LCOB40: Titrages

Niveau de la leçon : Terminale STL SPCL

<u>Elément imposé : Déterminer la concentration d'une solution inconnue</u> <u>en mettant en oeuvre un protocole de titrage direct ou indirect</u>

Prérequis pour la leçon:

- -Réactions d'oxydo-réduction
- -Montage à reflux
- -Expressions et utilisation des incertitudes de type B
- -Relation d'équivalence d'un titrage
- -Phrases H et P
- -Nomenclature, formule topologique et mécanisme d'une hydrolyse
- -Influence de la température sur la cinétique d'une réaction

Repère de progressivité

Réaction d'oxydo-réduction. Tests d'identification.

Électrode de référence : électrode standard à hydrogène (ESH). Potentiel, potentiel standard.

Relation de Nernst. Quotient de réaction, constante d'équilibre. Blocage cinétique.

Titrages redox directs et indirects.

- Écrire l'équation d'une réaction d'oxydo-réduction en milieu acide ou basique.
- Connaître les tests d'identification des aldéhydes (liqueur de Fehling et miroir d'argent).
- Définir l'électrode standard à hydrogène comme une demipile de référence permettant de déterminer le potentiel d'un couple redox correspondant à une autre demi-pile.
- Déterminer le potentiel d'un couple donné en utilisant la relation de Nernst, la composition du système étant donnée.
- Prévoir l'influence des concentrations sur la valeur du potentiel d'un couple.
- Calculer une constante d'équilibre à partir des potentiels standard.
- Prévoir le sens d'évolution spontanée d'une réaction d'oxydoréduction à l'aide des potentiels des couples mis en jeu ou de la valeur du quotient de réaction.
- Confronter des résultats expérimentaux aux prévisions pour repérer d'éventuels blocages cinétiques.

Interpréter l'allure d'une courbe de titrage potentiométrique.

- Déterminer la valeur d'un potentiel standard à partir d'une courbe de titrage potentiométrique, la valeur du potentiel de référence étant donnée.
- Déterminer la concentration d'une espèce à l'aide de données d'un titrage direct.
- Déterminer la concentration d'une espèce à l'aide de données d'un titrage indirect, les étapes de la démarche étant explicitées.

Capacités expérimentales :

- Déterminer la concentration d'une solution inconnue en mettant en œuvre un protocole de titrage direct ou indirect :
- avec changement de couleur ;
 potentiométrique.

Capacités numériques :

Tracer une courbe de titrage potentiométrique et déterminer le volume à l'équivalence à l'aide d'un tableur.

Fonctions chimiques, groupes caractéristiques. Nomenclature. Estérification, oxydation

d'un alcool, réduction d'une cétone.

Hydrolyse, saponification. Montage de Dean-Stark. CCM.

- Identifier les fonctions ester, anhydride d'acide, amide et chlorure d'acyle dans une formule chimique.
- Associer un nom à une molécule organique simple.
- Écrire l'équation de réaction d'estérification, d'oxydation d'un alcool ou de réduction d'une cétone, en milieu acide ou basique.
- Écrire l'équation de réaction de formation d'un ester ou d'un amide.
- Identifier les réactifs permettant de synthétiser un ester ou un amide donné.
- Écrire l'équation d'hydrolyse d'un ester ou d'un amide en milieu acide ou en milieu basique.

Capacités expérimentales :

- Réaliser une synthèse suivant un protocole donné.
- Réaliser un montage de Dean-Stark.
- Mettre en évidence par une CCM un ou des produits issus de l'oxydation d'un alcool.

Repère de progressivité

Notions et contenus	Capacités exigibles
Dispersion des mesures, incertitude-type sur une série de mesures. Incertitude-type sur une mesure unique.	- Procéder à une évaluation de type A d'une incertitude-type.
	 Procéder à une évaluation de type B d'une incertitude-type pour une source d'erreur en exploitant une relation fournie et/ou les notices constructeurs.
Sources d'erreurs.	 Identifier qualitativement les principales sources d'erreurs lors d'une mesure.
	 Comparer le poids des différentes sources d'erreurs à l'aide d'une méthode fournie.
	- Identifier le matériel adapté à la précision attendue.
	 Proposer des améliorations dans un protocole afin de diminuer l'incertitude sur la mesure.
	 Évaluer, à l'aide d'une relation fournie ou d'un logiciel, l'incertitude-type d'une mesure obtenue lors de la réalisation d'un protocole dans lequel interviennent plusieurs sources d'erreurs.
Expression du résultat.	 Exprimer un résultat de mesure avec le nombre de chiffres significatifs adaptés et l'incertitude-type associée.
Valeur de référence.	 Valider un résultat en évaluant la différence entre le résultat d'une mesure et la valeur de référence en fonction de l'incertitude-type.

Mécanismes réactionnels

Type de réaction.

Étapes élémentaires, formalisme des flèches courbes.

Carbocation, carbanion. Stéréochimie, mélange racémique.

Loi de Biot, excès énantiomérique.

Mésomérie.

Intermédiaires réactionnels.
Catalyseur.

- Nommer le type de réaction (acide-base, oxydation, réduction, addition, substitution, élimination).
- Illustrer les étapes élémentaires d'un mécanisme fourni à l'aide du formalisme des flèches courbes.
- Établir la géométrie de carbocations et de carbanions à l'aide de la théorie VSEPR.
- Déterminer les différents stéréoisomères formés à partir d'un même carbocation et repérer les couples d'énantiomères et les diastéréoisomères.
- Déterminer l'excès énantiomérique à partir de la valeur de l'activité optique d'un mélange.
- Identifier les formes mésomères de molécules ou d'ions simples en exploitant des schémas de Lewis fournis.
- Comparer la stabilité des intermédiaires réactionnels (carbocation, carbanion et radical) pour interpréter la nature des produits obtenus et leur proportion relative, le mécanisme étant fourni.
- Identifier le catalyseur et expliquer son rôle dans un mécanisme.

Capacité expérimentale :

 Mettre en œuvre un protocole pour différencier deux diastéréoisomères par un procédé physique ou chimique.

Objectifs et difficultés attendues

Objectifs

Comprendre le principe d'un

titrage indirect.

Comprendre le principe d'un

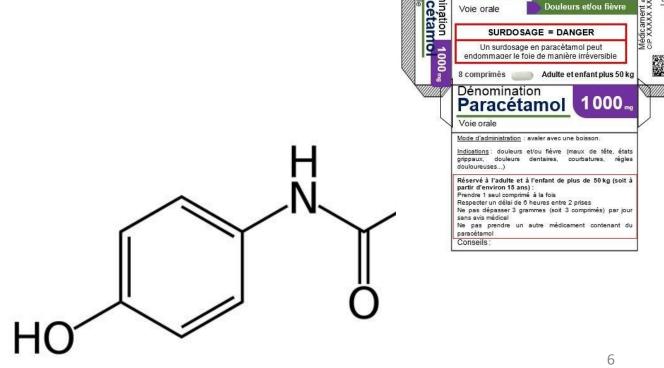
titrage potentiométrique

Évaluer des incertitudes et

prendre du recul sur un protocole

Difficultés

Réussir à retrouver la bonne


quantité de matière

Réussir les calculs associés à l'

équivalence

I. Le paracétamol

Pas de précautions particulières de

Páracetamol 1000 ...

conservation

ADRESSE DU LABORATOIRE PHARMACEUTIQUE

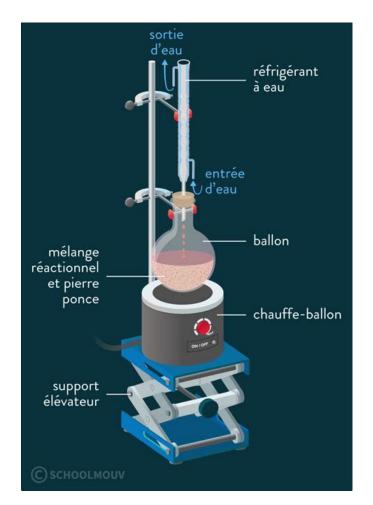
H302: Toxicité aiguë, catégorie 4, Nocif en cas d'ingestion

H315: Irritation cutanée, catégorie 2, provoque une irritation cutanée

H319 : Irritation oculaire, catégorie 2, provoque une sévère irritation des yeux

H335: Toxicité spécifique pour certains organes cibles (exposition unique),

catégorie 3, peut irriter les voies respiratoires

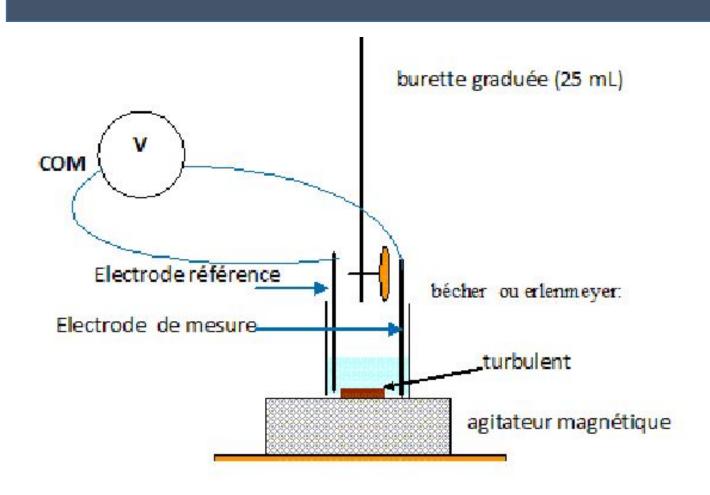

Peser la masse du comprimé $m_{tot} = 0.5677 \pm 0.0001g$

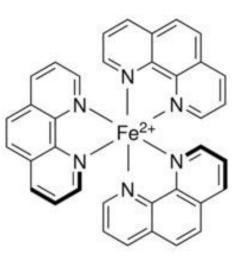
Peser une masse $m_e = 0.2974 \pm 0.0001g$ d'échantillon

Placer l'échantillon dans un ballon avec 10mL d'eau distillée et 30mL d'acide sulfurique concentré (1mol/L)

Laisser chauffer à reflux pendant une heure.

Une fois le mélange refroidi, l'introduire dans une fiole jaugée de 100mL et compléter à l'eau distillée. Prélever un volume: $V_0 = 20mL$ pour l'étape suivante


Intérêts du montage à reflux : Accélération de la réaction, évite les pertes de matière


$$n_{tot}(C_6H_7NO_{aq}) = n_e(\text{paracétamol})$$

$$C_6H_7NO_{aq} + H_2O_l + 2Ce_{aq}^{+4} = 2Ce_{aq}^{3+} + C_6H_4O_{2aq} + NH_4^+ + H_{aq}^+$$

II.2. Titrages

II.2 Titrages

électrode de platine

électrode Ag/AgCl

III.3. Analyse des résultats

$$\frac{\delta m_{p,tot}}{m_{p,tot}} = \sqrt{(\frac{\delta V_e}{V_e})^2 + (\frac{\delta m_{tot}}{m_{tot}})^2 + (\frac{\delta m_e}{m_e})^2}$$