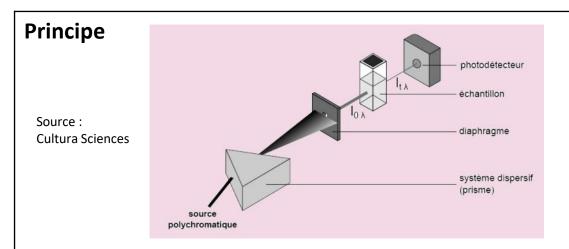
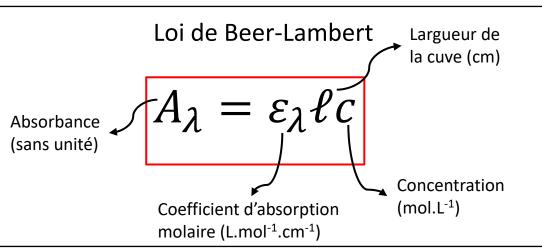
Analyse spectroscopique

Vendredi 3 décembre 2021

Niveau: Terminale STL Option SPCL


Prérequis:


- spectre des ondes électromagnétiques ;
- énergie d'un photon;
- électronégativité des éléments chimiques ;
- représentation des molécules (formule topologique) ;
- nomenclature et groupes fonctionnels en chimie organique
- synthèse et contrôle de pureté

1^{ère} STL

Terminale STL

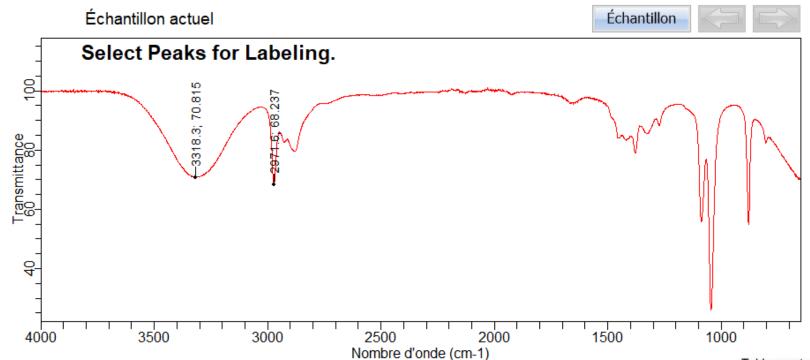
I. 1) Synthèse sur la spectroscopie UV-visible

Précautions expérimentales

- penser à diluer les solutions (le spectrophotomètre sature pour des absorbances trop grandes)
- ne pas mettre ses doigts à l'endroit où la lumière va traverser la cuve (indiqué par une flèche)
- ne pas remplir les cuves à ras bord (risque de débordement dans le spectrophotomètre)

Questions classiques

Que signifie « faire le blanc » ? Pourquoi le fait-on ?

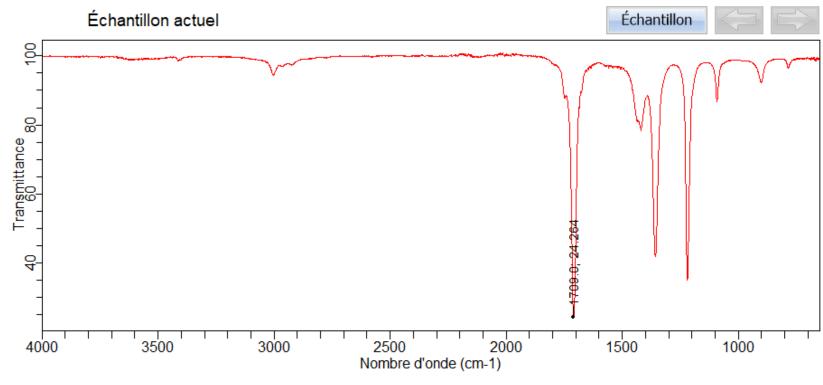

→ Faire le blanc consiste à placer dans le spectrophotomètre une cuve qui contient uniquement le solvant. Cela permet de ne pas prendre en compte l'absorbance de la cuve et du solvant pour les prochaines mesures

Pourquoi utilise-t-on la longueur d'onde λ_{max} qui correspond au maximum d'absorption de l'espèce ?

→ Cela permet de travailler au maximum de sensibilité de l'appareil, mais aussi de mesurer l'absorbance avec une meilleure précision

- 2

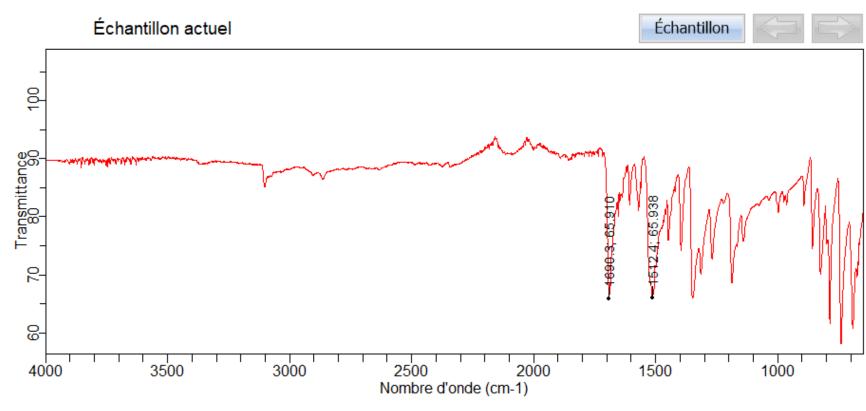
https://www.youtube.com/watch?v=VmCfbYbVkl8

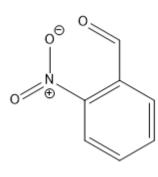

Exemple de table de données pour la spectroscopie IR

Spectre Infrarouge de l'éthanol liquide à 95%

Liaison	Nombre d'onde (cm ⁻¹)	Intensité
O-H alcool libre	3500 - 3700	forte, fine
O-H alcool lié	3200 - 3400	forte, large
O-H acide carboxylique	2500 - 3200	forte à moyenne, large
N-H amine	3100 - 3500	moyenne
N-H amide	3100 - 3500	forte
N-H amine ou amide	1560 - 1640	forte ou moyenne
C _{tri} - H	3000 - 3100	moyenne
Ctét - H	2800 - 3000	forte
C = O ester	1700 -1740	forte
C = O amide	1650 - 1740	forte
C = O aldéhyde et cétone	1650 - 1730	forte
C = O acide	1680 - 1710	forte

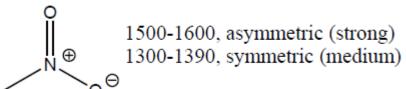
Ctri signifie que l'atome de carbone est trigonal, c'est-à-dire relié à trois voisins, Ctét signifie que l'atome de carbone est tétragonal, c'est-à-dire relié à quatre voisins.

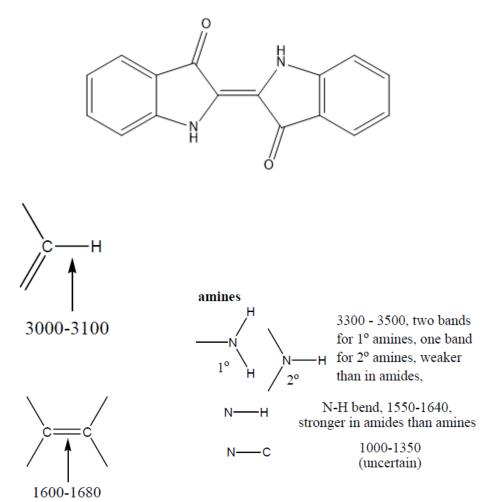

Source: https://adamphysiquechimieterminales.wordpress.com/2016/10/06/chap-4-analyse-spectrale/



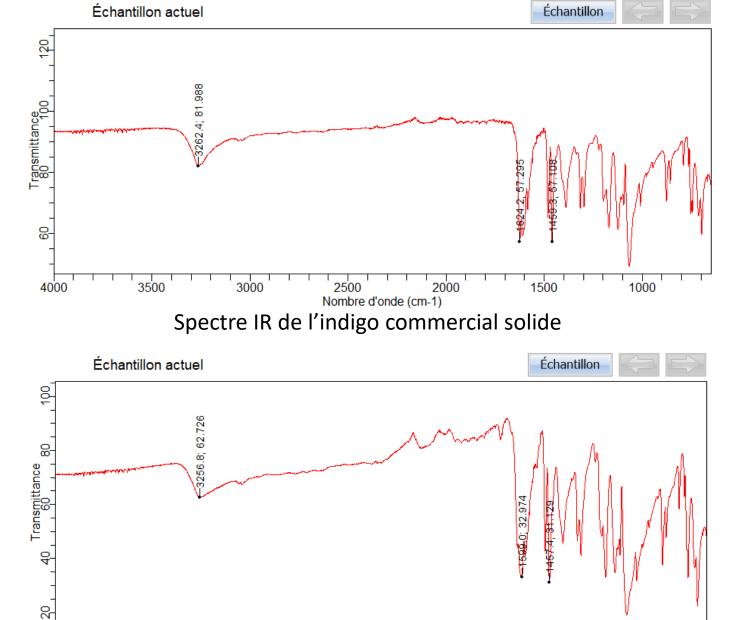
Spectre Infrarouge de l'acétone liquide

Liaison	Nombre d'onde (cm ⁻¹)	Intensité
O-H alcool libre	3500 - 3700	forte, fine
O-H alcool lié	3200 - 3400	forte, large
O-H acide carboxylique	2500 - 3200	forte à moyenne, large
N-H amine	3100 - 3500	moyenne
N-H amide	3100 - 3500	forte
N-H amine ou amide	1560 - 1640	forte ou moyenne
C _{tri} - H	3000 - 3100	moyenne
Ctét - H	2800 - 3000	forte
C = O ester	1700 -1740	forte
C = O amide	1650 - 1740	forte
C = O aldéhyde et cétone	1650 - 1730	forte
C = O acide	1680 - 1710	forte


C_{tri} signifie que l'atome de carbone est trigonal, c'est-à-dire relié à trois voisins. C_{tét} signifie que l'atome de carbone est tétragonal, c'est-à-dire relié à quatre voisins.


Spectre Infrarouge du 2-nitrobenzaldéhyde solide

nitro compounds



Liaison	Nombre d'onde (cm ⁻¹)	Intensité
O-H alcool libre	3500 - 3700	forte, fine
O-H alcool lié	3200 - 3400	forte, large
O-H acide carboxylique	2500 - 3200	forte à moyenne, large
N-H amine	3100 - 3500	moyenne
N-H amide	3100 - 3500	forte
N-H amine ou amide	1560 - 1640	forte ou moyenne
C _{tri} - H	3000 - 3100	moyenne
Ctét - H	2800 - 3000	forte
C = O ester	1700 -1740	forte
C = O amide	1650 - 1740	forte
C = O aldéhyde et cétone	1650 - 1730	forte
C = O acide	1680 - 1710	forte

Ctri signifie que l'atome de carbone est trigonal, c'est-à-dire relié à trois voisins, Ctét signifie que l'atome de carbone est tétragonal, c'est-à-dire relié à quatre voisins.

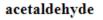
Extraits de Spectroscopy Tables (Beauchamp)

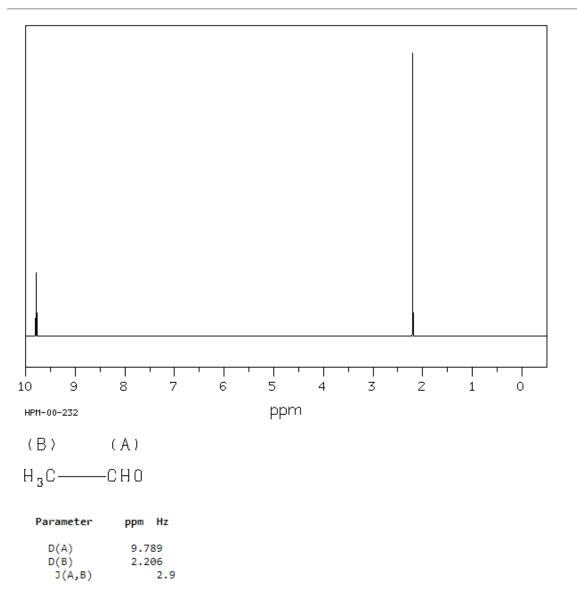
Spectre IR de l'indigo synthétisé solide

2500 20 Nombre d'onde (cm-1)

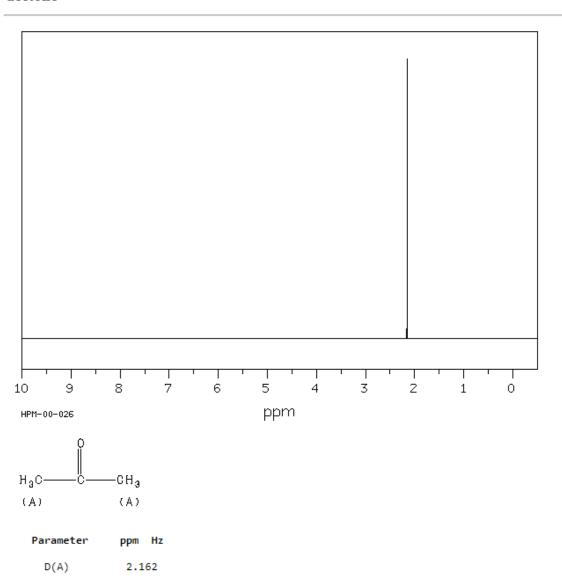
2000

1500

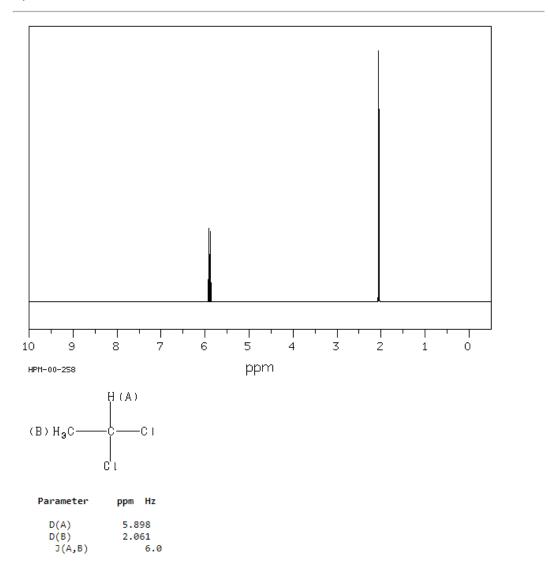

1000


3500

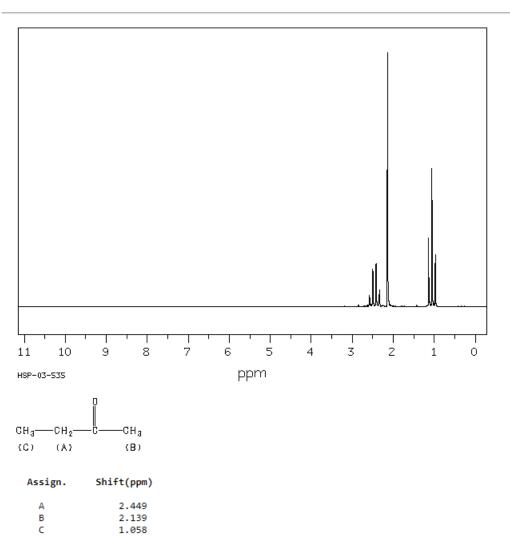
4000


3000

II. 2) Spectroscopie par Résonance Magnétique Nucléaire

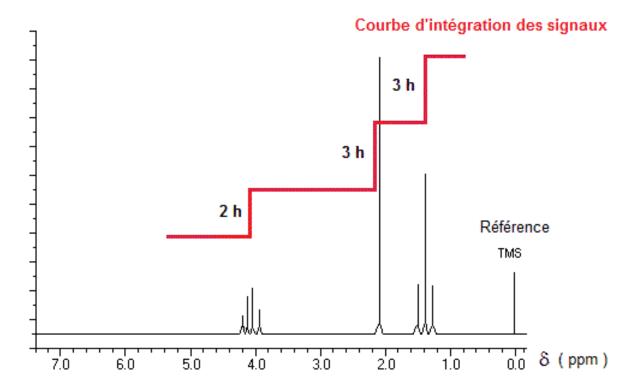


acetone



II. 2) Spectroscopie par Résonance Magnétique Nucléaire

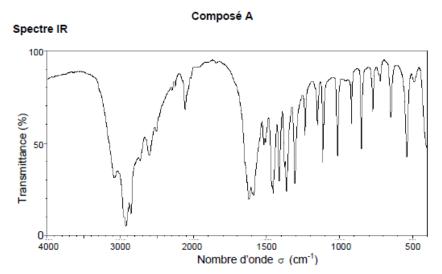
1,1-dichloroethane



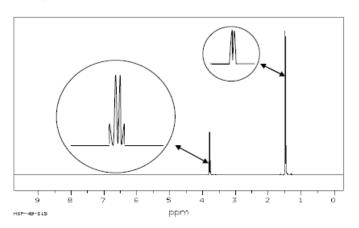
2-butanone

II. 2) Spectroscopie par Résonance Magnétique Nucléaire

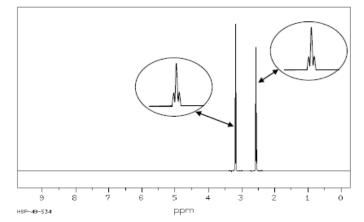
Spectre de RMN de l'éthanoate d'éthyle


Courbe d'intégration en RMN

(TMS: tétraméthylsilane)

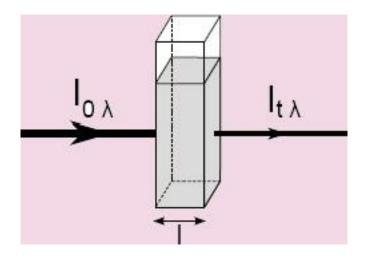

Exemple de table de déplacements chimiques en RMN du proton

Type of C-H	δ (ppm)	Description of Proton
R−CH ₃	0.9	alkyl (methyl)
R-CH ₂ -R	1.3	alkyl (methylene)
R ₃ C-H	1.5-2	alkyl (methine)
CH ₃	1.8	allylic (C is next to a pi bond)
O II R-C-CH ₃	2-2.3	α to carbonyl (C is next to C=O)
Ar-CH ₃	2.3	benzylic (C is next to Ph)
RC≣C-H	2.5	alkynyl
R ₂ N-CH ₃	2-3	α to nitrogen (C is attached to N)
R-CH ₂ -X	2-4	α to halogen (C is attached to Cl, Br, I)
RO-CH ₃	3.8	α to oxygen (C is attached to O)
R-CH ₂ -F	4.5	α to fluorine (C is attached to F)
H R ₂ C=CR	5-5.3	vinylic (H is attached to alkene C)
Ar—H	7.3	aromatic (H is on phenyl ring)
O R-C-H	9.7 N	aldehyde (H is on C=O) Tote: aldehyde (-CHO) proton usually does not ouple with neighboring H's so appears as a single


II. 3) Exemple d'application (Bac S Polynésie Française 2016)

Spectre RMN (obtenu dans des conditions permettant d'éliminer les signaux relatifs à N-H et à O-H)

Spectre RMN (obtenu dans des conditions permettant d'éliminer les signaux relatifs à N-H et à O-H)


Bandes d'absorption IR de quelques liaisons :

Liaison	Nombres d'onde (cm ⁻¹)
C-H	2850 - 3020
C=O (aldéhyde)	1720 - 1740
C=O (acide carboxylique)	1700 - 1720
C=O (ester)	1735 - 1750
C=O (acide aminé)	1590 - 1600
O-H (acide carboxylique)	2500 - 3300 (bande large)
O-H (alcool)	3200 - 3550
N-H (amine)	3250 - 3400
N-H (acide aminé)	2600 - 3100

Ressources bibliographiques

- Spectroscopy Tables, Beauchamp
- La chimie expérimentale 2. chimie organique et minérale (2008), Romain Barbe & Jean-François Le Maréchal (p,156)
- https://www.chemicalbook.com/SpectrumEN 107-95-9 IR1.htm
- https://sdbs.db.aist.go.jp/sdbs/cgi-bin/direct_frame_top.cgi
- https://culturesciences.chimie.ens.fr/thematiques/chimie-analytique/spectroscopies/introduction-a-la-spectroscopie-uv-visible
- https://culturesciences.chimie.ens.fr/thematiques/chimie-analytique/spectroscopies/les-origines-de-l-irm-la-resonance-magnetique
- https://www.youtube.com/watch?v=VmCfbYbVkl8

Complément (spectroscopie UV-visible)

$$I(x) - I(x + dx) = \alpha c I(x) dx$$

$$\frac{dI}{dx} = -\alpha c I(x)$$

$$I(x) = I_0 e^{-\alpha cx}$$