Evolution temporelle d'un système chimique

Niveau: MPSI

Prérequis et positionnement de la leçon

absorbance

Points de difficulté identifiés

Cinétique chimique : domaine de la chimie qui s'intéresse à la vitesse des réactions

Réaction de décoloration de l'érythrosine B par les ions hypochlorites

Equation de la réaction :

ions hypochlorites

Vitesse de réaction dans le cas d'un réacteur fermé de composition uniforme

Méthodes de mesure de vitesse d'une réaction chimique

Précautions à prendre :

- La **température** doit être maintenue **constan**te au cours de l'étude (loi d'Arrhénius)
- Les réactifs doivent être parfaitement mélangés

Méthode chimique d'analyse :

Principe : doser des prises d'essai du milieu réactionnel prélevées à différents instants

- 1) Bloquer la réaction lors de la prise d'essai (trempe physique, trempe chimique)
- 2) Réaction de dosage

Méthode physique d'analyse :

Principe : on mesure directement dans le mélangé réactionnel une grandeur physique liée par une loi connue à une ou plusieurs concentrations.

spectrophotométrie	absorbance A à une longueur d'onde donnée	Au moins une espèce colorée	Beer-Lambert : $A(\lambda) = \sum_{i} l \epsilon_{i} C_{i}$
conductimétrie	conductance G (S) ou conductivité¤ σ (S.m ⁻¹)	variation de quantité d'ions	$\sigma = \sum \lambda_i^o C_i$
pH-métrie	le pH	espèces acido-basiques	pH= - log[H ₃ O ⁺]
polarimétrie	le pouvoir rotatoire α	substances chirales	$\alpha = \sum_{i} \alpha_{i} C_{i}$

Bibliographie des images

- Rouille : linternaute.fr
- Explosion : wikipédia
- Pétrole : planete-energies.com