

Figures 16 et 17 : Portrait de phase du modèle proies/prédateurs de Lotka-Volterra (droite). Variations des populations de lynx et de lièvres dans le Nord Canadien (gauche)

CHAPTER 2. SYSTÈMES DYNAMIQUES

- Deux points fixes :
$$\overrightarrow{X}^* = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $[\mathcal{L}_{X^*}] = \begin{pmatrix} 1 - v & -u \\ \alpha v & \alpha(u - 1) \end{pmatrix}$
- Stabilité en $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$: $[\mathcal{L}_{(0,0)}] = \begin{pmatrix} 1 & 0 \\ 0 & -\alpha \end{pmatrix}$, det $[\mathcal{L}_{X^*}] < 0$ donc \overrightarrow{X}^* est un **point col** $(\lambda = 1)$ et $\lambda = -\alpha$.

> Stabilité en
$$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
: $[\mathcal{L}_{(1,1)}] = \begin{pmatrix} 0 & -1 \\ \alpha & 0 \end{pmatrix}$, $\det [\mathcal{L}_{X^*}] > 0$ et $\operatorname{Tr} [\mathcal{L}_{X^*}] = 0$ donc \overrightarrow{X}^* est un centre $(\lambda = \pm i\sqrt{\alpha})$.

maximum de prédateurs), voir Figs. 16 et 17. Portrait de phase, dynamique d'oscillations avec déphasage (maximum de proies suivi par un

Oscillateur de Van der Pol (Fig. 18)

- contrôle (voir § 1.2.2). Equation de l'oscillateur de Van der Pol : $\ddot{x}-(\epsilon-x^2)\dot{x}+x=0$, où ϵ est le **paramètre de**
- asymptotiquement stable /ramimo indance i Qualitativement: si $\epsilon < 0$, il y a toujours dissipation et le **point fixe** $(x = 0, \dot{x} = 0)$ est

- Dynamique des populations: modèle proies/prédateurs de Lotka-Volterra (Figs. 16 et 17)
- Deux espèces (x proies de taux de natalité a et y prédateurs de taux de mortalité c) \Rightarrow $\dot{x} = ax - bxy$

 $\dot{y} = -cy + dxy$

- Adimensionnement du sytème $(\tau = at, u = x d/c, v = y b/a, \alpha = c/a)$: $\dot{v} = \alpha v(u-1)$ $\dot{u}=u(1-v)$