 6). 

The two solutions corresponding to the + and - signs in eq. (13) correspond to 
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prolate and oblate shapes, respectively. In the quadratic approximation they have 
identical energies. The effect of the cubic term in eq. (10) is to lower the energy of the 
prolate shape with respect to the oblate shape. We may study this quantitatively by 
writing the equilibrium deformation as 

0 = 0o+(0-0o) ,  

where 0o denotes the equilibrium deformation obtained in the quadratic approxima-. 
tion {i.e., 0o = + [ln(S/Sc~it)l ~-} and 0 -0o  is a small correction of order FIE. 
Solving the condition ~3M/O0 = 0 to lowest order in FIE now gives (apart from certalll 
subtleties discussed in appendix 1) 

0 = 0o+¼E/E 

Thus the two deformations corresponding to 0o = +__ [ln(S/S¢~it)] ~ are both shifted 
towards positive values by the amount ¼F/E, which in practice amounts to a change: 
of some 10 ~ at most. The energy of the equilibrium shapes perturbed by the presence: 
of the cubic term turns out to be given, to first order in FIE, by 

J~J'perturbed = Munpem, rUea[i'e', e q .  ( 1 4 ) ] - F 0  3 . 

Thus the energy of the prolate shape {0o = + [ln(S/Scrlt)] ~} is decreased and the 
energy of the oblate shape {0o = -[ln(S/Sc~it)] ~} is increased, the energy changes, 
involved being, in the present approximation, simply the values of the cubic term 
in the liquid-drop part of the mass formula, evaluated at the unperturbed equilibrium 
positions. The result is that the prolate shape is the truly stable configuration of  
equilibrium predicted by eq. (10). The oblate shape is unstable with respect to con- 
version into the prolate shape, the instability being associated, it turns out, with non- 
axially symmetric deformations described by 7- This may be verified from eq. (9), 
and is illustrated in fig. 8. 

In addition to the two solutions discussed above, the condition OMIt30 = 0 has, 
in general, a further solution, Thus, provided S is not too large, the last term in eq. 
(I 1) will become negligible for some sufficiently large value of 0, and eq. (11) may be 
satisfied approximately by 

0 = ~E/r ,  

which, when re-written, states that 

7(1-~)  
1+2x 

(15), 

This is the well-known result for the equilibrium configuration corresponding to 
the saddle-point for the fission of a liquid drop, calculated in the cubic approximation, 
and with shell effects neglected. [The more familiar form of this result is obtained 
by considering x to be close to 1, when c~ becomes ~(1 -x ) . ]  
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The more  compl i ca t ed  s i tuat ion when a l l  terms i n  eq. (1 l )  are c ompa ra b l e  at  the 

s add le -po in t  requires  numer ica l  solut ion of  that  equat ion.  

In  o rder  to be able  to describe sadd le -po in t  shapes in prac t ice ,  i t  is usual ly  es- 

sent ia l  to a l low for  more  general  deformat ions  than  the e l l ipsoidal  de fo rmat ion  to  

which eq. (9) has been specialized. (Except  when x is qui te  close to 1, e.g., x ~> 0.9. 

Fig. 8. An illustration of the 0 and 7' dependence of our mass formula for the case of 236U. The level 
lines of the quantity EO 2 -  FO 3 cos 37' 4- S exp ( -- 02) are shown in MeV. Note the stable prolate shape 
at. 0 ~ 1.7, 7' = 0 and the unstable oblate shape at 0 ~ 1.5, ~ = ½~ (a saddle-point). The saddle- 

point for fission is beyond the range of the figure, on the extreme right. 

when el l ipsoids a r e  adequate . )  On the other  hand~ for  the large d is tor t ions  associa ted  

with s a d d l e - p o i n t  shapes for  x ~< 0.9 our  shell cor rec t ion  S e  - ° 2  is essent ial ly d a m p e d  

ou t  a n d  the de te rmina t ion  o f  these sadd le -po in t  shapes  m a y  be taken  over  wi thout  

modi f ica t ion  f rom the existing calcula t ions  for  the ideal ized l iquid  d rop  wi thout  

shell  effects 7). W e  have indeed found  it poss ib le  to include in our  discussion the 

ca lcu la t ion  o f  sadd le -po in t  masses  - or fission barr iers  - for  ali  nuclei  in the  per iod ic  

tab le  (for detai ls  see subsect.  7.7. and  append ix  A.1) .  
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6. Fitting of Adjustable Parameters 

The data to be fitted by our mass formula (9) consist of the trends in about 1200 
experimental ground-state masses and the trends in some 240 quadrupole moments. 
In addition, the experimental masses of some 49 heavy nuclei, not in their stable 
equilibrium configurations but in distorted, unstable "saddle-point" configurations, 
are also known experimentally or can be estimated from spontaneous fission half- 
lives. Insofar as our mass formula is supposed to describe distorted nuclei, these 
saddle-point masses should be included in a comparison of the formula with ex- 
periment. Although such nuclei are relatively few in number they are important in 
fixing certain of  the parameters in the formula that are otherwise not very well 
determined (in particular the ratio of the electrostatic energy to the surface energy). 

The mass formula (9) contains seven adjustable parameters, four in the liquid- 
drop part (a 1, az,  e3 and t<) and three in the shell correction (C, a and c). The 
problem of determining the seven parameters in a reasonably perspicuous way is 
not as difficult as it might seem, because the liquid-drop parameters govern the over- 
all trends and the shell-correction parameters govern local irregularities, with the 
result that one may fit four of the parameters almost independently of the remaining 
three, allowing for the slight inter-dependence of the two determinations by a few 
iterations. 

The first determination of the shell parameters C, a and e was made by using for 
the liquid-drop part of the formula the standard expression given by Green (ref. ~), 
p. 287). This liquid-drop mass was subtracted from the experimental masses and a 
plot of the type given in fig. 21(a) was prepared. From the amplitude of the shell 
oscillation it was clear that the parameter C had to be in the neighbourhood of  5 or 
6 MeV. A little experimentation with the values of  a and c showed that the incidence 
of the nuclear deformations in the region of the rare earths and actinides on the one 
hand, and the magnitude of the deformations on the other, required this pair of  
numbers to be in the neighbourhood of e ~ 0.27 and a/ro ~ 0.33. These preliminary 
results are described in ref. 16). Since that time we have developed a more systematic 
method of determining all the adjustable parameters. This method not only gives 
the values of the parameters rather directly, but also provides in most cases an 
objective test for the correctness of the functional f o rm  of the expressions assumed for 
the representation of the liquid-drop and shell-correction effects. The essence of the 
method is the usual artifice of plotting such combinations of the experimental data 
against'such combinations of the arguments (e.g., N and Z )  that, if the functional 
form of the mass formula were correct, a straight line or a set ofstrai�ht lines would 
be obtained. The slopes and intercepts of the lines then give the values of the para- 
meters sought, but, what is equally important, the conformation of the experimental 
points to linear trends tests the suitability of the functional form assumed. In practice 
the following procedures were followed. 
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6.1. DETERMINATION OF LIQUID-DROP PARAMETERS 

Assume that  approximate  values of all the parameters  have been obtained as 

explained above. The first step was then to subtract  f rom the experimental  masses 

the calculated shell correction, the calculated electrostatic energy and the even-odd 

correct ion 6 (regarded as no t  subject to any significant uncer ta inty. )  After further 

subtract ing the nuc leon  masses MnN+MHZ we are left with "corrected" experi- 

menta l  masses (or b inding  energies). The result so obtained,  after division by the mass 

n u m b e r  A, should be equal to the specifically nuclear  b inding  energy per particle, 

say Y. According to eq. (9) this quant i ty  should have the form 

Y = - ( a ~ - a z A  -~) 1-~ 

[ (N-Z) /A]  2 

o o o.~ 0.2 0.3 0.4 

i - - ' - -  X - - - , - "  

Y I 

- 5  

-10  

J 

J 
J 

0.5 0.6 I J ]  ~ ' -  

I / I .79"  
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Fig. 9. The specifically nuclear binding energy per particle (corrected for shell effects), plotted as a 
function of the square of the relative neutron excess. The liquid-drop formula for nuclear masses 
predicts the result to be a series of straight lines, one for each A, the lines intersecting at a common 
point on the X-axis (shown as 1/1.79). Note the large distance from the region of the experimental 
data to this point. The labels on the dashed lines refer to A values. The intersections on the Y-axis 
should give a straight line when plotted as a function of A-L In this figure, as well as figs. 10-13, 

the adjustable parameters in the mass formula have the final values arrived at in sect. 6. 
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Fig. 10. A larger-scale version of fig. 9. (The original plot from which this figure was made was 
1.3 m long, so that details in the heavy-element region could be resolved.) Note  the "sagging" of 
the lines close to the ordinate axis, associated with the extra binding attributed to the Wigner term. 
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a function linear in A -~ and in [ ( N - Z ) / A ]  2. This functional dependence is the 

essence of the liquid-drop assumption concerning the nuclear part of the binding 
energy. It can be tested by plotting the experimental values of Y against [ ( N - Z ) / A  ]2, 
which should result in a set of straight lines, one for each A. (This would hold even 
if a~-a2A -~ were replaced by a general function of A.) All the lines, when extra- 

polated, should intersect the Y = 0 axis at the common point [ (N-Z ) /A]2  = 1/tc, 
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Fig. 11. The reciprocals of the X-intercepts from fig. 9 are plotted as a function of A and compared 
with the assumed constant value ,c ~ 1.79. The circled points mark values of A equal to 50, 100, 
150, 200 and 250. (Note the false zero on the ordinate axis.) Most of the deviations in the region of 

the lighter elements are positive - evidence once more of the Wigne r term. 

defining the parameter ~. On the other hand, the intercepts on the [ ( N - Z ) / A ]  e = 0 
axis give - ( a l - a 2  A-~)  and these intercepts should, in turn, give a straight line 
when plotted against A -~. The slope and intercept of this line define the parameters 
a t and a2. Such plots are illustrated in figs. 9-12. (See also the next section.) 

After a set of new specifically nuclear liquid-drop parameters at ,  a2, and ~c had 
been determined in this way the next step was to re-determine the fourth parameter 
c3, appearing in the electrostatic energy. By far the most accurate way of doing this 
is by use of the experimental fission barriers. The calculated barriers for heavy 
nuclei are very sensitive to the ratio of the electrostatic to the surface energy (or 
to cJaz)  and with a given a2, the value of e3 can be determined accurately. Although 
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some dozens of fission barriers are known or can be estimated, we simplified the 
fitting problem by requiring only one fission barrier, that of 2°~T1, to be reproduced 
exactly (reasons other than simplicity were also relevant - see subsect. 7.7.). The 
remaining barriers were used only as a test after the fitting had been completed. In 
practice the value of the parameter c3 was changed in steps and the whole fitting 
procedure for determining the parameters a l ,  a2, ~c was repeated until a set of 
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Fig. 12. The Y-intercepts f rom fig, 9 are plotted against A-~, to exhibit the linear trend predicted 
by the liquid-drop formula with volume and surface terms but  no curvature correction, The labels 

on the circled points are A values. Note  the false zeros on both  the ordinate and abscissa. 

parameters a l ,  a2, c3, ~c was obtained which reproduced sufficiently closely the 
experimental barrier of 2°1T1 (given as 22.5_ 1.5 MeV in ref. 17)). 

At this stage a new set of liquid-drop parameters was available, and this was used 
to re-determine the parameters of the shell correction, 

6.2. D E T E R M I N A T I O N  O F  S H E L L - C O R R E C T I O N  P A R A M E T E R S  

The new liquid-drop masses were subtracted from the experimental masses. The 
resulting experimental shell correction AE should, according to eq. (9) have the form 

L GA) 
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in the case o f  unaeformed nuclei. Thus if for  undeformed nuclei (in practice, nuclei 

which are calculated to be undeformed)  the quanti ty A--~AE is plotted against 

2~[F(N)+F(Z)]/A, a straight line should result, with C as its slope and - C c  as 
the intercept on the ordinate axis. A n  example o f  such a plot  is given in fig. 13. 
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Fig. 13. The experimental shell effects (experimental masses minus calculated liquid-drop masses 
for undeformed nuclei) were divided by A] and plotted against such a function of N and Z that if 
the functional form of the theoretical shell correction were exact, a straight line would result. For 
the heavier elements shown in this figure the linear trend is clear. Points for the lighter elements 

would show much more scatter. 

With C and c thus determined, only the range parameter  a remained to be fixed. 
This was done by fitting the calculated quadrupole  moments  to measured or estimated 
(intrinsic) quadrupole  moments  o f  about  240 nuclei. These were obtained f rom an 
unpublished list due to J. C. D. Mil ton (Atomic Energy of  Canada,  Ltd.,  Chalk 
River, Ontario),  based on the values given by Townes 26) and Okamoto  27) and 
supplemented by refs. 28' 29). In  many  cases - in particular for the lighter nuclei - the 

intrinsic quadrupole  moments ,  derived f rom measurements by means o f  the formula  
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(ref. 26), p. 442) 

Q(intrinsic) - ( I +  1)(2I+ 3) Q(measured) 
i(2x-1) 

have, at best, only an order-of-magnitude significance, since the conditions for the 
use of  this formula are not satisfied. Even an order-of-magnitude estimate is, how- 
ever, useful; it shows that there are few strongly deformed lighter nuclei and forces 
the mass formula to take this into account. 

The result of the least-squares fit to the quadrupole moments is illustrated in fig. 23. 
We may note that by the time the group of 240 experimental quadrupole moments  
was being fitted, six out of the seven parameters in the mass formula had already 
been determined from the nuclear masses, so that only one parameter was left free 
to fit the magnitude and structure of the quadrupole moment  plot. 

The determination of the shell-correction parameters C, c and a completed one 
cycle of  the fitting procedure. The new calculated shell correction was subtracted 
f rom experimental masses, new liquid-drop parameters were determined, and the 
whole cycle was repeated until the seven adjustable parameters had converged to 
unique values, which they did in a few iterations. 

The final values of the parameters are as follows: 

al  = 15.677 MeV, 

az = 18.56 MeV, 

c3 = 0.717 MeV (hence ro = 1.2049 fm, 

~: = 1.79, 

C = 5.8 MeV, 

c = 0.26, 

a 
- -  = 0.27. 
FO 

c, = 1.21129 MeV), 

The mass excess of the hydrogen a tom was taken as M n = 7.28899 MeV and of 
the neutron a s M n  = 8.07144 MeV. All nuclear mass defects 35) are on the carbon 
scale of  masses, such that M(~2C) - 0. (A millimass unit on the carbon scale is 
related to MeV by 1 m M U  = 0.93144 MeV.) 

We quote no errors on the seven adjustable parameters in our formula. Within  the 
framework of the functional form of our formula the liquid-drop parameters are 
determined very firmly indeed (say to 1 or 2 ~ )  and the shell-correction parameters 
less firmly, but still adequately (say to 10~-20~o).  (The best way to get a feeling 
for how well the parameters are determined is to study figs. 10-13 and 23.) I f  one 
goes beyond the framework of our formula (and there may be reasons for that both  
in the remaining experimental deviations and in theoretical considerations on the 
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nature of nuclear masses) then the changes in the adjustable parameters will depend 
on the nature of the new effects taken into consideration and cannot be predicted 
beforehand. 

We note that our value of c 3 predicts the electrostatic energies of nuclei as 
E~ = 0.717 Z2/A ~ -  1.21129 Z2/A. We have compared energies obtained according 
to this formula with the electrostatic energies deduced by Hahn et al. 32) from the 
Stanford electron scattering experiments for 2oCa,4° 23V,5~ 27Co , 5 9  llsT491n ' 122qh51 ~ ,  197--79/_1u 

209~. Our values are consistently lower, by 8.0, 10.3, 8.2, 8.7, 7.8, 7.5 and 5.7 ~ ,  a n d  831:$1. 
respectively. 

The sizes of these differences suggest a significant effect, which should be investigat- 
ed. 

As regards the values found for the parameters C, c and a, we have already noted 
in sect. 4 that a is of the order of magnitude expected on the basis of simple considera- 
tions, The value of c turns out to be such that the shell correction S is about equally 
often positive as negative - the average value of S taken over the periodic table 
would be fairly close to zero (see fig. 6). The basic reason for this result is not clear us. 

From the value of C the degree of bunching of the levels in the Fermi gas of 
sect. 3 may be deduced. Disregarding any velocity dependence of the potential well, 
the degree of bunching is C/tF = 17.5 %; this is the case illustrated in fig. 3. We can 
see no reason why the degree of bunching should be the same for all shells, and a 
closer comparison of the experimental and calculated mass oscillations in figs. 21 
and 22 suggests that this is not, in fact, the case. Thus the representation of the region 
of the doubly magic number at 2°8Pb would probably be improved if the bunching 
at N = 126 and Z = 82 were increased. The need for a different degree of bunching 
is even more apparent in the light nuclei, where the failure of the original calculated 
shell correction could be largely removed by an appropriate choice of individual 
degrees of bunching for the shells at 8, 14, and 28 (with a slight shell at 20); see fig. 16 
and subsect. 7.3. 

The fact that a constant bunching does represent most of the shell effects fairly 
well is probably a fortunate accident. 

7. Discussion of Results 

A glance at fig. 21 or 22 shows the degree of  agreement between the experimental 
and calculated shell oscillations. For nuclei lighter than about A = 50 (N about 
30) there is practically no correspondence between the calculated shell correction 
and experiment. [The "microscopic" way of plotting the deviations of nuclear masses 
from a smooth liquid-drop formula (figs. 21 and 22) should not be allowed to obscure 
the fact that over-all trends in the binding energies are reproduced well - even for 
light nuclei. The binding energy of 4He is 28.3 MeV, of 56Fe 492 MeV and of 254Fm 
1891 MeV. In relation to these numbers the deviations of a few MeV in fig. 21(c) 
represent percentage errors decreasing approximately as A-1 and no more than 20 
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to 30 ~ for He, improving rapidly down to about 1 9/oo in the vicinity of Fe and around 
0.1 ~ for the heavy nuclei - see also fig. 1.] For A > 50 there is fair agreement 
between the calculated and experimental shell corrections, the original shell oscil- 
lations in the masses [fig. 21(a)] being cut down by perhaps a factor of five after 
subtraction of the calculated shell corrections [fig. 21(c)]. The approximate adequacy 
of the functional form of the shell correction S(N, Z) is seen from fig. 13. This plot, 
when confined to the not-too-light nuclei, conforms approximately to the expected 
linear trend. 

We shall come back later to a discussion of  the remaining deviations between 
calculation and experiment, including the region of the lighter nuclei, but first we 
shall consider the degree of success of the liquid-drop part of the formula in rep- 
resenting the general trends of the masses. This question can now be treated with 
some precision, since the availability of an approximate theoretical shell function 
enables us to correct the experimental masses for the irregular oscillations associated 
with magic numbers and, as a result, to deal with a set of masses exhibiting quite 
a high degree of smoothness. 

7.1. SMOOTH TRENDS 

This smoothness is well illustrated in figs. 10-12. For the heavier nuclei, in 
particular, the linearity test of the dependence of the nuclear binding energy on 
[(N-Z)/A] z is satisfied with remarkable accuracy. There is no evidence, in this 
figure, for higher powers of ( N - Z ) / A  at the largest values of the neutron excess; 
we have not, however, tried to estimate quantitatively the upper limit on the possible 
amount of such deviations. [Cameron and Elkin 3 o) have considered a Gaussian 
instead of a quadratic symmetry energy, which implies the presence of higher powers of 
[N-Z)/A]2.] 

For the lighter elements in fig. 10 there is more irregularity in the lines connecting 
isobars. Apart from the irregularities caused by shell oscillations there appears to be 
present a systematic effect which consistently lowers the points closest to the ordinate 
axis, indicating some extra binding for nuclei with N g Z. This light-element 
anomaly will be isolated and discussed in subsect. 7.2. 

We now turn to fig. 11, which tests the assumption of a constant (A independent) 
coefficient in front of the [(N-Z)/A] 2 term. A plot of this coefficient against A 
(fig. 11) reveals some considerable scatter for the lighter elements, related to residual 
shell effects and to the light-element anomaly mentioned above. For A >~ 80 the 
scatter is much less and the value of ~c is nearly constant, although systematic trends 
remain, in particular a gradual increase for the heaviest elements. This heavy-element 
anomaly will be discussed in subsect. 7.4. 

We finally come to fig. 12, which shows, as a function of A -~, a plot of the specifi- 
cally nuclear binding energy per particle, extrapolated to a "standard nucleus" 
with N = Z. (This extrapolation to N -  Z = 0 was made by fitting best straight lines 
through the data in fig. 10, all the lines being forced to pass through a common 
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intercept on the abscissa at the point corresponding to ~c = 1.79, the value adopted 
on the basis of  fig. 11. These straight lines are thus not quite the same as the "best  
lines" on which fig. 11 is based and which had no restrictions imposed on them.) 
From fig. 12 we see that the representation of the specifically nuclear energy by means 
of  a volume and a surface term appears to be extremely satisfactory in the range 
down to A = 50. Below A -- 50 some irregularities appear, as usual, but even down 
to A = 10 one can discern no evidence for a systematic deviation f rom the straight 
line that would suggest a higher (the second) power o f A  -~. This is of  some signifi- 
cance, since a curvature correction to the surface energy (ref. 18)) would appear as 
a term in the nuclear binding proportional to A ~, which in our plot of binding per 
particle would show up as a term quadratic in A -+, introducing a systematic bending 
of the plot in fig. 12. We have not tried to establish an upper limit on the amount  of  
curvature correction that can be tolerated by the data, and undoubtedly a fair 
amount  could be if all the available parameters were re-adjusted suitably. Still, as 
things stand, there is no evidence in the nuclear masses for a curvature correction. 
(See appendix A.2 for further remarks on the curvature correction.) 

7.2. T H E  " W I G N E R  T E R M "  

For masses below about A = 50 our formula fails to reproduce the structure of 
the experimental mass oscillation in fig. 21. On the one hand the calculated shell 
function bears no resemblance to the experimental wiggles. On the other a peculiar 
systematic effect is present in the experimental trends in the neighbourhood of nuclei 
with N = Z. This may be discerned in fig. 21(a) by following a sequence of isotopes 
with a given Z and noting the behaviour on crossing the point where N = Z. In the 
21 cases where this can be done (Z  = 2 to Z = 22) there is almost always a kink 
in the mass at N = Z, the mass of  such a nucleus being especially low with respect 
to its neighbours. Alternatively we may make a plot where the mass differences 
from fig. 21 are plotted as functions of  (N-Z)/A for a fixed A, and the break at 
N = Z is displayed. This break can be seen readily even before the removal of  ir- 
regularities due to shell structure (which introduces other breaks, at magic numbers 
Nm,gic, Zmaglc) but it is brought out most  clearly, and its properties can be best 
studied, if the shell effects are first removed as far as possible. The shell effects for 
the lighter nuclei are the subject of  the next subsection, where a semi-empirical shell 
function S(N, Z) is derived for these nuclei directly f rom the experimental values of 
the masses of  nuclei with N = Z (rather than f rom specific assumptions about the 
bunching of levels in a Fermi gas). In particular a relative shell correction, i.e., the 
difference in the shell correction for an isobar with N 4 Z and with N = Z, may be 
deduced. 

Applying this method and using the mass differences for N = Z in fig. 21(a), a 
provisional relative shell correction 

Sprovlsional(N , Z)- S(½A, 1A) 
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was deduced. This semi-empirical correction was applied to the experimental mass 
differences in fig. 21(a), leaving a remainder term which represents what is left over 
after allowing for all the expected contributions to nuclear binding (which include 
all the conventional liquid-drop terms as well as the most  nearly realistic correction 
for shell effects that we could devise). This remainder was plotted as a function of 
( N - Z ) / A  and, expect for a change in the zero in the ordinate scale, is shown in 
fig. 14. In this plot we have collected 28 isobaric curves for A = 4 to A = 58, all 
suggesting a kink at N = Z. Each curve shows the behaviour of  the mass as one 
moves away from the point N = Z. Masses relative to the mass of  the nucleus with 
N = Z are shown, so that all the points for N = Z coincide. This common point 
appears at the value of - 7 MeV along the ordinate for a reason that will be explained 
below. 

Thep lo t in  fig. 14 shows that, in addition to any shell effects that may be producing 
breaks at special values of  N or Z, one can discern a sharp-angled " t rough" or 
"crease" in the mass surface along the locus N = Z. Both sides of  this trough can 
be seen in the range f rom A = 4 to A = 42 and traces of one of its sides can be 
discerned in fig. 10 up the values of  A around 60 to 80. 

We have speculated on the origin and significance of this additional binding 
energy of nuclei with N ~ Z. We believe it is related to the so-called Wigner term 
which, under certain assumptions, exhibits the characteristic "kinked" dependence 
on the absolute magnitude rN-Z[. (See refs. 19. 2o), and also chapt. VII, p. 271 of  
ref. 21)). A sharp dependence on ]N-ZI seems to be demanded by the data. The 
physical interpretation of such a term is not clear to us, and the functional dependence 
of any new term in the mass formula designed to represent it is not obvious. We do 
not believe, however, that an expression simply proportional to IN-Z[ is suitable, on 
two accounts. First, the plot in fig. 10 suggests rather a correction to the straight 
lines that  dies out with increasing values of  (N-Z) /A .  Second, we surmise that the 
additional binding energy for N - -  Z is somehow related to the identity of  the 
neutron and proton wave functions in such nuclei. This would result in a particularly 
good overlap of the wave functions - a matching of the nodes and antinodes (or the 
density distributions) of  the neutrons and protons - and would indeed be expected 
to lead to a somewhat tighter interaction between them than is the case on the 
average. (There is an analogy here with the pairing interaction for particles in time- 
reversed orbits.) I f  this average is taken to mean something like the case of  a large 
amorphous mixture of neutron and proton Fermi gases, without special phase 
relations between the wave functions of  the two, then with respect to this average the 
additional stability associated with N = Z should be a function with a limited 
range in N = Z, disappearing when N and Z differ sufficiently to destroy the special 
phase relationships (the extra overlap) responsible for the extra binding. We are using 
here an argmnent analogous to that according to which shell effects should vanish 
with distortion: in the average, or amorphous, state of  nuclear matter there are no 
special symmetries or degeneracies, either in space or as regards neutron and proton 



4 0  W . D .  MYERS AND W, J. SWIATECKI 

numbers. Any extra binding associated with such symmetries should therefore be 
damped out as these symmetries disappear (see sect. 4). 

In view of these considerations we have tentatively represented the extra binding 
displayed in fig. 14 by means of a short-range (exponential) function 

N - Z  ) 
AEwigne r = - 7  exp - 6  - - ~  MeV. 

The two parameters (amplitude - 7 MeV and range 6 of the exponential) are chosen, 
on the one hand, to reproduce the trend of the points in fig. 14 and, on the other, 
to insure the disappearance of the effect for larger values of (N-Z)/A. We s] 
refer to this additional binding term as the Wigner term, although its form differs 
from the conventional one. 

The experimental mass deviations in fig. 21(a) were now corrected with the 
Wigner t e rm AEwlgner, and the remainder was subjected to the procedure of analysing 
the masses into a liquid-drop part and a shell correction along the lines of sect. 6. 
(The re-fitted values of a~, a2 and n are equal to 15.7546 MeV, 19.1015 MeV and 
1.78, respectively. The parameter e 3 was not re-fitted.) The final effect of including 
the Wigner term is illustrated by a comparison of figs. 15(b) and 15(c). In the former, 
which is identical with fig. 21(a), the mass deviations show, as noted before, no 
correspondence with the calculated shell correction in fig. 21(b). In fig. 15(c) al- 
lowance for the Wigner term has made the remainder resemble more nearly what one 
would expect from a shell correction associated with magic numbers - this is discuss- 
ed in the next subsection. 

We have not  proceeded with the systematic incorporation of the Wigner term into 
our formula, and a re-fitting of all constants, because of inadequate information on 
its true functional form. In particular the dependence of this additional binding on 
the shape of a nucleus is unknown. These important questions will have to be in- 
vestigated theoretically before the Wigner term, for whose existence there is clear 
evidence, can be incorporated satisfactorily in a mass formula. 

7.3. S H E L L  F U N C T I O N  F O R  N ,  Z ~ 29  

Our calculated shell function S(N, Z) is quite incapable of reproducing the ex- 
perimental shell oscillations for the lighter nuclei. Fortunately, in the special case 
when masses of nuclei with N = Z are known, it is possible to deduce directly a 
semi-empirical two-dimensional function S(N, Z) from the one-dimensional em- 
pirical function S(½A, ½A). Thus, if we retain the functional form of our shell cor- 
rection 

S(N,Z)=CL (½a) ~ cA~ ' 

then, without claiming to be able to calculate the function F from first principles, we 
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may yet deduce the following relation: 

S(N, Z) = 1_ N S(N, N)+Z S(Z, Z) (16) 
2 

[This is readily obta ined by writ ing down the expressions for S(N, Z) ,  S(N, N) and  

S(Z, Z) and  el iminat ing F(N) and  F (Z) ] .  

TABLE 1 

Shell function derived from the masses of nuclei with equal 
numbers of neutrons and protons 

Particle number X S(X, X) (MeV) 

1 -- 1.779 
2 --1.506 
3 0.238 
4 0.709 
5 2.364 
6 --0.693 
7 --1.329 
8 -- 0.4,49 
9 2.714 

10 2.807 
11 2.835 
12 1,640 
13 1,895 
14 --0.261 
15 --0.231 
16 0.656 
17 1.053 
18 1.568 
19 1.872 
20 1.707 
21 3.240 
22 3.230 
23 2.583 
24 1.698 
25 0.770 
26 --0.160 
27 --1.305 
28 --2.846 
29 --2.214 

We shall use this relat ion to predict  masses of nuclei  with N ¢ Z on  the basis of 

the masses of  nuclei  with N = Z, The physical meaning  of this procedure is that  we 

are still considering the shell correction to be due to an identical bunch ing  of levels 

for neu t ron  and  pro ton  Fermi gases in a c o m m o n  potent ia l  well, bu t  instead of  trying 

to calculate the bunch ing  we determine it directly f rom the empirical masses of nuclei 

with N = Z. The derivat ion of  formula  (16) disregards the possible presence of  

deformed nuclei and, strictly speaking, does no t  apply to such cases. In  practice, 
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however, the formula will, by definition, reproduce the masses of nuclei with N = Z, 
whether these are deformed or not. Any errors will be proportional to the degree of 
extrapolation away from N = Z, which is not large for the cases of  interest. 

The 29 experimental values for S(Z, X) in table 1 were taken from the calculation 
on which fig. 15(c) is based. That is, these values are the result of  starting with the 
experimental mass deviations in fig. 21(a); correcting them for the Wigner term; 
re-fitting the liquid-drop parameters al, az and ~: (but not c3) and displaying the 
remaining deviations as an experimental shell correction S(N, Z). Formula (16) 

5 I f I I 

4 

3 ~ 

0 ~ I 

:n 

' t 2 t : - 3  [ ] -  Odd 

@ & Even 

- 4  2 8  

0 5 I 0  15 2 0  2 5  3 0  

X 

Fig. l 6. The empirical shell correction S(X, X) is shown as a function of  X. The solid line connects 
even points only, the dashed line connects all points. Special binding may be attributed to the 

numbers  2, 8, 14, 28, with a slight dip at 20. 

was then used to construct the left-hand part of fig. 15(a). The right-hand part is the 
conventionally calculated shell correction, the same as in fig. 21(b). Fig. 15(a) shows 
the predicted shell effect and is to be compared with fig. 15(c). The difference be- 
tween the two is shown in fig. 15(d). 

We note that in the semi-empirical shell correction for N; Z < 29 (fig. 15(a)) the 
irregularities associated with magic numbers are  rather less, in absolute magnitude, 
than for the heavier nuclei. The shell at N, Z = 20 is hardly discernible, although 
there is a slight change of  slope there. A somewhat bigger break seems to be present 
around iV, Z = 14 and there is another dip, or change of slope, close to iV, Z = 8. 
(In locating such dips one should in general connect by lines only nuclei of the same 
type: even, odd or odd-mass. The fact that the even-odd correction 6 = 11/A ~ MeV 
is not quite accurate introduces some spurious irregularities between neighbouring 
points in plots of the type of fig. 15. Thus the mass at N = Z -- 7 appears to be 
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lower than at N = Z = 8). Fig. 16 shows a plot of  the one-dimensional function 
S(X, X), in which the breaks at magic numbers are somewhat more clearly displayed. 
The fact that, on the basis of nuclear masses, a shell effect at 14 is more pronounced 
than at 20 is noteworthy. 

7.4. HEAVY-ELEMENT ANOMALY 

One of the more easily discernible systematic deviations in figs. 21(c) or 22(c) 
is the tendency of the experimental mass differences to become progressively lower 
with increasing Z, for elements beyond about radium. The effect amounts to about 
3 to 4 MeV between Z = 88 and Z = 102 and is quite a smooth function of Z. A 
very slight effect of this nature is present in the calculations [see fig. 21(b) or 22(b)~ 
and is associated with the increasing softness of heavy nuclei against deformation, 
but the calculated trend is several times smaller than the observed. We have been 
unable to prove or disprove any of a number of hypotheses as to the origin of the 
trend. This effect had been noticed several times before 22, 38), also in connection 
with the somewhat anomalous location of the valley of B-stability for heavy nuclei, 
which is one of its consequences. Another way of describing it is to say that it tends 
to contribute to the stability of the heavier elements, by depressing their ground- 
state masses. The reality of this interpretation is confirmed by the near-constancy of  
measured fission barriers between thorium and americium. The gain of some 3 to  
4 MeV in the stability of the ground states tends to compensate for the greater 
fissility of the heavier elements (a lowering of  the saddle-point masses) that would 
be expected on the basis of the liquid-drop theory. The degree to which the heavy- 
element anomaly explains the constancy of  the fission barriers is discussed in sub- 
sect. 7.7 and fig. 17. In any case the indications are that the anomaly must be some 
effect associated with the ground-state equilibrium shapes and one which disappears 
when the nucleus in question is distorted into a saddle-point configuration. Such 
behaviour would be expected from a shell effect, although the gradual decrease of the 
masses with Z is unlike any of the shell effects that our semi-empirical treatment 
would predict. 

7.5. THE RARE-EARTH ANOMALY 

It has been pointed out to us by Dr. F. Stephens of this Laboratory that the decrease 
of masses in the region Z ~ 88 to Z ~ 102 is paralleled, though to a reduced degree, 
in the same general range of neutron numbers, N ~ 88 to N ~ 112 (the rare-earths). 
This lends weight to the hypothesis that perhaps both effects are associated with 
irregularities in single-particle level spacings characteristic of  the nuclear potential. 

In the case of the rare earths there appears to be a connection between the failure 
of  our formula to follow in detail the masses and its failure to follow in detail the 
quadrupole moments (fig. 23). At the beginning of the region of large deformations 
(N ~ 88) the experimental masses and the experimental quadrupole moments are 
both unusually high. On the other hand, towards the end of the region of deforma- 
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tions, the observed decrease of masses and quadrupole moments is more gradual 
~han the calculated decrease. The quadrupole moments in particular are not well 
reproduced in the region between the heavy rare earths and the region of the 2°Spb 
shell. 

7.6. Q U A D R U P O L E  MOMENTS 

The experimental quadrupole moments in fig. 23 are reproduced in a rough way, 
the root-mean-square deviation being about 1.2 b. According to our formula, nuclei 
with N ~ 60 and N ~ 40 have just become deformed, although the deformations 
are not very large and would probably not lead one to expect the existence of  clear 
rotational spectra for these nuclei (see subsect. 7.9 and ref. 25)). Better rotors would 
be expected for nuclei closer to the centres of the relevant rectangles in fig. 5. 

We note that our mass formula always predicts positive quadrupole moments. 
This is entirely the result of  the cubic term in the liquid-drop part of the formula, 
the shell correction having been taken independent of the nature of the deformation. 
The cubic term in the liquid-drop formula is relatively less important for the lighter 
nuclei; the energy difference between oblate and prolate shapes is then smaller 
and relatively minor effects, neglected in our treatment, could reverse the balance 
in favour of  oblate shapes. It is perhaps significant in this connection that nuclei with 
observed negative quadrupole moments are confined to the lighter half of the 
periodic table. 

7.7. FISSION BARRIERS 

Our formula may be used, in principle, for the calculation of fission saddle-point 
shapes and barriers. Since, however, fission barriers are small differences of larger 
quantities, it is especially important to be aware of the limitations of our formula 
when applying it to the calculation of barriers. 

In table 2 we have collected 39 measured or estimated fission barriers and compared 
them with barriers calculated in two somewhat different ways. In both cases the 
saddle-point mass was calculated by means of our formula, but the ground state was 
either taken from experiment (column headed semi-empirical barrier) or from our 
mass formula (column headed calculated barrier). In cases where an experimental 
ground-state mass is available, or can be reliably extrapolated from neighboufing 
nuclei, the first way of estimating a fission barrier should be more reliable, since it 
treats at least the bottom of  the barrier correctly, the only error arising in estimating 
the top (the saddle-point mass). 

We see from table 2 that with the electrostatic energy parameter c 3 adjusted to 
reproduce approximately the barrier of 2°1T1 (see sect. 6 - the "semi-empirical" 
value of 22.418 is to be compared with the measurement of 22.5 + 1.5 MeV) the over- 
all trend of  fission-barrier heights is reproduced by the calculation. In particular the 
high fission barriers between 2°1T1 and 213At in the range 22 to 16 MeV are followed 
f r o m  232Th  on ,  b y  much lower barriers, of the order of 5 to 6 MeV and less. This 
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TABLE 2 

Fission barriers 

Experimental Liquid-drop Semi-empirical Calculated 
Nucleus x barrier barrier barrier barrier 

2°1T1 0.6761 22.5 =kl.5 b) 17.438 22,418 21.328 
s°vBi 0.6914 20.6:k2 e) 14.924 22.145 21.484 
2°9Bi 0.6889 20.6:k2 c) 15.365 23.900 23.497 
~l°Po 0.6991 18.6:t:2 e) 13.763 21.006 21.136 
S13At 0.7068 15.8±2 c) 12.674 16.242 17.543 
2~Th 0.7410 5.95 a) 8.642 5.183 6.774 
~a3Th 0.7400 6.44 a) 8.752 5.303 6.856 
2~Pa 0.7520 6.18 a) 7.552 4.555 5.740, 
2~8U 0.7620 5.49 a) 6.652 4.288 4.873 
~z4U 0.7608 5.2 e) 6.756 4.243 4.951) 
2~5U 0.7597 5.75 a) 6.858 4.246 5.027 
~z~U 0.7587 5.8 e) 6.957 4.138 5.105 
~37U 0.7576 6,4 a) 7.054 4.424 5.184 
~3sU 0.7566 5.80 a) 7.148 4.154 5.262 
zzPU 0.7557 6.15 a) 7.240 4.157 5.340, 
237Np 0.7686 5.49 a) 6.116 3.789 4.311 
~38Np 0.7675 6.04 a) 6.209 3.983 4.386: 
zZ6Pu 0.7810 4.7 a) 5.160 3.173 3.452 
2*SPu 0.7786 4.9 8) 5.343 3.425 3.593 
s~gPu 0.7775 5.48 a) 5.432 3.599 3.664 
2~°Pu 0.7764 4.7 e) 5.520 3.313 3.737 
~IPu 0.7753 6.3 e) 5.605 3.527 3.808- 
~2Pu 0.7743 4.9 a) 5.688 3.253 3.880 
24~Pu 0.7723 4.8 a) 5.848 3.186 4.02Z 
~lAm 0.7864 6.00 e) 4.807 3.182 3.086 
2~Am 0.7852 6.4 e) 4.887 3.248 3.152 
2~°Cm 0.7989 4.3 8) 3,999 2.744 2.379' 
~ C m  0.7965 4.4 8) 4.157 2.844 2.504 
s~Cm 0.7941 4.4 8) 4.309 2.711 2.630 
~asCm 0.7919 4.5 a) 4.454 2.744 2.755 
~sCm 0.7899 4.4 8) 4.593 2.635 2.880 
e~SBk 0.7997 4.6 8) 3.979 2.453 2.337 
s~6Cf 0.8143 4.0 8) 3.160 2.429 1.636 
~gCf 0.8119 4.0 ~) 3.290 2.471 1.74~ 
s~°Cf 0.8097 4.1 ~) 3,416 2.417 1,852. 
~5sCf 0.8075 3.8 ~) 3.537 1.931 1.960 
S~Es 0.8174 4.2 8) 3.019 1.743 1.522 
~ E s  0.8164 4.2 8) 3.074 1.596 1.572 
~a~Fm 0,8274 3.5 ~) 2.554 1.713 1.143 

8) Barriers estimated from the empirical relation 

barrier = ~ [29 ÷ log10 t~_(years)] MeV. 

The factor ~ is a conversion factor from the logarithm of a half-life (measured in units of a charac- 
teristic nuclear period, about 10 -~9 y) to MeV, obtained by taking the average value of the ratio 
of  the barrier to the half-life for six nuclei for which both quantities have been measured (zn~U, 
~zsU, 2a6U, ~aTU, ~ZPPu and ~°Pu). The half-lives were obtained from the reference in footnote a). 

b) Ref. 17). e) Ref. ~0). 
d) Ref. ~i). e) Ref. an). 
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rather sudden decrease of the barriers is associated with the decreased stability of 
nuclei beyond the doubly magic 2°sPb region (see fig. 17). 
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Fig. 17. This figure compares experimental and calculated saddle-point masses. All masses are plotted 
with respect to a smooth reference surface, the mass of  a spherical liquid drop. The energies are in 
units of  the surface energy of the drop, in order to make the saddle-point mass a function of one 
variable, the fissility parameter x instead of both N and Z. (The factor of 600 MeV, included in the 
units of  the ordinate, is of  the order of  the surface energy of a heavy nucleus and makes a unit on 
the vertical scale approximately equal to one MeV). The smooth line is the calculated curve, equal 
to 600 ~(x). Closed symbols indicate measured barriers while open symbols are used for barriers 
which are inferred from half-lives. The normalizing point 2°lTh is on the left. The lower part  of  the 
figure shows the behaviour of the ground-state mass deviations for the heavy elements, with lines 
connecting isotopes. Note the heavy-element anomaly. The difference between the ground-state mass 

and the saddle mass is a fission barrier. 

A fair amount of experimentation with various choices of the adjustable para- 
meters has shown that beyond a rough account of the over-all trends, our treatment 
is still unable to reproduce in detail the behaviour of the observed fission barriers. 
In particular the calculated barriers for elements heavier than thorium are too low 
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and decrease too rapidly with increasing Z. By a slight change of c3 the absolute 
magnitude of the barriers could easily be increased by the required 1 or 2 MeV 
(introducing, however, a disagreement with the measurement for Z°~T1), but the 
calculated barriers would still decrease too rapidly with Z. The too-slow decrease of 
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Fig .  18. The  f i ss ion  b a r r i e r  energy ,  in  MeV,  is s h o w n  for  nuc le i  a l o n g  G r e e n ' s  a p p r o x i m a t i o n  to  
t h e  va l l ey  o f  s tab i l i ty .  T h e  s m o o t h  cu rve  is t he  l i q u i d - d r o p  resu l t ;  t he  i r r e g u l a r  d a s h e d  cu rve  is 
c a l c u l a t e d  f r o m  o u r  m a s s  f o r m u l a  a n d  s h o w s  she l l  effects. N u c l e i  w i t h  N ~ 50 (A ~ 90) s h o u l d  
r e q u i r e  the  g rea t e s t  a m o u n t  o f  e n e r g y  for  t h e i r  d i s i n t e g r a t i o n ,  l i gh t e r  a n d  heav i e r  e l e m e n t s  b e i n g  

m o r e  eas i ly  d i s r u p t e d  in to  c o m p a r a b l e  f r agmen t s .  

experimental fission barriers with Z (or with the fissility parameter x) is a puzzle of 
long standing. As may be seen from fig. 17 the "heavy-element anomaly" - the 
systematic decrease of the mass deviations of the heavy elements - helps to remove 
the really drastic discrepancy with a pure liquid-drop calculation of fission barriers, 
but, apparently, the heavy-element anomaly is not the whole explanation of the 
barrier problem. (In table 2 the liquid-drop barrier decreases from 8.6 MeV for 
232Th to 2.6 MeV for 2S4Fm, a difference of 6.1 MeV. In the column headed semi- 
empirical barrier, the corresponding decrease is from 5.2 MeV to 1.7 MeV or 3.5 
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MeV. The decrease estimated from experiment is 5.2 MeV-3.4 MeV or 1.8 MeV 
only.) 

It was partly because we felt that the problem of fission barriers is still not com- 
pletely understood (perhaps especially for the heavy elements where the puzzle of  
fission asymmetry is also present) that we did not try to obtain least-squares fits 
to all barrier measurements but chose the simple procedure of fitting only 2°1T1. 
The resulting discrepancy in the barriers of the heavier elements tends then to un- 
derline the fact that a difficulty still exists in the interpretation of the fission barriers 
to within an accuracy of 1 or 2 MeV. 

For the purposes of an over-all survey of fission barriers throughout the periodic 
table, our mass formula may turn out to be more nearly adequate. We have plotted 
in fig. 18 fission barriers for elements along the valley of stability. The smooth curve 
corresponds to the liquid-drop approximation and the irregular curve shows the 
effects of shells (in this figure the shell effects were calculated rather than taken from 
experimental ground state masses). Note that the barriers go through a maximum 
of about 55 MeV in the region of A g 90. (This is also the region where fission should 
cease to be distinguishable from fragmentation and the conventional symmetric 
saddle-point looses its significance as a fission barrier - see ref. ~)). Note also the 
region around x ~ 1 (A ~ 300), where the fission barriers, after becoming vanish- 
hingly small, rise once again to values of several MeV. This is an illustration of the 
effect on nuclear stability of hypothetical magic numbers beyond the end of the 
periodic table, which we shall now discuss. 

7.8. SUPER-HEAVY NUCLEI 

In our mass formula we have included, for purposes of illustration, magic numbers 
at Z = 126 and N = 184, 258 - see fig. 19. (The latter numbers are obtained by 
following the sequence of major shells in a harmonic oscillator potential with spin- 
orbit coupling). We do not wish to imply that there are grounds for believing that 
any of these magic numbers would show up in practice, and we use them only to 
illustrate what some of the consequences would be if a magic number turned out to 
be present in the general neighbourhood of  super-heavy nuclei somewhat beyond 
the end of the periodic table. The actual values of  the magic numbers might be dif- 
ferent; for example, we have recently learned z3) that Z = 114, N = 184 is a pos- 
sible candidate for a doubly magic nucleus (see also p. 269, ref. 24)). What we wish 
to point out is t h a t / f a  (doubly) magic number exists then an important consideration 
affecting the possible stability of the corresponding nucleus is the considerable in- 
crease in the barrier against fission and, consequently, in the spontaneous fission 
half-life. This is illustrated in fig. 2 where we have plotted the deformation energy 
predicted by our mass formula for the case Z = 126, N = 184. This nucleus has a 
fissility parameter x = 1.05; as a result, in the absence of shell effects, it would have 
a vanishing barrier against fission and a spontaneous fission half-life of the order of 
nuclear collective oscillations or 10 .22 sec. Because of the assumed doubly magic 
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number ,  however,  the g round-s ta te  mass  o f  this nucleus would  be depressed  (by 

abou t  10.2 M e V  according  to  our  formula) .  Since this depress ion  is, accord ing  to our  

t rea tment ,  a r ap id ly  decreasing funct ion  o f  deformat ion ,  there  results a cons iderab le  

bar r ie r  agains t  fission, wi th  a height  of  9.0 MeV:  the extra  b ind ing  associa ted  with  

the doub ly  magic  number  has s tabi l ized the otherwise highly fissile nucleus.  A n  
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Fig. 19. Nuclei whose masses are known are shown as circles, nuclei included in the table 
of nuclear properties in ref. 89) are indicated by dots. The lower boundary of the dots is the neutron 
"drip line" (the neutron binding energy vanishes there). The upper boundary is an approximate 
indication of the proton drip line, taken to be the line where a proton becomes unbound by more 
than 3 MeV. The tasseled appearance of the boundaries is the result of the even-odd term in the 
binding energy. Note the magic-number lines. The irregular, thin line in the upper right-hand corner 
is the fission or "split line", i.e., the boundary where the (calculated) fission barrier vanishes. The 
hypothetical doubly magic number at N = 184, Z = 126 causes this line, which would otherwise 

be almost horizontal, to make an excursion upwards, around the doubly magic nucleus. 

es t imate of  the spon taneous  fission half-life o f  such a nucleus would  involve a discus-  

sion o f  the width (as well as the height)  o f  the barr ier .  We  expect  the  width  to  be much  

smal ler  than  for  convent iona l  heavy nuclei  and  hence even with the high fission 

barr ier  the half-life for spon taneous  fission might  or  might  no t  tu rn  out  to be in the 

range where  such a super-heavy nucleus would  be accessible to exper imenta l  s tudy 

(for example ,  in suitable heavy- ion  react ions) .  In  order  to p roceed  in a real is t ic  

manner  with a discussion of  the existence and  loca t ion  of  poss ible  is lands of  s tabi l i ty  
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beyond the periodic table the first requirement is the availability of estimates for 
the location and strength of magic number effects in that region. When such estimates 
have become available (through single-particle calculations in realistic nuclear 
potentials) it will be possible to apply our semi-empirical treatment of nuclear masses 
and deformations to the prediction of the fission barriers of hypothetical super- 
heavy nuclei (as well as to estimates of the neutron, proton and alpha binding ener- 
gies that may be relevant to their stability). 

7.9. C E N T R I F U G A L  S T R E T C H I N G  OF N U C L E I  

Our mass formula is meant to treat, in the first place, only static properties of 
nuclei. By adding to it a rotational energy, however, one may attempt to predict 
certain gyrostatic properties, i.e., the properties of a system in uniform rotation. 
Attempts along these lines are described in ref. 2s). The centrifugal energy is there 
taken in the form ½(angular momentum)2/(moment of inertia), where the moment 
of inertia is assumed to be an increasing function of nuclear deformation; for 
example, proportional to the square of the deformation parameter/3 or o-. The sum 
of  this rotational energy and of the potential energy taken from the mass formula, 
when minimized with respect to deformation, may be used to study the centrifugal 
stretching of nuclei and leads to predictions of characteristic spacings of rotational 
energy levels. 

7.10. H O W  TO USE T H E  MASS F O R M U L A  

We would like to end this section with remarks on what we would consider to be 
the legitimate use of our mass formula. Since the formula attempts to provide a 
semi-empirical theory of the deformabilities of nuclei throughout the periodic table 
with the aid of no more than seven adjustable parameters, it is out of the question 
that the details of the 1200 masses, 240 quadrupole moments and 40 fission barriers 
should be reproduced accurately: The immediate consequence is that in extra- 
polating the masses, quadrupole moments or fission barriers only a small distance 
away from regions where these properties are known experimentally, it is by far the 
best procedure to make use of  the experimental values themselves. In such cases our 
mass formula may have only a secondary use. For  example, to extrapolate nuclear 
masses, it would be more convenient, and perhaps more accurate, to extrapolate 
the differences between experimental masses and our formula, rather than the masses 
themselves. 

For somewhat more distant extrapolations the gain in using our formula may 
become more important. For  example, the trends of the experimental masses on 
leaving the region of  the closed shell at 2°spb, if extrapolated indiscriminately into 
the rare earths or actinides, would lead to quite incorrect (excessively high) masses. 
If, instead, the extrapolations were made on the differences between experimental 
and calculated masses, no gross errors would result, because the change of trend in 
the masses associated with the onset of deformed nuclei would be allowed for, albeit 
only approximately. 
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For distant extrapolations - say half-way across a shell - the use of our mass 
formula without reference to experimental masses might be the most adequate 
procedure (because the experimental mass deviations might be only local irregulari- 
ties which ought not to be extrapolated too far). However, as with all extrapolations, 
a very generous margin of error should be allowed for. Finally, for extremely distant 
extrapolations, it should be remembered that any predictions associated with shell 
effects must start with a knowledge of the locations and strengths of magic numbers, 
a question that is outside the framework of our treatment, which assumes the magic 
numbers as given. For such very distant extrapolations the only significant part of 
our mass formula would be the liquid-drop aspect. 

In summary, our formula should be used with caution and, whenever possible, 
in conjunction with directly available experimental information. 

Appendix D of ref. 39) contains a table of calculated masses and other nuclear 
properties for some 8000 particle-stable nuclei. 

8. Summary and Conclusions 

This paper has been concerned with a semi-empirical theory of the nuclear potential- 
energy surface considered as a function of the nuclear shape. Our theory regards this 
energy surface as given by an average, asymptotic, liquid-drop behaviour, modified 
by local shell corrections in the form of "dimples". The liquid-drop part of the energy, 
with four adjustable parameters, consists of volume and surface energies (both 
composition-dependent) and a Coulomb energy. The shell-correction dimples are 
Gaussian functions specified in terms of bunched neutron and proton Fermi gases 
and have three adjustable parameters. 

The body of experimental data to be compared with our theory refers to static 
properties of nuclei. It consists of some 1200 nuclear ground-state masses, some 240 
quadrupole moments and some 40 fission barriers. These data are sufficient to give a 
firm determination of all the adjustable parameters. An over-all comparison of theory 
with experiment confirms the adequacy of the liquid-drop formula for representing 
the trends of nuclear binding energies. A detailed comparison of the calculated and 
experimental shell correction reveals a general correspondence, except for nuclei 
with mass numbers less than 50, where a more adequate treatment of  the shell cor- 
rection is necessary and appears possible. After this is done there remains, apart 
from minor deviations, one systematic difference between theory and experiment, 
for which a new term in the mass formula is suggested. It is characterized by additional 
binding of nuclei with equal or nearly equal neutron and proton numbers and is 
recognizable as a sharp trough along the locus of nuclei where N = Z. This ad- 
ditional contribution to the nuclear binding energy appears to be related to earlier 
discussions of a "Wigner term". We have expressed it tentatively in the form 
- 7  exp[-6l(N-Z)/Al]  MeV. 

After correcting the experimental masses for shell effects and for the Wigner term, 
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the remaining binding energy is a smooth function of N and Z, which is represented 
with astonishing faithfulness by a simple liquid-drop formula, for all nuclei through- 
rut the periodic table from A ~ 4 to A ~ 260. There are no systematic trends left 
over to suggest the need for appreciable higher-order corrections to the expansion in 
powers of A -~ on which the liquid-drop formula is based or for a more complicated 
representation of the dependence of the binding on nuclear composition. The values 
found for the adjustable parameters in the liquid-drop part of the formula are not 
very different from earlier determinations, for example Green's 2). Because shell 
effects and fission barriers are taken into account in our fits, the coefficients are more 
firmly established, however. Also, the connection that our theory suggests between 
nuclear masses and deformations has enabled us to provide an answer to the question 
of how the separation between shell oscillations and the smooth liquid-drop trends 
should be made. 

The account which our theory gives of the shell oscillations and of the quadrupole 
moments is only rough and there is room for improvement. 

To summarize: our treatment is a first step beyond the liquid-drop theory of 
nuclear masses and deformabilities and represents an intermediate stage between 
this simple theory and the detailed but complicated microscopic investigations of 
the deformabilities of individual nuclei. The price we pay in going beyond the liquid- 
drop model is the introduction of a Gaussian function and three adjustable param- 
eters° The gain is a rough semi-quantitative understanding of the shell oscillations, 
quadrupole moments, and fission barriers. A by-product is the isolation of the 
Wigner term and the re-assessment of the accuracy of the liquid-drop formula. 

The problems raised by our analysis of nuclear masses and deformations have to 
do, first, with a better interpretation of the semi-empirical regularities we have 
observed and, second, with an analysis of the remaining deviations. In the first class 
of problems we would put a better analysis of the expected functional form of the 
attenuating factor, first and foremost perhaps its 7-dependence. The theoretical 
significance of the base-line parameter c should be clarified. The physical origin and 
functional form of the Wigner term, including the question of its shape dependence, 
must also be settled. As regards discrepancies, the rare-earth and heavy-element 
anomalies should be studied further, the latter in particular being of importance for 
an understanding of fission barriers and for extrapolations of nuclear properties 
beyond the end of the periodic table. The reason for the 5 to 10 ~ discrepancies of 
the electrostatic energies with the Stanford values should be investigated. 

Finally we would like to make a remark concerning a problem that goes beyond 
the scope of a study of nuclear potential energies but which forms a complement 
to such a study. The basic reason why the understanding of a potential-energy surface 
is of importance is that this energy, written out as a function of the degrees of freedom 
specifying the system, constitutes one half of a Hamiltonian function. The other half 
of the Hamiltonian is the kinetic energy, written out as a function of the coordinates 
and the conjugate momenta. In order to have a complete theory of a system both 
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parts of the Hamiltonian must be known. In the case of the dynamical liquid-drop 
model the kinetic-energy part of the Hamiltonian is well known and understood. 
Studies of the effects of nuclear shell structure on the deviations of the kinetic energy 
from its liquid-drop value would constitute a complement to the study of the deviations 
of the potential energy. If  one were fortunate enough to find a semi-empirical account 
of the kinetic energy deviations as simple as our treatment of the potential energy, 
one would be in possession of a compact semi-empirical Hamiltonian on the basis 
of which an approximate account of some of the simpler aspects of  nuclear dynamics 
might be built. 

We would like to thank S. Bjornholm, F. S. Stephens, R. M. Diamond, S. G. 
Thompson, S. Johansson, H. Ktimmel, J. C. D. Milton, H. Meldner and P. R6per 
for discussions and correspondence; and H. Ktimmel, J. Mattauch, W. Thiele and 
A. H. Wapstra for permission to use their tabulations of experimental nuclear masses 
prior to publication. 

Appreciation is expressed to Jeannette Mahoney for able assistance with the early 
computations and plots. 

Appendix 

A.I. DETAILS OF EQUILIBRIUM DEFORMATIONS 

A. 1.1. The onset of  deformations. Confining ourselves to axially symmetric spheroidal 
shapes (7 = 0), we discuss the solutions of the equilibrium condition, eq. (11) in 
sect. 5. This equation may be re-written as 

O - ~ 0 2 - v O e  -°2 = O, 

where e is the small quantity FIE and v an abbreviation for S/E or S/Scrit. The 
above equation is satisfied by 0 = 0o = 0 or by 

1-~}eO = ve -°~. (17) 

Taking logarithms of both sides, expanding the left-hand side in powers of  e, and 
retaining the first power, we find the following quadratic equation for 0 

0 2 - ~ 0 - 1 n  v = 0. 

There are two solutions, 0+ and 0_ 

O± = -~_+ [(~)2 + ln  ~3~. (18) 

The onset of deformations is given by the condition 

(¼e) 2 + l n  v > 0, 
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which is nearly, but not quite, the condition for the loss of stability of the sphere, 

~02 0=0 < 0,  

which leads to In v > 0 (see sect. 5). Deformed equilibrium shapes in fact occur for 
the first time when In v is slightly negative, i.e., when S is a little less than S~rit, and 
the sphere is still stable. The pair of deformed equilibrium shapes 0+ and 0_ start 
off at the finite (though small) value 0+ = 0_ = 43-s, after which 0+ increases and 
0_ decreases rapidly (with a vertical tangent). At this stage there are thus three 
equilibrium shapes: the sphere and 0+, both stable, and 0_, an unstable barrier 
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Fig. 20. This figure illustrates schematically the details of the appearance and disapearance of de- 
formations according to our mass formula. Non-spherical equilibrium shapes 0+ and 0_ appear first 
at the limiting point P and the sphere loses stability almost immediately after, at the bifurcation point 
Q, where 0_ and 00 cross. At Q'  the sphere regains stability and at P'  deformations disappear through 
the annihilation of 0+ and 0_. Solid lines indicate stability (against axially symmetric deformations), 

dashed lines indicate instability. 

between them (see fig. 20). The sphere loses stability at the point Q in fig. 20 at the 
moment when the family of solutions denoted by 0_ crosses the family 0o of spherical 
solutions. This is a typical example of Poincar6's "exchange of stabilities". [Using 
the terminology of, for example, Appell's textbook - ref. 8), ¥ol. 4, chapt. VIII, P 
is a "limiting point" and Q is a "point of bifurcation."] Beyond the point Q the 
sphere is unstable and 0_, which now corresponds to oblate deformations, is stable 
with respect to axially symmetric deformations (though not otherwise - see sect. 5). 
At the end of the region of deformations the sequence of events in fig. 20 is reversed, 
with the sphere regaining stability at Q' and deformations disappearing at P'. The 
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general appearance of a plot of the equilibrium families 0+ and 0_ is that of a televi- 
sion screen, whose horizontal axis is displaced by the amount ¼5 above the line of 
spheres 0o = 0. 

In practice the range of A values between P and Q, and P' and Q' is so extremely 
small that in our numerical studies we did not come across a single example of a 
nucleus exhibiting simultaneous stability of the sphere and of a deformed shape. 
This means that in eq. (18) we may neglect the narrow range of conditions when 
(ke)2 cannot be regarded as small compared to In v and the square root has to be 
left unexpanded. Apart  then from this small neighbourhood close to the critical 
condition in v ~ 0, we may neglect the (¼5) 2 term in the radical and rewrite eq. (18) as 

0 + = + (ln v) ~ + ¼5, 

which is the result used in sect. 5. 
A.  1.2. Saddle-point shapes. Eq. (17) has, as a rule, a solution corresponding to a fission 

saddle-point. When this occurs for values of 0 of the order of unity, so that the term 
e x p ( -  02) cannot be neglected, a numerical treatment of eq. (17) may be resorted to. 
Because the range of our attenuating function corresponds to quite small nuclear 
eccentricities, the retention of only the quadratic and cubic terms in the liquid-drop 
part  of our formula is then quite adequate even for saddle-point shapes. When the 
saddle-point occurs for values of 0 well beyond the range of the attenuating function, 
the liquid-drop part of the energy cannot be expanded in powers of the eccentricity, 
and, in any case, it is essential not to restrict the shape of the drop to spheroidal 
distortions. On the other hand the shell correction term ex p ( -0 2 )  can then be 
neglected altogether and the saddle-point shape is given by the condition that the 
liquid-drop part of the energy be stationary with respect to all small distortions 
- a problem whose solution is known (e.g., refs. 7, 33)). In order to decide in practice 
whether to use the large-0 approximation (shell effects neglected) or the small-0 
approximation (a spheroidal drop treated to cubic order) one may calculate the 
saddle-point energy in three different ways and on this basis decide whether the 
neglect of  shell effects or the neglect of  trans-cubic terms introduces the more serious 
error. Thus one may solve eq. (17) with and without the shell term, obtaining an 
estimate of  the error A E  1, say, associated with the neglect of  shell effects (the 
large-0 approximation). Then, for the same nucleus one may calculate the pure 
liquid drop saddle point energy both exactly and in the "cubic approximation" [i.e., 
spheroidal shapes, energy to order 03 - in other v~ords, once again eq. (17) with the 
shell term neglected]. From this comparison one may obtain an estimate of the error 
AEz ,  say, associated with the cubic or small-0 approximation. 

I f  A E  1 > AE2,  one may use the small-0 approximation [eq. (17)]; if A E  1 < AE2,  

one may use the large-0 approximation (the pure liquid drop). In practice the liquid- 
drop approximation is good for all nuclei up to a value of the fissility parameter of 
about 0.925, and the smaller of the errors A E  1 or A E  2, does not exceed, at worst, 
a few hundredths of an MeV. 
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A.2. DIFFUSENESS AND CURVATURE CORRECTIONS 

We shall prove two theorems, one relating to the diffuseness correction to the 
electrostatic energy, the other to the curvature correction to the surface energy. 

A.2.1. Diffuseness correction. The change in electrostatic energy 6Ec, resulting from 
changing an arbitrarily shaped sharp distribution Psharv into a diffuse one Pdirrus~ is an 
integral over all space of the old electrostatic potential v times the change in the 
charge density cSp, given by Pairfus~-Psh,rp. (We assume this difference to be effectively 
confined to a small region in the vicinity of the old surface and to be a function of 
the normal distance n from the surface but not of the location on the surface. It 
follows that for any point on the surface the integral 5 dn3p must vanish if charge 
is to be conserved.) Thus 

6Eo = ~s v3p 
pace 

= f d n ~ d a [  v (n=O)+ (Ov~ "l 6p 

+ + 

In the last two lines we have made a Taylor expansion of  the electrostatic potential 
in powers of the normal distance from the old surface. The first term vanishes be- 
cause 5dn 6p = 0. Carrying oat the surface integration in the second term and ap- 
plying Gauss' theorem in electrostatics, we find 

6Ec = -4~( to ta l  charge) f~®dnn6p. 
The change in energy is thus, to this order in the diffuseness of the surface, strictly 
independent of the shape of the charge distribution. Applying our formula to a dif- 
fuseness of  the charge distribution given by a Woods-Saxon (or Fermi) form factor 

1 
Pdif%se(n) --'= P0 1 +e n/a' 

we find the result, quoted in ref. 16) and used in sect. 5: 

6E o = --½re 2--  __ 
r o A 
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Since this term is independent of  nuclear shape, the shape-dependence of  the electro- 
static energy is still that of a sharp distribution. It  follows that the fissility parameter 
x, which for a sharp distribution may be defined as the ratio of the electrostatic 
energy of a sphere to twice the surface energy, becomes, for a diffuse distribution, the 
ratio of what the electrostatic energy would be i f  the distribution were sharp to twice 
the surface energy. 

Thus 
X-~ (c3Z2/A.~)/(2e2A~), 

and not 
[C 3 Z 2/A+ - c 4 Z 2/A 1/(2c2 Ak). 

A.2.2. Curvature correction. In general the specific surface tension ~ may be a function 
of  the local curvature of the surface ~:, given by (R~ -1 + R f l ) ,  where R 1 and R2 are 
the principal radii of curvature of the surface at the point in question (ref. 18)). 
Making a Taylor expansion in powers of x, we may write 

specific surface tension = y(~c = 0)+ (aYl x + . . .  
\0K/o 

= 7+Y'~: = 7(1+1x), 

where l = y'/y = d(ln 7)/d~c is the logarithmic derivative of y with respect to ~, a 
quantity with the dimensions of a length. The surface energy in this case of a curvature- 
dependent surface tension is thus 

E~ = ~ d¢7(1 + he), 
S 

where the integral is over the surface S of  the shape in question. On inspection of the 
above expression we realize that it is identical with the integral 

~ 
snow d°'n~w]~' 

where the new surface is obtained from the old one by a normal outward shift through 
the distance 1. (If the old element of area is written out as daol d = RldOR2d~ ,  
where 0 and ~ are two orthogonal angular coordinates specifying a point on the 
surface, we have 

d~r,~ w = (Rj  + 1)dO(R2 + l)dq~ = Ra dOR 2 d~b[1 + l(R-~ ~ + R-~ 1) + . . . ]  

= daold(1 + 11C), 

which proves our statement.) Hence we have the theorem that the surface energy 
in the case of a curvature-dependent surface tension is equal to the surface energy 
for a constant surface tension but calculated for a new surface, displaced normally by 
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an a m o u n t  equal to the logari thmic derivative of the specific surface tension with 

respect to curvature.  

This theorem helps to visualize the effect of  a curvature-dependent  surface tension - 

for example,  in its effect on nuclear  fission. I t  also enables one to combine  this cor- 

rection with a further correct ion that  is of  some interest, namely  the correction for 

a true difference in the locations of the nuclear  mat ter  and charge surfaces (see 

ref. 34)). (The effective locat ion of the surface relevant for calculating a surface 

energy is then the true difference augmented  by l.) 

We may summarize this section by the s ta tement  that  if we have a diffuse charge 

d is t r ibut ion  and a mat ter  dis t r ibut ion whose surface is outside the charge dis t r ibut ion 

by a normal  distance b, and  which moreover  gives rise to a curvature-dependent 
surface tension,  then, as regards the shape dependence of its energy this complicated 

system may be replaced by the simpler one of a sharp charge distr ibution,  and  a 

mat ter  dis t r ibut ion with a constant surface tens ion but  displaced normal ly  by the 

sum of b and I. The fissility parameter  x is in this case the rat io of the electrostatic 

energy of a sharp spherical charge dis t r ibut ion (of radius R, say) to twice the simple 

surface energy of a sphere of radius (R + b + l). 

A.3. FOLD-OUT FIGURES 

In  this appendix we have collected the three figures which, because or their size, 

would be cumbersome in the body of the text. 
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