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F U N D A M E N T A L S  OF TURBULENT G A S - S O L I D  FLOWS APPLIED TO 
CIRCULATING FLUIDIZED BED COMBUSTION 

Eric Peirano and Bo Leckner* 
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Abst rae t - -A summary is made of the present state of knowledge of turbulent gas-solid flow modeling and in 
particular its application to circulating fluidized bed combustion chambers. Models are presented to close the set 
of equations describing isothermal non-reacting turbulent gas-particle flows applied to fluidization, and it is 
shown under which assumptions the models can be derived. With the kinetic theory of granular flow, transport 
equations for the velocity moments and closure laws for the stress tensor and the energy flux are derived for the 
particle phase. Closure equations for the drift velocity and for the fluid-particle velocity correlation tensor are 
presented, first based on algebraic models and, second, based on transport equations with the fluid-particle joint 
probability density function. An alternative derivation of the fluid-particle velocity covariance transport equation 
is compared to the formulation based on the fluid-particle joint probability density function. Two-way coupling is 
discussed, and a transport equation for the second-order velocity moments is used to derive a two-equation model 
accounting for the modulation of gas phase turbulence by particles. Boundary conditions for the set of equations 
describing a turbulent gas-solid flow are discussed. Provided that the domain of applicability of the models is 
known, a discussion on the usefulness of the models is given, as well as an application to fluidization and 
especially to circulating fluidized bed combustors. Prospects for improvement of the existing models are 
presented. © 1998 Elsevier Science Ltd. All rights reserved. 
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NOMENCLATURE 

coefficients for wail boundary conditions g ,  
coefficients for wall boundary conditions go 
coefficients for wall boundary conditions GIO 

2 2 second-order coefficient (m s e c - )  Gi2ij 
third-order coefficient (m 3 sec-3) H(')(x,t) 
coefficient of order n lti 
drag coefficient for a sphere in a suspen- Js 
sion ks, k 
collisional rate of change for ~b kk 
constant in equation for ~2 
constant in ~ t equation k t 2 
constant in e t equation 
constant in k i-e i model K~ 
constant in ~ equation 
local instantaneous velocity of a particle K~2 
before collision (m sec-I) L~ 
local instantaneous velocity of a particle m 
after collision (m sec -I) Ms 
fluctuation velocity of a particle (m sec-~) 
particle diameter (m) Mkij. ..p 
coefficients for wall boundary conditions Mi2ij...p 
random vector (sec m) 
random vector (see m) n 
dispersion or diffusion tensor (m 2 sec-t) n i7 

diffusion coefficient for k ~ equation 
(m 2 sec -j) N 
diffusion coefficient for ~ z equation /~j 
(m 2 sec -I) 
binary dispersion tensor (m 2 sec -t) P I 
particle-particle and wall-particle resti- P2 
tution coefficient Q 
parameter function 
normal distribution function (m -6 sec 3) Rk// 
single particle distribution function ~t~j 
(m-6 see 3) 
pair distribution function (m -12 sec 6) S 
fluid-particle joint probability density St# 
function (m-9 sec 6) Skij 
external force acting on a particle per mass 
unit (N kg -I) Si2ij 
gravitational acceleration or relative veio- ~Si2ij 
city before collision (m sec -2 or m sec -I) 
relative velocity after collision (m sec -I) t 

281 
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parameter function 
radial distribution function 
one-point statistics function (sec -~) 
one-point statistics function (sec -I) 
Hermite polynomial of order n 
interracial momentum transfer (N m -a) 
collision impulse force (N) 
particle collision unit vector 
fluctuation kinetic energy in phase k 
(m 2 sec-2) 
fluid-particle fluctuation kinetic energy 
(m 2 sec -2) 
particle turbulent diffusion coefficient 
(m 2 sec -I) 
collisional diffusion coefficient (m z sec-i) 
fluid Eulerian integral scale (m) 
mass of a single particle (kg) 
momentum supply per unit area of the wall 
(N m-E) 
moment of order p for phase k (m p sec-P) 
fluid-particle fluctuation tensor of order p 
(m p sec-P) 
number of particles per unit volume (m-3) 
normal unit vector associated with gas 
phase 
normal component of g i  (N m-2) 
local instantaneous pressure of undis- 
turbed flow (Pa) 
mean pressure in the gas phase (Pa) 
mean pressure in the particle phase (Pa) 
energy rate supply per unit area of the wall 
(J m -2 sec-I) 
Lagrangian correlation tensor 
fluid Lagrangian tensor along particle tra- 
jectories 
tangential component of Mi (N m-2) 
strain rate tensor of phase k (sec -I) 
deviatoric part of the strain rate tensor of 
phase k (sec -l) 
fluid-particle strain rate tensor (sec -~) 
deviatoric part of the fluid-particle strain 
rate tensor (sec-~) 
time (see) 
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granular temperature (m 2 sec-2) z~t2 
local instantaneous velocity of phase k ~112 
(m sec -I) r~ 
fluctuation velocity of phase k (m sec -~) X(~b) 
local instantaneous velocity of undisturbed 
flow (m sec -I) ¢,, ~b' 
fluctuating velocity of gas phase (m sec-~) 
fluctuating velocity of gas phase seen by 
the particles (m sec -t) 
fluctuating relative velocity (m sec -~) 
friction velocity (m sec -~) 1 
fluid particle drift velocity (m sec -~) 2 
mean mixture velocity (m sec-i) k 
mean fluid particle relative velocity kij...p 
(m sec -]) (ij...p) 
mean velocity of phase k (m sec-i) 
spatial coordinate (m) 
trajectory of a fluid particle (m) 
trajectory of a particle (m) 
phase indicator function 
loading 
mass fraction of particle phase 

mean volume concentration of phase k 
maximum volume concentration of parti- 
cle phase 
wall-particle tangential coefficient of 
restitution 
Dirac function associated with gas phase 
Kronecker's symbol 
dissipation of gas phase turbulent kinetic 
energy (m 2 sec-3) 
turbulence efficiency to entrain particles 
stress tensor of phase k (N m-2) 
flux term for collisional rate of change for 

laminar viscosity of gas phase (Pa see) 
dynamic viscosity of particulate phase 
(Pa see) 
wail-particle friction coefficient 
kinematic viscosity of gas phase 
(m 2 see -I) 
collisional viscosity of particle phase 
(m 2 sec -I) 
turbulent viscosity of phase k (m 2 sec -~) 
fluid-particle turbulent viscosity 
(m 2 sec -I) 
bulk viscosity in particle phase (Pa sec) 
density of phase k (kg m-3) 
mixture density (kg m-3) 
interaction term in k j transport equation 
(m 2 see-3) 
interaction term in ~ ~ transport equation 
(m 2 sec-4) 
interaction term in kl2 transport equation 
(kg m -t sec -3) 
effective Prandtl number in k~ transport 
equation 
effective Prandtl number in e ~ transport 
equation 
local instantaneous stress tensor in gas 
phase (N m-2) 
effective st~ss tensor in phase k (N m-2) 
time (see) 
local instantaneous shear stress tensor in 
gas phase (N m-2) 
Lagrangian integral time scale for phase k 
(see) 
fluid integral time scale along particle 
trajectories (see) 
time scale of large scales in gas phase (see) 

particle relaxation time (see) 
eddy life time seen by a particle (sec) 
characteristic collision time (sec) 
source term for collisional rate of change 
for 
transported property before and after col- 
lision, respectively 

Subscripts 

related to the gas phase or particle 1 
related to the particulate phase or particle 2 
related to phase k 
tensor indices ij...p related to phase k 
sum of all possible permutations on 
indices ij...p 

Superscripts 

fluctuation component related to present 
phase 
fluctuation component in gas phase seen 
by particle phase 
non-disturbed flow 

Special notation 

< > 

< > k  
II 
o 
d/dt 
DJDt 
Uij 
det 

general averaging operator 
averaging operator associated with phase k 
norm of vector 
partial derivative 
ordinary time derivative 
O/Ot + Ut,dlOxi 
OU/Oxj 
determinant 

Dimensionless groups 

Re = lurld~/~i particle Reynolds number 
St = ~2/~ Stokes number 
Uj + = Uli/u* velocity in wall layer 
y+ = yu*lv~ distance from the wall 

1. INTRODUCTION 

With the development of the performance of com- 
puters during the last few years and in anticipation of 
further increases in computing power, new possibilities 
are emerging of treating complex computational tasks 
like, for example, numerical computations of turbulent 
gas-solid flows. The present work aims at establishing 
the fundamentals for numerical calculations of turbulent 
gas-solid flows. A survey is made of available 
information for the formulation of the two-phase flow 
transport equations. The formulation is general and 
therefore applicable to any turbulent gas-solid suspen- 
sion, but it is focussed on the requirements posed by the 
computation of the flow in a circulating fluidized bed 
(CFB) combustor. The application to CFB combustors 
specifically is treated in the final section. 

There are two main applications of CFB technology, 
circulating fluidized beds for catalytic cracking (FCCs) 
and circulating fluidized bed combustors (CFBCs), 



262 E. Peirano and B. Leckner 

Evap~'nt~ 
"7"-  

Pirtido F~ 
m~',:ul~Im 

......... [ I '- 
7 

, - 

Fig. 1. A CFB combustor (Lurgi type with an external heat 
exchanger). 

which both consist of vertical risers in which air is 
introduced at the bottom to elevate (fluidize) particles. 
Despite the similarities of the two CFB applications, 
there are significant differences in their design and in 
their gas-solid flow patterns. 1 An FCC is characterized 
by a circular cross-section, a high height-to-diameter 
ratio (over 20), a small mean particle diameter (about 
60 #m), high fluidization velocities (up to 20 m sec-n at 
the top) and high recirculation rates (over 
300 kg m -2 sec-l). On the contrary, a CFBC is most 
commonly built with a rectangular cross-section, and has 
a low height-to-diameter ratio (under 10), a large mean 
particle diameter (about 100-300 pm), low fluidization 
velocities (less than 6 m see -1) and low recirculation 
rates (less than 30kgm -2 sec-[). More precisely, a 
CFBC is a device where solids, Geldart Group B (with a 
particle size distribution from 100 pm to 1 mm and an 
average particle density of 2000-2600 kg m-3), 2 are 
transported vertically by a gas through a combustion 
chamber. The solids are captured at the exit by a 
separator (usually a cyclone) and reintroduced near the 
bottom of the combustion chamber, whereas the gas 
leaves the cyclone through an outlet duct and the 
convective pass, as shown in Fig. 1. The recirculation 
part of the boiler, also called the return loop, is composed 
of the cyclone, a return leg, a particle seal and sometimes 
a heat exchanger. The fluidizing gas is introduced at the 
bottom of the combustion chamber through nozzles (or a 
gas distributor plate) and secondary air can be injected at 
different heights. Fuel is fed to the bottom part of the 
combustion chamber through a fuel chute. The flow 
pattern of the bed material (fuel, ash, sand and possibly 
limestone) is characterized by a vertical distribution of 
the particle concentration. This vertical distribution 
consists of three interacting zones: (1) a bottom bed 
with constant time-averaged solid concentration, (2) a 
splash zone with an exponential decay of particle 
concentration in height, and (3) a transport zone, also 
with an exponential decay, but with a lower decay value 

than in the splash zone. The set of equations presented in 
this work is valid for isothermal flows; the small 
temperature gradient observed in the combustion 
chamber of a CFBC (850 __- 200(2 under normal 
operating conditions), except near the walls, makes this 
approach a suitable one, and useful results can be 
obtained from simulations. 3"4 

In the derivation of the differential equations describ- 
ing the particle phase (the discrete phase), two formu- 
lations are possible: the Lagrangian formulation or the 
Eulerian formulation. The Lagrangian formulation gives 
an accurate description of the motion of a single particle 
(rotation of the particle, collision with another particle 
and so on), but the major difficulty is to describe how the 
particle sees the gas turbulent field along its trajectory 
and to accurately predict the forces applied to a particle 
in a suspension. In addition, the number of particles 
which can be employed in a numerical computation is 
limited by the available computer capacity. Conse- 
quently, most Lagrangian simulations have been carried 
out in small scale, experimental units. Some recent 
advances in Lagrangian simulations are due to, for 
example, Kawaguchi et al. 5 and Hoomans et al., 6 who 
simulated a single rising bubble in a two-dimensional 
fluidized bed, and Yonemura et al., 7 who studied 
numerically the effects of the physical properties of 
particles on the structure of particle clusters. In the 
present work, the EuleriardEulerian formulation is 
chosen, which means that both phases are described by 
a Eulerian formulation. In the Eulerian formulation, the 
statistical treatment necessary to produce two inter- 
penetrating continua introduces interfacial terms, stress 
tensors and turbulent correlations that must be modeled. 
Models for the stress tensors and the turbulent correla- 
tions are given in this paper, whose aim is to review these 
models and discuss their application to the field of 
fluidization. 

1.1. Fundamental Equations and Scope of  This Study 

A detailed derivation of the Eulerian/Eulerian for- 
mulation can be found, for example, in Enwald et al. s 
The main points of this derivation are repeated here as a 
reminder. A general averaging operator, < >, satisfying 
the Reynolds axioms, is applied to the local instanta- 
neous continuity and momentum equations. These 
equations are treated beforehand with the phase indicator 
function, Xk(x,0 (equal to 1 if phase k is present and 
0 otherwise). In order to separate the average of products 
into products of averaged values, weighted averaged 
values are introduced: the phasic average, 
< f  >xk = < Xd" > / < Xk>, and the Favre average, 
< f >xkp~ = < X k p J  > / < Xkpk>. The average of the 

phase indicator function is denoted txk = < Xk>. A 
Reynolds decomposition on the velocity and pressure 
fields yields Uki = < uki >XkPk + Uki' ---- Uki + uki' and 
Pk = < Pk >Xk +Pk' =Pk +Pk',  where < Uki' >k = 0  
and < Pk' >k = 0. From now on, the same index < > k 
is used for all averaged quantities, where index k ---- 1 
denotes the continuous phase and index k = 2 the 
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discrete phase. The choice of the averaging operator has 
been discussed extensively in the literature. 9 It can be 
stated that, if the flow is homogeneous, the volume 
average is a suitable operator that satisfies the Reynolds 
axioms and, if the flow is stationary, the time average is a 
suitable operator that satisfies the Reynolds axioms. If 
the flow is homogeneous and stationary, all three 
operators are equivalent (ergodicity hypothesis). 

Applying the Reynolds decomposition to the local 
instantaneous equations, the averaged continuity equa- 
tion can be expressed as 

d~-(t otkPk) + ~xj OtkPkUkj) =O (1) 

and the averaged momentum equation as 

Dk OPl O~xj ctkPk -~U~i = - C~k ~X i -- Okij + cqpkMkij) 

"4- lki -'}- OtkPkgi, (2) 

where the interfacial momentum transfer, Ik, is given by 
l l i= --12i=OtEP2Uri/~12, with U~i and ~2 being the 
mean relative velocity and the particle relaxation time, 
respectively. The derivations for the inteffacial terms 
can be found in Peirano. l° The mean relative 
velocity is defined by U,i = ( U 2 i -  U[i)-  Udi, where 
Ud~ = < u~/>2 represents the correlation between the 
fluctuating velocity of the continuous phase and the 
instantaneous spatial distribution of the discrete phase. 
This term, called the drift velocity, represents the disper- 
sion of particles by the large scales of the fluctuation 
motion in the continuous phase, large with respect to 
the particle diameter. ]~ To close the system, the drift 
velocity, the stress tensors O,  0 and the second-order 
velocity moments Mko = < llkitUkj'~k in each phase 
have to be modeled. The stress tensor in the gas phase 
is modeled with the classical Newtonian strain-stress 
relation, and therefore this matter is not discussed further 
in the present work. The second-order velocity 
moment of the discrete phase is modeled by the 
kinetic theory of granular flow (Section 2). In this 
work, Grad's 13 moment method is used; the particle 
velocity probability density function is expanded in 

series using Hermite polynomials which are written in 
terms of the normal distribution function. ]2 This differs 
from the original work of Jenkins and Savage, 13 where 
the particle velocity probability density function is 
identified as the normal distribution function, a model 
which has been numerically tested for bubbling fluidized 
beds by Ding and Gidaspow. 14 In the present review, 
applications of the kinetic theory for dry (without an 
interstitial gas) granular flow applied to gas-particle 
flows (e.g. Ding and Gidaspow 14) are not considered 
(the reason for this is developed in Section 2). A 
review of such applications is given by Sinclair. ~5 The 
drift velocity is modeled using a detailed study of par- 
ticle dispersion in a turbulent flow field (Section 3). A 
binary dispersion coefficient is introduced. ~6 The 
second-order moment in the continuous phase is mod- 
eled in terms of turbulent kinetic energy, with a modified 
k-~ model which takes into account the influence of the 
particles (Section 4). 

1.2. Characteristic Time Scales 

In the formulation of the transport equations, several 
characteristic time scales are defined. These time scales 
are fundamental in the classification and the under- 
standing of the dominant mechanisms in suspensions. 
The characteristic time scale of the large eddies in the 
continuous phase is defined in accordance with the k-e 
model as "r~=C~k]/el, where C~ = 0.09 and 
kl = <Uli'Uli' >1/2 is the turbulent kinetic energy 
associated with the dissipation ¢~. The time of interaction 
between particle motion and continuous phase fluctu- 
ations is defined by 

r~2 = r~(l + C ~ r ) -  1/2, (3) 

where ~r---31Ur[212kl and C~ is a constant which 
depends on the type of flow, but also on the direction. 
This time scale is the Lagrangian integral time scale seen 
by the particles (computed along the trajectory of the 
particle). It depends mainly on the loss of correlation 
due to the mean relative movement of the particles, or 
the so-called crossing trajectories effect. 17 Practically, 
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Fig. 2. Classification of flow regimes for gas-solid flows according to Elgobashi) 9 
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this means that the time spent by a virtual fluid particle in 
an eddy is not the same as the time experienced by a solid 
particle, because of the mean relative velocity between 
the two phases. The particle relaxation time is defined by 

~2 = 4dpP2 
3Pl < CD >2 < lUrl>2 ' (4) 

where < CD > 2 is the averaged drag coefficient for a 
single particle in a suspension. It is calculated using 
< CD >2 =f(  < Re >2 ), where the mean Reynolds 

number is defined by < Re >2 = < lurl >2 dph't. The 
norm of the instantaneous relative velocity is, according 
to He and Simonin, Is approximated to < [Ur I >22 = 
U, iUri+ <UrI'Uri'>2. The particle relaxation time 
represents the entrainment of the particles by the con- 
tinuous phase. Therefore, the ratio ~ = ~2/~12 represents 
the efficiency of turbulence to entrain particles. In the 
frame of the kinetic theory, the particle-particle colli- 
sion time is 

c dp f "R"~ I/2 

where T 2 = < t~2i'u2i' >2  ]3 is the granular temperature 
and go is a distribution function to be described later, r~ 
represents the time experienced by a given particle 
between two consecutive binary collisions. 

1.3. Classification of Gas-Solid Flows 

Elgobashi 19 proposed a classification for gas-solid 
suspensions based on some of the previous characteristic 
time scales, but also on the relative distance between the 
particles, (x2-xl) /dp,  and the Kolmogorov time 
scale, rK (Fig. 2). When the suspension is very dilute, 
say ¢x2 < 10 -6, Fig. 2 shows that particles have no effect 
on the turbulent motion of the continuous phase, but their 
motion can be governed by the turbulent motion of the 
continuous phase if their inertia is sufficiently small. 
This is called "one-way coupling". When the particle 
volume fraction is increased, say up to a2 = 10-3, the 
effects of the presence of particles on the turbulent 
motion of the continuous phase can be observed. This is 
called "two-way coupling". In this region, turbulence 
can be modified in two ways: it can be enhanced or it can 
be damped. For a given volumetric fraction, turbulence 
can be enhanced when the particle relaxation time is 
increased (which means that the particle diameter is 
increased; Eq. (4)). It is commonly accepted that when 
the particle Reynolds number exceeds some critical 
value, vortex shedding occurs and enhances (or pro- 
duces) turbulent kinetic energy. 2° On the contrary, when 
the particle relaxation time is decreased, there is no 
vortex shedding and energy is dissipated due to the work 
done by the eddies to accelerate particles. Two-way 
coupling has been observed experimentally. 21 The two 
mechanisms, vortex shedding and work done by the 
eddies, are believed to be the dominant mechanisms for 
turbulence modulation is gas-solid flows. In general, for 
gas-solid flows, five mechanisms may be responsible for 

turbulence modulation. 22 These mechanisms are (1) 
dissipation of turbulent kinetic energy by the particles, 
(2) increase of the turbulent viscosity due to the presence 
of particles, (3) shedding of vortices behind the particles, 
(4) fluid moving with the particles as added fluid mass to 
the particles and (5) enhancement of the velocity 
gradient between two particles. These mechanisms 
may not be independent and, moreover, mechanisms 
(2) and (5) might be of minor importance in very dilute 
flows. When the particle volume fraction exceeds a 
certain value, say c~ 2 > 10 -3, the relative distance 
between particles is small enough so that particles 
collide. This is called "four-way coupling". In most 
fluidization applications, four-way coupling is expected 
to occur, at least in the dense regions of the bed. 

A systematic classification of gas-solid flows, which 
does not include the turbulence modulation aspect, can 
be made from the characteristic time scales. When 
Ct2 << r~2, particle motion is governed by gas phase 
turbulence, whereas when ~2 >> r~2, particle motion is 
only slightly affected by gas phase turbulence, in a 
random way. These two asymptotic behaviors are called 
the scalar limit case and the coarse particle case, 
respectively. When r~<<Cl2, particle motion is 
governed by particle collision mechanisms, whereas 
when Ct2 << r~ particle motion is governed by gas phase 
turbulence, so that the interstitial gas influences the mean 
free path. These two asymptotic behaviors are called 
dense and dilute suspensions, respectively. When the 
mean relative velocity is zero, it can be shown that 
r ~ 2 ~  (non-settling particles), whereas when there is a 
mean relative velocity r~2 < r~ (settling particles). 

A third alternative for the classification of gas-solid 
flows is given by Koch. 23 This classification is limited to 
dilute suspensions with particles having small Reynolds 
numbers, Re << 1, and a large Stokes number, St >> 1. If 
St>>c~2 3/2, very massive particles, the collisional 
mechanism is dominant. If a2-- 3/4 << St << c~; 3/2, mod- 
erately massive particles, the fluid-particle interaction 
mechanism is dominant and is similar to the one 
observed in fixed beds, so that the particle velocity 
does not change significantly during a fluid-dynamic 
interaction. If 1 << St << c~ -3/4, slightly massive par- 
ticles, the fluid-particle interactions are dominant but 
are no longer similar to the fixed bed case. 

Finally, it should be noted that other scales can be of 
importance, for example the integral Eulerian length 
scale, L~ = C~k31/21~ I. This dependency is illustrated by 
Gore and Crowe, 21 who classify two-way coupling as a 
function of the ratio of the particle diameter to the 
integral Eulerian length scale. Below a certain value of 
dplL~, 0.1 according to Gore and Crowe, turbulence is 
attenuated, whereas above this value turbulence is 
enhanced. 

2. KINETIC THEORY OF GRANULAR FLOW 

The kinetic theory of granular flow is based on the 
similarities between the flow of a granular material, a 
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population of particles with or without an interstitial gas, 
and the molecules of a gas. This treatment uses classical 
results from the kinetic theory of gases 24 in order to 
predict the form of the transport equations, mass, 
momentum and energy, and the corresponding specific 
quantities, the mean flux of momentum and energy and 
the mean rate of energy dissipation, for a granular 
material. One of the most complete works in the field of 
the kinetic theory of granular flow is due to Jenkins and 
Richman. 12 Their results are derived from the classical 
results of the kinetic theory of dense gases, 24 in 
combination with Grad's theory. 25 In this review, the 
method of Grad is preferred to that of Chapman-Enskog, 
which has been used by Lun et al. 26 to derive equations 
similar to the ones proposed by Jenkins and Richman. As 
a matter of fact, it will be shown in the following that the 
method of Grad gives direct access to the moments, 
whereas in the method of Chapman-Enskog integration 
has to be performed when the probability density 
function is known. The contribution of Jenkins and 
Richman 12 is a linear theory (perturbation analysis) 
which gives analytical solutions for mean flux of 
momentum and energy and for the mean dissipation 
rate, but it also gives an expression for the particle 
velocity probability density function. The complete 
derivation of the results of Jenkins and Richman 12 
requires a great many intermediary results (Section 2 .1-  
2.6) before the final formulation (Section 2.7). We begin 
with the Maxwell-Boltzmann equation. 

2.1. Maxwel l -Bol t zmann Equation 

The probability of finding a sphere at a position x with 
a velocity c in the volume element dx and in the element 
of volume in the velocity space dc isfl(x,e,t)dxde, where 
fl(x,c,t) is the particle velocity probability density 
function. Considering a population of identical, 
smooth, rigid spheres, a conservation equation for the 
number of spheres in a volume element can be 
formulated in terms offl(x,c,t)  a s  24 

O F I Of I , 
Of;f_ ~xi(Cfi) + ~ c / ( f ) =  "-~-c (6) 

where F~ is the external force per unit of mass acting on a 
sphere and OfllOtl c is the rate of change of the distribution 
function due to particle collisions. According to Simo- 
nin, 27 F~ can be written as 

1 1 0/5 l 
Fi = - -  - - c i ) -  (7) e,2(u,, 

The number of particles per unit volume is defined by 

n = J f i  (x, c, t)dc (8) 

and the averaged value of a given function ¢,(c) by 

< +(e)>2 = l/lk(e~l(x,e,t)de. (9) 
n- '  

The mean velocity of the discrete phase, U2/, is defined 

by Eq. (9) with ~b(c) = ci. The peculiar velocity or fluc- 
tuation velocity is introduced, C i = U 2 i - c i. Multiplying 
Eq. (6) by ~b(c) and integrating over the whole velocity 
domain gives a transport equation for < ~b(c) > 2, as 
proposed by Chapman and Cowling. 24 The transport 
equation for the mean quantity, < ~b(c)>2, is 

o 
(n < ~ >2 ) + ~ ( n  < ~c~ >2 ) 

(10) 

where the collisional rate of change (per unit volume) for 
~b, C(~), is given by 

C(~b) = ~ b  0f-~ cdC. (11) 

In Eq. (10), the time and space derivatives of ~b are not 
eliminated, because in this equation ~b can be a function 
of time and space, ~b(x,t). However, it is more convenient 
to rewrite Eq. (10) using the fluctuating velocity as the 
independent variable: f l  (x,c,t) is changed tofl(x,C,t).  In 
this case, ~b is a function of the fluctuating velocity, ~b(C). 
The Maxwell-Boltzmann equation, Eq. (6), can be 
rewritten using the chain rule on the derivative operators, 
O/Ot=OlOt-(OU2i/Ot)O/OC~ for the time derivative, 
OlOxi = O/Oxi - (OU2/Oxi)O/OCj for the space derivative 
and O/Oci = O/OC~ for the velocity derivative. With the 
same averaging procedure as for Eq. (10), the Enskog 
equation can be written (Ref. 24, Section 3.12). This 
equation reads 

D2 < ~ b >  2 + <n~b>2 OU2i 0 
--~n ~ + -~ixi (n < dgCi >2 ) 

0~ , l/D2U2i/ O~\ (F i_~ i i l2 . k_OU2j /  OliJ\ \ 
o---Ti/:- 

= c(7,). (12) 

In this expression, terms involving a space or time deri- 
vative of ~b are equal to zero. We now express the colli- 
sional rate of change of ~b in a more useful form. 

2.2. Collisional Rate o f  Change 

The collisional rate of change of ~b per unit volume is 
the integral, over all possible binary collisions, of the 
change of ~b due to a binary collision multiplied by the 
probability of such a collision. In order to evaluate 
the probability per unit of time of a binary collision, the 
pair distribution function f2 is introduced, where 
f2(xl,x2,cl,e2) dxl dx2 del de2 is the probability of 
finding a pair of particles 1 and 2 centered at Xl, x2 
with a velocity c l, e2 in the volume element dx j, dx2 and 
the velocity range dci, dc2, respectively. A particle 1 
(x~,c0 collides with a particle 2 (x,e2) if the center of 
particle 1 is located in an elementary cylinder of volume 
dp2(g.k) dk dt (at this point of the derivation, x is used for 
a reason of expediency in order not to repeat indices with 
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derivatives). The relative velocity is g = c I - -  C2, the unit 
vector k is defined by dpk = x - Xl with g.k > 0 (this 
condition means that collision is possible). The number 
of probable binary collisions per unit of time between 
two such particles is given by Chapman and Cowling 24 
(Sections 3.4, 3.5 and 16.2) as 

f Z ( x - d p k ,  X, Cl,C2,t)d2(g.k) dk dxdel  dc 2. (13) 

Therefore, the collisional rate of change for a property 
62, of particle 2, which is changed into 62' after col- 
lision, can be written 

C(6 ) = fg.k>0(62 ' -- 62)f2(x -- dpk, x, e 1, c2, t)d2(g.k) 

X dk dct de2. (14) 

Due to the symmetry of a collision, the problem can be 
reformulated for a particle 2 (x2,e2), which will collide 
with a particle 1 (x,c0. Changing k in - k, the col- 
lisional rate of change for a property 61, of particle 1, 
which is changed into 61' after collision can be written 
as 

C(6) = ~g.k>0(61 ' -- 61)f 2 (X, X + dpk, el, c2, t)d~(g.k) 

× dk dcl de2. (15) 

According to Jenkins and Richman, 12 a more symmetric 
expression of C(6) is written as half the sum of Eqs (14) 
and (15). In order to express this half sum in a more 
useful way, the following Taylor series expansion is 
used, where the velocity and time dependence are 
dropped for the sake of simplicity: 

f2(x -- dpk, x) =if (x ,  x + dpk) 

_ dpki o_~i ( l _ d p 0 ) 
× f2(x,x +dpk). (16) 

Inserting Eq. (16) in Eq. (15), Jenkins and Richman 12 
rewrite the collisional rate of change as 

oxi i i ~-ff/ • (17) 

In the derivation of this expression, several transforma- 
tions are made. The chain rule is applied and the integral 
operator and the derivative operator in Eq. (16) are com- 
muted. The latter manipulation is valid because the 
Taylor series expansion is written for a fixed point in 
space, which allows the commutation of both operators. 
The fluctuating velocity is then introduced to obtain the 
third term in Eq. (17). The source term, X(6), is defined 
by 

X(6) = I ~g.k>0 A6f2(xI '  X2' e l '  e2' t)d2(g'k)dk de I de2, 

(18) 

where x2 - x t = dpk and A6 = (62' + 61 ') - (62 + 6 1 ) "  

The flux term, 0i(6), is defined by 

_alp 61)k,(1 dp 0 0,(6)= T ~,k>o (61'-- . - ~,kj~+...) 

× f2(xl ,x2,ct ,c2,  t)d~(g'k)dkdcl dcv (19) 

The flux term, 0/(6), represents the transfer of 6 during 
collision, whereas the source term, X(6), represents the 
loss of 6 caused by inelastic collisions. To calculate the 
integrals defining the source term and the flux term, 
appropriate expressions for the pair distribution func- 
tions, A6 and 6 1 ' - 6 1 ,  have to be found. We begin 
with A6 and 61' - 61- 

2.3. Binary Collisions 

Let us consider an inelastic collision between two 
smooth identical spherical particles 1 and 2, of mass m 
and diameter dp. If J is the impulse of the force exerted 
by particle 1 on particle 2, the momentum conservation 
over a collision gives 

mel =mcl '  - J ,  mc2=mc2' +J ,  (20) 

where e l ' ,  c2' are the velocities of the particles after 
collision and Cl, e2 those before collision. It is stated 
that the relative velocity component normal to the 
plane of contact, g.k (before collision) and g' .k (after 
collision), satisfies 

g' .k = - e(g.k), (21) 

where the relative velocity after collision is defined by 
g ' = c l ' - c 2 '  and e is the restitution coefficient. The 
restitution coefficient varies form zero to one: if it is equal 
to one, the collision is elastic, which means that there is no 
energy loss during collision, otherwise the collision is inelas- 
tic, which means that there is energy dissipation during col- 
lision. With Eqs (20) and (21), the impulse of the force 
exerted by particle 1 on particle 2 is given by 

I 
Ji = ~m(1 + e)(gjkj)k i. (22) 

Expressions for the change in the velocity moments can 
now be derived from Eqs (20)-(22). The change in the 
first, second and third velocity moments of particle 1 are 
defined by 8(Cli) = Cli' - Cli, ¢~(CliClj) = C l / C l j '  - CliClj 
and ~(¢liCljClm) = Cl /  Cij' Clm' -- ¢li£1jClm, respectively. 
The change in the first moment is of course 6(eli) = -Ji 
(Eq. (20)) and the change in the second and third moments 
is, where the index 1 is dropped for the sake of simplicity, 

¢~(CiCj) = 12-(1 + e)(gmkm) 

× (12-( l + e)(gmkm)kikj - (c/ki + cikj) ) , 

6(CiCjCm) = -- 12--(1 + e)(gnkn) 

[k(ic/Cm) - 12-(1 + e)(gnkn)k(ikjcm) × 

- 12-(1 + e)2(gnkn)2kik/k,n]. (23) 
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The notation with parentheses as an index stands for the 
sum of all possible permutations, k~icjCm) = 
kicjcm + kjcmCi + k,,cicj. Similar expressions can be 
derived for the change in the velocity moments of parti- 
cle 2. The total change in the first, second and third 
moments are defined by A(ci) = 6(cli) + 6(c2i), 
A(CiCj) = 6(CliClj ) Jr ~(C2iC2j ) and A(CliCljClp ) = 
~(CliCljClp ) -~- ~(C2iC2jC2p), respectively. The total 
change in the first, second and third moments is 
expressed by 

A(Ci) = O, 

A(cjcj) = ~(1 + e)(gmkm)((1 + e)(gmkm)kikj 

- (gik i -1- gikj)), 

A(cicjcp) = Q(iA(cjcp)), (24) 

r 1 whe e Qi=~(Cli-k-c2i). These expressions are also 
valid for the fluctuating velocities. A~b and 6¢, have 
been expressed in terms of the velocity parameters 
before collision and the restitution coefficient. 

2.4. Pair Distribution Function 

In the kinetic theory of dilute gases, molecular chaos 
can be assumed and the velocities of two colliding 
particles are uncorrelated. The pair distribution function 
f2(xl,x2,cl,c2,t) can then be expressed simply as the 
product of the two particle velocity probability density 
functions f l (x l ,  el, t) and fl(x2, e2, t). In the case of a 
very dilute suspension, this hypothesis can be applied if 
the particle inertia is high enough so that the particle is 
not transported by the velocity fluctuations of the 
continuous phase. In dense suspensions, the velocities 
of two colliding particles are correlated and the pair 
distribution function can be expressed, according to 
Chapman and Cowling 24 (Chap. 16), by 

1 
f2 (X l, X2 ' el, e2, t) = go (x)fi (X -- 2-dp k, el,  t) 

1 
X f l  (X + 2-dpk, e2, t), (25) 

where the radial distribution function, g0(x) >- 1, repre- 
sents the increase of the binary collision probability 
when the suspension becomes denser. The position of 
the point of collision, x, is now defined by x] + x2 = 
2x. An empirical expression for g0(x) is discussed in 
Section 2.9. 

2.5. Transport Equations 

density function. The transport equation for the moment 
of order p, M2ij...p = < CiCj...Cp > 2, can be obtained 
from Eq. (10) in combination with Eq. (17) with ~b = 
CiCj...Cp. In this case, the time and space derivatives of 
~b in (10) must be kept because the mean velocity is a 
function of time and space, U2i(x,t), and therefore the 
fluctuating velocity is a function of x,c,t. Noticing that 
t~o2 =nm,  the general transport equation has the final 
form 

0 
~('~2p2 < ¢ >2 ) + ~(c~2p2 <¢c i  >2 ) 

_ 00i(m¢')-  O--~i(mO~b'~ 
C)X i OX i ~ OCj/l 

a¢ 0¢ 

+ x(mff). (26) 

The transport equations for the different moments can 
also be obtained from Eq. (12) in combination with 
Eq. (17). In this case, the independent variable is the 
fluctuating velocity, and therefore all time and space 
derivatives of ~b are equal to zero. This form is 
more convenient than Eq. (26), especially for the 
moments of order 2 and higher, because all terms 
appear naturally. This general transport equation has 
the final form 

D2 OU2i 
~ 2 P 2  < ¢ >2 Jr o~2p 2 < ~ >2 aX'---~- 

a _  
+ =-(~2p2 < ~c~ >2 ) =  - =-O,(m¢) 

dX i 

a2p2 \ - - ~ - \  \ oci/2/ 

i)xi (° t2P2(Ci-~j l2"{-Oi(m~cj) )  +X(m~b)" 

(27) 

In the following sections, the source term of the colli- 
sionat rate of change is written, x(mCiCj.. .C.)= XO..,, 
and the flux term of the coilisional rate of change is 
denoted, Op(mCiCj . . .Cn)  = Oij...np. 

2.5.1. Continuity equation 

The continuity equation is obtained from Eq. (26) with 
~b=l ,  

O 0 
~(~2P2) + ~x~xj(O~2P2 U2j) = O. (28) 

The pair distribution function has now been expressed 
in terms of the particle velocity probability density 
function. To proceed, an expression for the particle 
velocity probability density function has to be found. Let 
us leave this problem for a moment and formulate the 
transport equations, and show that the second- and third- 
order moment (velocity moment) equations can be used 
to find an expression for the particle velocity probability 

2.5.2. Momentum equation 

The momentum equation is obtained from Eq. (27) 
with ~b = Ci, 

~2P2 ~tt U2iU = -- ~2 ~ -- ---""Y-2/j -- G/2P2 Uri "Jr Ol2P2gi, 
aPl a 

~x i - 

(29) 
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where )-~z/j = Oij + ot2P2M2ij is the effective stress tensor 
and Xi = 0 (see Eqs (18) and (24)). The second term on 
the right-hand-side (RHS) represents the transport of 
momentum by velocity fluctuations and by collisions, 
whereas the remaining terms on the RHS represent the 
influence of the forces acting on the particles. Pressure 
fluctuations have been neglected, which is a correct 
assumption for gas-solid flows according to Bel Fdhila 
and Simonin. 2s 

2.5.3. Second-order moment equation 

The transport equation for the moment of order 2 is 
obtained from Eq. (27) using ¢ = CiCj and neglecting 
the pressure fluctuations as done for the momentum 
equation. The equation for the second-order moment is 

02 0 ]~2im OU2j -- ~2jm OU2i 
Ot2P2 -~tM2ij = -- ~xmEijm - Ox m Ox m 

2c~2P2"'" M " ' tNl2ij -- 12/j) -I- Xij, (30) 

where Eij m = Oum + t~2P2M2ijm. The third-order moment 
is defined by M2#m = < CiCjCm>2 and the fluid-particle 
velocity correlation tensor is given by 2M12ij= 
< u"~c~Cjg> 2, where u " ~ = ~ i  - < Uli>2 represents 

the fluctuating velocity of the continuous phase seen 
by the particle phase. The first term on the RHS rep- 
resents the transport of stress by velocity fluctuations 
and collisions. The second and third terms represent 
the production of stress by the mean velocity gradient. 
The fourth term represents the interaction with the 
continuous phase (a production or a destruction term). 
The last term represents the interactions due to 
collisions. The fourth term, lI2~j, can be split into 

D two terms, I-hij = I'12Dy + I-hPo .. The first term, l-ho = 
-2tXzp2M2ijl~2, represents the dissipation due to the 

p 
drag force, and the second term, I-[2O = 2c~2p2MI2ijl~2, 
production due to the interaction with turbulence. 

2.5.4. Energy equation 

The transport equation for the granular temperature T: 
is obtained from Eq. (30) by summing up the diagonal 
terms, i = j ,  and changing indices, or from Eq. (27) with 
~ /=CmC m 

D2 0 E  i - ~  0U2m 3a:p~ ~T2 = - 0 x i  ~ - zz,2im 7xi 

2°t2P2"~T M " ' 

~12 't-~ 2-- 12mm)-t-Xmm. (31) 

A transport equation for the turbulent kinetic energy of 
the discrete phase, k2, can also be written with 2k2 = 3T2. 
The first term on the RHS represents the transport of 
energy by velocity fluctuations and collisions. The sec- 
ond term represents the production of energy by the 
mean velocity gradient. The third term represents the 
interaction with the continuous phase (a production or 
a destruction term). The last term represents the loss of 
energy due to collisions. 

2.5.5. Third-order moment equation 

The transport equation for the moment of order 3 is 
obtained from Eq. (27) using ~b = CiCjCm and neglecting 
the pressure fluctuations, 

D2 O_O..Ei.m n - Eimn OU2J - E,m,~ OU2i 
Ot2P2 -'~tM2ijm ~-- ~ C~Xn ~J 19Xn J tgXn 

- E~ ~ + M2~j ~---r~z~ 
0 n Oxn 

-~" M2im o-~n~2jn -I" M2jm ~-~n~2in 

3°t2P2t~Ar 
- ~2 ~'"20m - Ml2ijm) + Xijm, (32) 

where Eijmn = Oiimn + Ol2P2M2ijran and where the fourth- 
order moment is defined by M2ijmn = < CiCjCmCn>2. 
The fluid-particle velocity correlation tensor is defined 
by 3Mi2ij m = < u"l(iCjCm)> 2. The first term on the RHS 
represents the transport of the third-order moment by 
velocity fluctuations and collisions. The six following 
terms on the RHS represent the production by mean 
velocity gradients and by second-order moment gradi- 
ents, respectively. The two remaining terms on the RHS 
represent the interactions with the continuous phase and 
the interactions due to collisions, respectively. 

2.6. Grad' s Theory 

The transport equations have been written up to the 
third-order moment. We use these equations with a third- 
order approximation of the particle velocity probability 
density function to express a closed set of equations. 
Following the idea of Enskog, Chapman and Cowling 24 
(Section 7.1), Grad 25 wrote the particle velocity prob- 
ability density function as a series of Hermite poly- 
nomials,/~/~)(c), as 

ao 

f l(x,C,t)=fO(x,c, t)n~= 0 I n  n n--a.~ i (x, t)H~ (c), (33) 

where the tensors aT(x, t) are symmetric in all of their 
indices and where the Hermite polynomials can be 
expressed in terms of J°(x,e,t), the Maxwellian distribu- 
tion function, 

n 
f°(x, c, t) = (21rT2)3/2exp( - C2/2T2). (34) 

Here, C 2 = (ci - U2i) 2 and the granular temperature, Tz, 
have been used in analogy with the kinetic theory of 
gases. In the frame of the kinetic theory of gases, the 
Maxwellian distribution function is the solution to the 
Maxwell-Boltzmann equation under the following 
assumptions: a gas at uniform steady state, whose 
spherical molecules possess only energy of translational 
motion and are subject to no external forces. This is 
called the Maxwellian state. Equation (34) simply 
means that for a uniform gas in which density, mean 
velocity and temperature are assigned, there is only 
one possible mode of distribution of the molecular vel- 
ocities (Ref. 24, Section 4.1). Grad proposed to make a 
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third-order approximation in Eq. (33), which is a reason- 
able assumption if the flow is not varying too quickly 
(this assumption is not valid, for instance, in strong 
shock waves). The particle velocity probability density 
function can then be written 

i '  =f,(,,O+ai,_,: +1 , ~..aijH~j + 3. ) (35/ 

where the Hermite polynomials are defined in terms of 
the derivatives of the Maxwellian distribution function, 

3 1 32 
f l  = 1 -- ai ~ci + ~ l i  j 3¢i~Cj 

1 33 "~.o 

(36) 

and 

H ° = l ,  

n]  ~- j ~  ~C i = -- CelT2, 

1- 
,J - f o  a c i %  = - ~JT2 + G C / T  2, 

3 1 033f 
H~m = fo  aciOcjac,. 

= (ci~j., + cj~im + c.,*i~)/r22 - c i c j c , . n  "3. (37) 

With Eqs (9) and (36), the velocity moments and the 
coefficients of the series expansion, ai, aij, aij,., can be 
related. For the velocity moment of order 0 (Eq. (8)), no 
constraint is put on Grad's approximation, whereas for 
the velocity moment of order 1, we find of course that 
a i = 0. Furthermore, it can be shown 12 that the second- 
order velocity moment is defined by 

M2q = t~qT2 + aij ~ aii = 0, (38) 

the third-order velocity moment by 

M2ijm = aij,., (39) 

and the fourth-order velocity moment by 

M2ijra n = 3 T22dt(~/5,n.) + 6T2a(/Smn> (40) 

In theory, with a third-order truncation, the 20 unknown 
variables ot 2, U2i, T2, aij, aijm are determined by 20 dis- 
tinct transport equations: the continuity, momentum, 
granular temperature equations and the second- and 
third-moment equations. Grad proposes to simplify this 
system of 20 unknown variables to 13 unknown vari- 
ables by making a contraction on the third-order tensor: 

1 
aij m = 5~ainn~jm + ajnnt~in + amnnt~ij) + BU m with fli)m = O. 

(41) 

This decomposition is similar to that of a second-order 
tensor in a deviatoric and an isotropic part. This gives a 
physical meaning to the coefficients a 0 and aq,,. The first 
one is the deviatoric part of the fluctuation stress tensor 

(see Eq. (38)) and the second is the transport part of the 
energy flux vector (see Eqs (31) and (39)). The particle 
velocity probability distribution function can then be 
written as 

f ' =  ( 1 +  aij aim,n(C2_5"~C. '~¢o 
-~2CiCj + 10T2 ~ T2 j , j ~ .  (42) 

The system of 13 unknowns can be solved with the 
continuity equation (Eq. (28)), the momentum equation 
(Eq. (29)), the energy equation (Eq. (31)) and a transport 
equation for aij and for aimm. The transport equation for 
aij is written using Eqs (30), (31), (38), (39) and (411. 
This yields 

0 
0~2P2 -D~al i j + ~xm(Oijrn - -  Onnmt~ij/3) 

+ 3".m Oxm 'q 

1 3 
+ ~(_~xj(Ot2P2aimm)+ 0 ~Xi( °t2P2ajmm) 

~L'2(ot2o2anmm)3q) +20t2P2T2~S2ij 

2°t202.(a.. _ (MI2/j -- Ml2rarnt~q/3) ) 
7x112 ~ q 

= Xij + XmmtSij [3, (43) 

where ~,ij = Oij + e~2P2aij and where S2ij = S2ij - 
S2mmtq/3 is the deviatoric part of the strain rate tensor 
S2q, which is defined by 2S2ij = U2i,j + U2j, i. The trans- 
port equation for ai,,m is written using Eqs (32), (38)- 
(41). This yields 

~aimm 03 2 O + 5 ~xi(tx2o2T~ ) + 7 -~jxj(Ot202T2aij) 0~202 

--Co . . . .  (5r2~,j + ~,j) a 
+ 3X n tJfll ~X m 

1 
× (a202T2~jm + Xjm) + ~a2P2 

[ ,  OU2i . ~ 3U2j . ~ 3U2j'X 
X t l a jmmW-~- la jmm-~Xi - -b  Zaimm~xj ) 

+ 20ijm 3U2J + 20~m 3U2i 3~202 
3X m OX m 7~112 

X (M22ij j - Mt2ijj) = Xijj. (44) 

These equations are identical to the ones proposed by 
Jenkins and Richman, t2 except for the coupling terms 
which represent, in both equations, the interactions 
between the continuous and discrete phases (see 
Eqs (30) and (32)). Let us find expressions for aq and 
aij m, and before this, expressions for the source and flux 
terms in the collisional rate of change. 

2.7. Linear Theory (Jenkins and Richman) 

Consider a population of spheres in the Maxwellian 
state, f t  =fo,  with ~x2 = ao, U2 = Uo and T 2 = To. A 



270 E. Peirano and B. Leckner 

perturbation analysis is carded out in the vicinity of the 
Maxwellian state with small perturbations (linear 
domain), f~ = f ° ( l  +e),Oo~21#xi~e, OU2ilcgxj~e and 
OT2/0xi~e, where e is small. The particle velocity 
probability density function is expanded in Taylor series 
as 

f l  ( x -  ~-~k,c,t) =fl(x,c, t)-  ~-~ki ~-~fl(x,c,t)-F... 

(45) 

In the rest of the analysis, fl(x,c~,t) is denoted f: 
and fl(X,Cz,t) is denoted f~. Equations (25) and (45) 
can be combined using a first-order approximation 
to yield 

1 0 1 l f2(x,,x2,c,,c2,t)=go(x)f~f~ (l  + 2-dpki~-~xln(f21f, ) ) • 

(46) 
As mentioned by Jenkins and Richman, ~ this order of 
approximation (first-order truncation) is justified in the 
frame of the perturbation analysis, when the spatial gradients 
of the mean fields are small. This approximation should be 
remembered as it is a limiting one. Using Eq. (18), x0k) 
can now be written, with the differential part 
d2(g.k)dkdc~de~ denoted as dX for reasons of expediency, 

l (l+~.ki~__~iln(fl/fl))dX ' X(~b) = :g0(x) fg.k>0 A~f/f~ 
(47) 

and with Eq. (19), 0,~k) becomes 

_d~ 
0i(~k) = Tgo(x) f,.k>o [)/q' - ¢,,)k.f:f~ 

dp 0 I 1 X(lq--~kJ~x)n(f:~/fl))dX. (48) 

These two integrals can now he written in their final form 
using Grad's third-order approximation (see Eq. (36)). In 
Eq. (36), the derivative terms, (gf°lOceiOCa/...Sc.~, are 
denoted f~...p for the sake of simplicity. The product 
f~f~ is given by 

1 :~:~ = ~  + ~. , ~  +~,~) 

-- ~a~ ijm ~l ff2ijm "~t" ffl, ijm~2 )" (49) 

To obtain Eq. (49), the non-linear terms have been 
neglected (non-linear in aii and ai/m). Furthermore, if 
the terms aJT2 and aijm/T~/2 are small (low level of 
anisotropy) and have the same order of magnitude, 
which means that only flows whose state is close to the 
uniform steady state are considered, the following 
approximation can be made: ln(f~/f~)'~ln(t~2/ff). 
Using Eqs (47) and (49), Jenkins and Richman 12 pro- 
posed writing the following expressions for the source 
term of the collisional rate of change: 

X(ff) = e(J/) q- F(~) -t- aijFij(~k) -I- aiymFijm(~/), (50) 

where E(~k), F(ff), Fij{~k) and Fijm(~k) are given by the 

following integrals: 

1 e(~) = :go(x) fz.k>o ~X~dX,  (51) 

dp 
F(~b)= ~-go(X) fs.k>0 A~fff~2kia~/ln(/ff2/ff)dX' (52) 

~sk>0 ~ , J + ~ ) ~ "  (53) 1 F0(~) = ~so(X) 

F/j.(~) ~..~. -- 1-~go(X ) fs.k>O A~lff2,ijm "~-ffl,ij~2) dx .  

(54) 

In Eq. (50), some terms have been neglected. These 
terms are the products o f  a 0 and aij,, with integrals 
similar to Eq. (52). One of these terms is 

dp f k>0 A~b(~lff2"ij-l-ffl'r~2)km -0 ln(/ff2/ffl)dX" aijTgo(X) g. , , ox m 
(55) 

In order to understand when this approximation is valid, 
let us define the following dimensionless quantities: Uo, 
Lo and To, which are characteristic values of velocity, 
length and granular temperature. If integral (52) is an 
order of magnitude less than integral (51), then integral 
(55) will be a term of second order. The previous 
assumption is true if the ratio dr]Lo is small and the 
ratio V~--0/Uo, the non-dimensionalized spatial gradients 
of the granular temperature and the mean velocity are all 
of the order of unity. 

Applying a similar reasoning and with Eqs (48) and 
(49), Jenkins and Richman 12 propose for the flux term of 
the collisional rate of change: 

Oi(~k ) =Ai(~b ) + Bi(~b ) + ajmBjm(~b ) + ajmnBijmn(~b), (56) 

where Ai(~b), B~.(~b), Bjs(~b) and Bij,,~(~b) are given by the 
following expressions: 

A,(¢) = -  ~go(X)f,k>o ~bffldkidX' (57) 

Bi(~b) = - ~-go(x) f g.k>O S~/~13~2 kikj o-~/In(f~2 /ff)dX, 
(58) 

dp 
BU.(~) = - Tg0(x) ~..~>o ~k,~j. +~j~)dX, 

(59) 

--  go(X) j',,>o 
(60) 

These integrals can be evaluated analytically by means 
of known integrals and the corresponding expression in 
Eqs (23) and (24)) 2 By definition, the source term in the 
momentum equation is equal to zero, Xi = 0 (Eqs (24) 
and (47)). The source term in the second-order moment 
equation is 

Xij = - 7ot202go( 1 - eZ) T2~ij -p 
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24 2 
a2P2g0(1 + e)(3 - e)V-~ai  j 

~t~p2g0( + e ) (2 (e -  2)$2U 1 

+ (e - ll3)S2mmtSij)T2. (61) 

The source term in the third-order moment equation is 

Xijm = ~x22p2go( 1 + e)(13 - 9e)T2T2(,irjm ) 

/'2 + ~---~pct202go(l + e ) ( 3 3 e - 4 9 ) ~ i j m  . (62) 

The source term in the granular temperature equation is 

12 2 
Xmm : -- ~-"~2P2go -p 

× (1 - e2)~/~T2 + 3u22#2go(1 - e2)T2S2mm. (63) 

The flux term in the momentum equation is 

4 2  
O/j = 2ot2p2go(1 + e)T2tSij - ~ct2P2dpgo(1 + e) 

X (2S2ij+S2mm6ij)+ ~2¢202g0(1 +e)aij. (64) 

The flux in the second-order moment equation is 

1 2 
Oij m ~- ~:~2P2go(1 a t- e )( 4aij m + ainnrjm -'1- ajnnrim) 

4 2 IT2 "~112 
-- ~-o/2P2dpgo(l -t- e )~  "~") T2ci~jm). (65) 

The flux in the granular temperature equation is 

Oijj "~- ~Ot2,02go(l-'l-e)aij j - 4ot202dpgo( l -k- e ) V ~ 2 T 2 , i .  

(66) 

2.8. Determination of the Moments 

The moments aq and aqj are fully determined by a 
numerical solution of the set of non-linear equations 
given by Eqs (43) and (44), or Eqs (30) and (32). 
However, simplified forms of a~: and a0j can be obtained 
employing the assumptions already made and a term-by- 
term order of magnitude analysis, 12 and also other 
closure assumptions to simplify the coupling terms (see 
Eqs (43) and (44)). The derivation begins by defining 
some additional dimensionless quantities, P0, a2 and a3, 
which are typical values for P2, a~j and ai2/. A preliminary 
remark is that the time derivatives in Eqs (43) and (44) 
can be neglected if dpUo/Lx/~ is small. 12 This is 
consistent with the previous assumptions. Let us rewrite 
Eqs (43) and (44) in a dimensionless form as multiples of 
dpUo/Lv/~, a2/To, a3/Tov ~ and dplL. These terms 
are all small. If it can be assumed that they have the same 
order of magnitude, only terms which are linear in these 
quantities will be kept (first-order approximation). 

2.8.1. Determination of a O 

The present determination of aij is different from the 
original work of Jenkins and Richman, because of the 
coupling term which appears in Eq. (43), 

2~2P2, (Ml2ij - Ml2mm~ij/3)). (67) 
~--22 (aij -- 

The second-order moment is written using a Boussinesq 
approximation 27 as 

- M2q = 2v~S2q - 1"2,50 ~ a 0 = - 2v~S2ij. (68) 

The turbulent viscosity is denoted v~. The Boussinesq 
hypothesis is valid when r~,13U2i/dxjl<< 1, which 
means that the stresses react rapidly to a change in the 
mean flow. 29 In a similar way, the fluid-particle velocity 
correlation tensor is expressed with a Boussinesq 
approximation consistent with the limit tracer case 27 as 

t ^ 1 
-- Ml2ij = Pl2SlEij - ~kl2~/j , (69) 

where Sl2ij = Sl21j- S12,~60/3 is the deviatoric part of 
the strain rate tensor Sl2q, which is defined by 
$120 = Uli,j + U2j, i. The turbulent fluid-particle vis- 
cosity is given by v~2 =kl2r~2/3. If the assumption of 
equal mean velocity gradients in both phases can be 
made, Uli.j - -  U2i ,  j ,  the previous equation can be rewrit- 
ten as 

1 
-- Ml2ij = 2t'~2S2i j - "~k12~ij. (70) 

The coupling term (Eq. (67)) can then be written as 

20~202" +2u~2S2ij). (71) 
r~l-"-~2 taij 

With Eq. (71) in Eq. (43), in the frame of the order of 
magnitude analysis defined above, Eq. (43) reduces to 
Eq. (68), where the turbulent viscosity, v~, is given by 

f 712 k B 
~t9=~,5~12 12+T2( l+a2goA ) ~ 1 2 + ~  . (72) 

The constants A and B are defined in terms of the 
restitution coefficient, e, as A = ~ (1 + e ) (3e -  1 ) 
and B = ~ (1 + e ) ( 3 -  e). This derivation, ~ proposed by 
Bo~lle et al., 3° is very similar to that of Jenkins and 
Richman, hut two additional terms appear. The first 
term in the numerator represents the contribution of the 
fluctuating motion of the continuous phase, while the 
first term in the denominator represents the contribution 
of particle inertia to the turbulent viscosity. The latter 
parameter is important; when particle motion is con- 
trolled by the aerodynamic forces, 42 << r~, the behavior 
of the kinetic and granular stresses is significantly 
affected. 31 When there is no interstitial gas, Eq. (72) is 
identical to the results of Jenkins and Richman. With Eqs 
(64), (68) and (72), the collisional stress tensor can then 
be expressed in terms of a collisional viscosity, v~, as 

Oij = % i j  -- 2ot202z,2S2ij,c (73) . )  
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0.7 

where the collisional viscosity is given by 

4 t 
u~=-Sc t2go( l+e) (u2+dpV~2x) .  (74) 

These results can be summarized writing the definition 
of the effective stress tensor, If21/ (E,q. (29)). It can 
be written in the conventional form I;2ij = (P2 - ~2Smm) 
~iy-  2/z2S2ij, 29 where the so-called panicle pressure is 
defined by 

P2 = t~2P2(1 + 2ot2g0(1 + e))T2, (75) 

and the bulk viscosity is given by 

~2 = - ~ 2 p 2 g o ( 1  + e)~/ -~ .  (76) 

The dynamic viscosity is expressed as /~2= 

O/2P2(P~ "~- P~).  

influence of the interstitial gas can be observed in 
Eq. (79) as in Eq. (72). When there is no interstitial 
gas, Eq. (79) is identical to the results of Jenkins and 
Richman. A simple shear flow analysis in the case of 
no interstitial gas shows that the terms proportional to 
the mean concentration of solids are negligible, provided 
that the quantity 1 - e is small, i.e. nearly elastic par- 
titles. The collisional energy flux can be written in the 
form 0/~ = -20t2o21~2k2.i, where the collisional diffu- 
sion coefficient, K~2, is defined by 

6 , 4 j  /'~2'~ 
/~2=ot2go( l+e)  ~K~+ 3-%V-~- ) . (80) 

The effective energy flux vector, E~ij, can then be written 
Eijj = - 2ot202(K~ q-K~2)k2, i. 

2.9. Radial Distribution Function 

2.8.2. Determination of  ai~ 

The coupling term in Eq. (44) is defined by 

3~2p2, . . ._ M ..." (77) 

A similar analysis, as done in the previous section, can be 
applied to Eq. (44). Retaining the linear terms and 
neglecting the terms proportional to the mean concentra- 
tion of solids, Oet218x ~, the contracted third-order moment 
can be written as 

aijj = - 2K~ Ok2 - - ,  (78) 
Oxi 

where the turbulent diffusion coefficient, K~, is given by 

/3~12 9 D 

The constants C and D are given by 3 ( l + e )  2 
( 2 e -  1)/5and (1 + e)(49 - 33e)/100, respectively. The 

In the frame of the kinetic theory, the radial 
distribution function, go, accounts for the increase of 
the probability of collisions when the gas becomes 
denser (a deeper insight into the meaning of the radial 
distribution function can be found, for example, in Smith 
and Henderson32). In a rare gas, where molecular chaos 
can be assumed, go is equal to unity, whereas go tends to 
infinity when the molecules are closely packed, so that 
motion is almost impossible. For a rare uniform gas 
consisting of rigid spherical molecules, it earl be shown 
(Ref. 24, Chap. 16) that the radial distribution function is 
given by 

g0(otz) = 1 + 2.5c~ 2 + 4.59ot 2 + 7.06ot32 + 9.88~ 4 + . . .  

(81) 

Another classical expression for g0(ot2) is given by 
Carnal]an and Starling 33 for a fluid of identical hard, 
non-attracting spheres, go = (2 - ~,2)/2(1 - ~2) 3. Other 
equations for the radial distribution function (expressed 
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as a function of the volume fraction and the compress- 
ibility factor) can be found in Carnahan and Starling. 33 

However, these equations are not consistent with the 
asymptotic behavior of dense gases at extreme high 
concentration (c~2 --* O~m). An improved equation of state 
is given by Ma and Ahmadi, 34 based on the results of Ree 
and Hoover as (numerator) and a correction factor for 
highly dense cases (denominator): 

( 1 + 2.5ot 2 + 4,5904t~ 2 + 4.515439t~) 
g0(ot2) = (l -- (0/2/O/m)3) 0"678021 , (82) 

where the maximum solid fraction for a random packing, 
C~m, is given by C~m = 0.64356. Equation (82) is in very 
good agreement with the numerical simulations of Alder 
and Wainwright, 36 involving 500 elastic spheres at 
equilibrium conditions using periodic boundary con- 
ditions (Fig. 3). 

Lun and Savage 37 proposed an empirical expression: 

go = (1 - ot2/Ctm)- 2.5t~,% (83) 

This equation is believed to give good results for 
sheafing of small finite systems at high concen- 
tration. A similar expression is the one of 
Ogawa et a/.: 38 

go = (1 - (ol2/Olm) 1/3) - l (84) 

Ding a n d  G i d a s p o  w14 proposed multiplying this equation 
by a factor 3/5 for a better fit of the numerical data of 
Alder and Wainwright. This correction is not valid (1) 
because the expression is not consequent for the dilute 
case, g0(0) = 3/5, and (2) the data of Alder and 
Wainwright are given for equilibrium conditions. 
Figure 3 displays Eqs (83) and (84). 

2.10. Concluding Remarks 

Expressions have been given for the momentum and 
energy fluxes as functions of the granular temperature 
provided that certain assumptions are fulfilled. Before 
summing up these assumptions, the dissipation rate of 
energy due to collisions will be written under the 
assumptions made previously. Using Eq. (63), the 
dissipation rate of energy due to collisions reduces to 

1 ( e  2 - -  1) 
X m m  = 0/2/02 ~ Z 2 .  (85) 

All results obtained so far are valid for flows with small 
spatial gradients of mean velocity and granular tempera- 
ture, nearly elastic particles (1 - e small) and low level 
of anisitropy (aij/T 2 small). In the case of a restitution 
coefficient for which 1 - e is not small, terms such as 
Oc~21Oxi should appear in the expression of the energy 
flux. 

As far as the particle velocity probability density 
function is concerned, Boi~lle et al. at showed, by 
comparing the present theory (Eqs (36) and (37)) with 

numerical results of the isovalues of the distribution 
function, obtained by a Lagrangian simulation, that the 
third-order truncation does not give a correct shape in the 
case of high anisotropy. In this case, a generalized 
distribution function proposed by Richman, 39 

f l  (x, c, t) = (n/(27rK'/3)3/2) exp (-12-Ci( Mij)-  I Cj ) , 

(86) 

where K = det(M20), shows a shape which is similar to 
the numerical distribution function. Bo~lle et al. 31 tried 
to recalculate the expressions of Jenkins and Richman ~2 
with such a distribution function, but no results could be 
derived in the general case. An expression for the source 
term oftbe collisional rate of change is given for a simple 
case by Richman. 39 

The difficulty in rendering the present theory more 
general illustrates, for gas-solid suspensions, the 
superiority of Lagrangian simulations to model particle 
collisions. 4° Lagrangian models allow more general 
collision models; for example, one can introduce a 
friction coefficient and consider particle rotation, 4~ or a 
variable normal force during collision, 42 or a restitution 
coefficient which depends on the particle impact 
velocity. 37 In the present work, only smooth spheres in 
translational motion are considered, and therefore 
collisions are described with a single constant coef- 
ficient, e. In reality, particles are rough and are rotating. 
This implies that an accurate model should be based on 
at least three coefficients, normal and tangential resti- 
tution coefficients and Coulomb friction, in order to be 
valid for a large number of incident angles (sticking and/ 
or sliding contacts). 43 Foerster et al. 43 also give some 
values of these coefficients for two types of particles for 
particle-particle and wall-particle collisions. Other 
measurements of particle-particle and wall-particle 
collisional properties can be found in Dave and 
Rosato 44 and Massah et al. 45 Lagrangian simulations 
involving collisions, in the case of simple dry (a granular 
flow without an intertitial gas) granular flow (simple 
shear flow), are discussed by Lun 46 and Lun and Bent. 41 
From these simulations, several observation can be 
made. (1) When the particle concentration is high, the 
binary collision model might not be accurate, as multiple 
collisions are likely to occur. High density microstruc- 
tures are formed, and the correlation in particle velocity 
increases (influence of go). Indeed, at a critical solid 
concentration, about 0.52 for smooth inelastic spheres, 
abrupt changes in the flow properties are observed. This 
matter is discussed by Lun and Bent. (2) Anisotropy of 
the normal stresses increases with decreasing e. (3) 
Formation of inelastic microstructures at low solid 
concentrations with a low restitution coefficient is 
consistent with the observations of Hopkins and 
Louge. 4° The previous observations suggest that the 
major drawbacks of the kinetic theory of granular flow, 
presented in this work, are due to the simple collision 
model (no particle rotation, no friction) and the moment 
method, f t  =fO(l + e), where e is small (low level of 
anisotropy). 
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However, it is possible to generalize the theory 
presented here by removing one of these limitations. 
Such an improvement is due to Lun, 46 following the 
work of Jenkins and Richman. 47 In this work, collisions 
between slightly inelastic, slightly rough spheres are 
modeled, and therefore additional transport equations are 
given for the angular momentum and rotational kinetic 
energy. Applying the moment method presented in 
this paper with a modified normal distribution function, 
expressions for the rotational energy flux, the rotational 
energy dissipation and the spin viscosity can be added 
to the quantities defining translational motion. More- 
over, particle rotation is important in dry granular flow, 
but it might also be important in turbulent gas-solid 
flows, as a result of aerodynamic forces. 1° More 
research is needed to render the kinetic theory of 
granular flow more general for an improvement of the 
Eulerian/Eulerian formulation. 

3. FLUID-PARTICLE FLUCTUATIONS 

In the previous sections, it has been demonstrated that 
the closure problem formulated in Section 1.1 is not 
limited to the inteffacial terms, the stress tensors and the 
second-order velocity moments. Indeed, in the formulation 
of the interfacial momentum transfer term, a closure 
model has to be found for the "d r i l l  velocity", 
< Ul/>2, and, in the formulation of the transport 

equation for the second-order velocity moment of the 
particle phase, a closure model has to be found for the 
"f luid-part icle velocity correlation tensor",  gl2ij. 
The drift velocity 11'16 is defined by Eq. (9) using 
d/(c) = uli'. In the following sections, various proposals 
for closure equations are given for this velocity and for 
the fluid-particle velocity correlation tensor (Eq. (30)). 

3.1. Closure Model Based on Tchen's Theory 

3.1.1. Dispersion in homogeneous turbulence 

According to the general definition of a diffusion 
coefficient, 4s the transport (or flux) of particles (fluid or 
solid particles) is defined as the product of a coefficient 
and the concentration gradient. Since particles are 
transported by the mean flow and are dispersed by the 
turbulent motion, the dispersion (or diffusion tensor), 
D~0., is defined by 

Uki = -- Dtkij ~ .  (87) ~k 

D~j is given by the displacement tensor < Yk~Vk~ > k as 
t __ 1 Dko -- ~ dldt < YkiYkj>k, where Yk~ is the displacement 

of a particle in direction i. For long-time diffusion, the 
dispersion tensor is written in terms of the Lagrangian 
correlation tensor, 

Rkiy(~r) = < Ukit(t)ukj'(t + 1")> k 

]( < Uki '2 >k < Ukj t2 >k )1/2 (88)  

and the Lagrangian integral time scale, 7~#---- 
j~ Rki~(r)dr, as 

p2 ~ .1/2 t DtkU = ( < uki'2 >k < Ukj ~k ) rkiy. (89) 

3.1.2. Eulerian model 

We now study "steady homogeneous turbulence", 
where the mean velocity of the gas phase satisfies 
U1i = 0 for "very dilute suspensions", eq << 1, so that 
two-way coupling and particle-particle collisions can be 
neglected. According to Simonin, H the particle flux can 
then be written as 

ol2U2i ~-Ol2(Uri "[- Udi ). (90)  

For very dilute suspensions, when the collisional effects 
may be neglected, the interfacial momentum transfer 
term can be obtained by averaging the local force 
acting on a particle. The interracial momentum transfer 
is 12i = < X2f2i > = ol 2 < f2i > 2, wheref2i is the force 
exerted by the fluid on a particle per unit volume. 
This force can be written as x° f2i = --P2Uri[~12dt - 
P l dfili[dt - p i gi. Inserting this expression in the Eulerian 
momentum equation and noticing that d/dt is the Lagran- 
gian derivative, following a particle, an expression can 
be found for the mean relative velocity: 16 

ol2Uri=7~12( -- ~ U2itU2j t ~2 +b  < UlitU2j t ~2 ) 

× ~ ,  (91) 

where b = Pl/P2. This expression is valid if the the 
buoyancy force is equal to the mean aerodynamic force 
(drag force based on the free fall velocity, U t - U2). In 
other words, the mean relative velocity is the sum of two 
mechanisms: a free fall velocity and a dispersion 
velocity (drift velocity). The free fall velocity can be 
found from the Lagrangian equation of motion with an 
average over the particle cloud, and is defined by 
~ 1 2 ( 1 - - p l / P 2 ) g i  . An expression for the drift velocity 
can be found using the following procedure.16 A conser- 
vation equation for the mass fraction of particles per unit 
volume, Y2 = ~2P2/Pm, can be written from the discrete 
phase continuity equation and Eq. (90) as 

~t PmY2)'Jt" ~xi PmY2Umi) 

0 oqplot2p 2 
-- O'-Xii ( ~m (Uri ~- Udi)) ' (92) 

where the mixture density is Pm= ~lPx + °t2P2 and the 
mixture velocity is pmUmi = ~lPt Uli + ot2P2U2i. In the 
limiting case of particles whose diameter converges to 
zero, the relative velocity converges to zero. In such a 
case and with stationary conditions, the drift velocity can 
be written using Eq. (92) as 

1 OcqOt 1 OOt2P2" ~ 
Odi=Dtl2ij ol?p I Ox i ot2,o 2 0 x i  ] '  (93) 

where the binary dispersion coefficient or turbulent 
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fluid-particle interaction dispersion coefficient is 
defined in analogy with Eq. (87), 

Dr OY2 
Y2Umi = -  12ij'7--" (94) 

oxy 

With Eqs (87), (91) and (93), the discrete phase disper- 
sion coefficient can be expressed as 

ot2ij = D~2ij -Jr- 7~12( < u2i' u2j'>2 

- b < Uli'U2j' >2 ). (95) 

The dispersion coefficient of the discrete phase is there- 
fore the sum of two terms. The first term is the binary 
dispersion coefficient and the second term is the sum of 
two mechanisms: one due to the random motion of par- 
ticles and the other due to the fluid-particle velocity 
correlation tensor. In the case of small particles, the 
relaxation time converges to zero and the discrete 
phase dispersion coefficient reduces to the binary 
dispersion coefficient. 

3.1.3. Tchen's theory 

The work of Tchen 49 is one of the first attempts to 
study the diffusion (or dispersion) of discrete particles in 
a turbulent flow field. Tchen showed that it is possible to 
express the particle turbulence intensity, the particle 
diffusion coefficient and the particle Lagrangian corre- 
lation function in terms of the fluid turbulent motion (the 
fluid Lagrangian correlation function, Rio(r)). With a 
given expression for the Lagrangian correlation function 
of the fluid turbulent motion, an analytical expression for 
the characteristics of particle motion can be obtained. 
Tchen made the following assumptions in his deriva- 
tions: (1) turbulence is steady and homogeneous, (2) 
particles are spherical and follow Stokes' law of 
resistance, (3) particles are small compared to the 
smallest length scales of the fluid flow, and (4) during 
the motion of the particles, their neighborhood is formed 
by the same fluid. As pointed out by Hinze 4s and later by 
Deutsch and Simonin, 16 the last assumption is the most 
questionable. It is known that, in a turbulent flow, the 
fluid elements are distorted and stretched, so that a given 
fluid element should not always contain the same 
particle(s). This remark is enhanced when considering 
heavy particles which do not follow Stokes' law of 
resistance and therefore have a significant relative 
velocity. Consequently, as stated by Deutsch and 
Simonin, the Lagrangian correlation function of the 
fluid turbulent motion must be expressed in terms of the 
fluid velocity fluctuations seen by the particles, which 
means it must be computed along particle trajectories: 

~lij(T) = ¢( Uli' (t)Ulj' (t + T)> 2 

/( < Uli '2 >2 < Ulj '2 >2 )1/2, (96) 

where the integral scale of the fluid fluctuation seen by a 
particle is (see Eq. (3)) 

7tl2ij = ~ ~li j(r)dr.  (97) 

With these definitions, it is possible to generalize 
Tchen's theory by eliminating assumptions (2) and 
(4). 16 The discrete phase dispersion tensor, Dr21j, can be 
defined in terms of the Lagrangian correlation function 
of the fluid turbulent motion as 

ot2ij = T~2ij( <( Uli '2 >2 < Ulj '2 >2 )1/2. (98) 

If the the buoyancy force is equal to the mean aerody- 
namic force (see Eq. (91)), the equation for the discrete 
phase fluctuating velocity is 

du2i.._~' _ ~ , +bd/~l i  ' 
dt ~-au2i'-~-auli d t '  (99) 

where the coefficients are given by a =  1/42 and 
b = O l/P2. Let us find a suitable form for the Lagrangian 
correlation function of the fluid turbulent motion. The 
displacement of particles is controlled by the mean flow, 
while the dispersion is controlled by the turbulent 
motion. Furthermore, if the mean flow velocity is large 
enough, the eddy decay mechanism is negligible compared 
to the spatial change of correlations, and thus the Lagrangian 
correlation tensor becomes a spatial Eulerian tensor: 

~li j (r)  = < Uli'(X)Ulj'(X -q- vUr)> 1 

r2 )1/2 /( < Uti '2 >1 • Ulj >1 , (100) 

where the assumption < Uli 12 >1 ~-- ( Uli'2>2 can be 
made, provided that the displacement of the particles is 
governed by the mean flow, and thus the turbulent kinetic 
energy of the continuous phase and the local instan- 
taneous distribution of the discrete phase must be uncor- 
related. According to Csanady 17 and Deutsch and 
Simonin, 16 for "homogeneous isotropic turbulence", 
RI (r) can be written, in the direction of the mean flow, as 
R l ( r ) = e x p ( - t / ~ 2 ) ,  where rrl2 is defined by Eq. (3). 
Using a Fourier transform of Eq. (99) and the classical 
results of turbulence (Hinze, 4s pp. 464-467), the follow- 
ing equation is obtained in the direction of the mean 
flow, for the particle correlation function: 

< U 2 ' U 2 ' >  2 = "~Ul 'Ul '>2(b2+?l ) / ( l+TI ) ,  (101) 

where r /= "r~2/~12. The fluid-particle correlation func- 
tion (Hinze, as pp. 62-64) is obtained with the same 
procedure: 

< U I ' U 2 '  > 2 ~--- < U l ' U l ' > 2 ( b + T I ) / ( l + ? l  ). (102) 

A direct consequence of the previous results and assump- 
tions is 

Dt21D~ = r~2/r~. (103) 

When the relative mean velocity is very small, Ttl2 = T~, 
the original result of Tchen can be expressed: the long- 
term dispersion coefficients of the discrete particles and 
the fluid particles are the same. In addition, from 
Eqs (98), (101) and (102) inserted in Eq. (95), 

O~2 =T~2 < UI'U2' > 2 -  (104) 

The results derived so far for the direction of the mean 
flow can be generalized to the other directions if one 
accounts for the continuity effects. According to 
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Csanady, 17 this can be achieved by Eq. (3), where the 
coefficient C a depends on the direction which is con- 
sidered. Possible numerical values for this coefficient 
can be found in Wells and Stock. s° If the above ex- 
pression is generalized to non-isotropic cases, L¢~20 = 
7-~2ij < Uli'U2j'>2 and Eq. (93) give a closure equation 
for the drift velocity. 

The results presented in this section have been tested 
by numerical simulations using large eddy simulation 
with a particle tracking algorithm. 16 In these simulations, 
one-way coupling was assumed. The results showed 
good agreement with Tchen's theory for heavy particles 
(i02 >>Pl)"  The results also showed that, for heavy 
particles, there is an optimal ratio ~ /~2  or Stokes 
number St = ~12/~1, which gives a maximal dispersion of 
the particles, where D~ --> D~. Furthermore, the results of 
Deutsch and Simonin show that, even for heavy 
particles, there is an intermediate time scale domain 
for ~2/~,  where particles gather in low vorticity regions. 
Outside this time scale domain, small particles follow the 
fluid turbulence and coarse particles have a random 
motion (scalar and coarse cases). This phenomenon has 
been observed by Squires and Eaton, s~ who found a 
concentration of particles in regions of low vorticity and 
high strain rate in an intermediate range of Stokes 
numbers (St = 0.15), but their observations also showed 
sensitivity to the volume fraction of particles. Heavy 
particle concentration in regions of low vorticity and 
high strain rate has also been observed by Maxey. s2 

In the following section, attention is paid to other 
closure models which give results similar to the ones of 
the generalized Tchen theory. 

3.2. Closure Model of Derevich and Zaichik 

Assuming that the velocity fluctuations in the 
continuous phase are represented by a Gaussian 
random field, Derevich and Zaichik s3 gave an expression 
for the probable net acceleration of a particle from 
interactions with turbulent eddies. This expression is 

1 , t 1 : .  Of I . O f  I 
~l~2Uli'f = -- ~12full/llij~--guMlij~ , (105) 

where the second-order moment in the continuous phase 
is Mli.i= <Uli'U~j'>l. The functions f .  and g.  are 
defined as functions of the integral of the fluid Lagran- 
gian integral time scale measured along a particle path, 
~2, and the Lagrangian correlation tensor of the con- 
tinuous phase computed along particle trajectories, 

~ 1 ij('/'), 

fu = 7~12 0 ~l/J(r)exp( -- r/~12)dr' 

gu 42 0 ~1~ lij('r)dT"--fu. (106) 

Using Eq. (9) with d/=uli', in combination with Eqs 
(105) and (106), a closure equation for the drift velocity 

is obtained: 

x . 10ot 2 
edi-~- -- "rl2gu/Yl l/J o~ 20~-Xj" (107) 

If the Lagrangian correlation tensor is written 
exp( - t/~2), for long diffusion time, the function gu is 
given by I/(I + ,/). Tchen's theory for heavy particles, 
P ~/P2 << I, inserted into Eqs (93) and 007), gives a result 
consistent with F-xl. (104). 

Inserting ~/, = Uli'U2j' in Eq. (9), in combination with 
Eqs (105) and (106), a closure equation for the fluid- 
particle velocity correlation tensor is obtained: 

OV2J (108) < Uli'U2j' >2 =f,  Ml# - 7~12guMlim Ox m ' 

If the Lagrangian correlation tensor is written as 
e x p ( -  tl~2), for a long diffusion time, the function fu 
is given by ~//(1 + ~/). If the term involving the gradient 
of the mean velocity of the discrete phase can be 
neglected, Eq. (108) is consistent with Tchen's theory 
for heavy particles, pIIp2 << 1. Simonin 27 pointed out 
that, in the case of a simple stationary shear flow, Eq. 
(108) is not consistent with the asymptotic scalar case. 

3.3. Closure Model of Koch 

Koch 23 gave algebraic expressions for the fluid- 
particle velocity correlation tensor and its trace if 
isotropy can be assumed. These expressions are based 
on the kinetic theory applied to a monodisperse gas-  
solid suspension under the following assumptions: 
collisions are elastic (e = 1), very dilute suspensions 
so that the hypothesis of molecular chaos is valid 
(go = 1) and small particle Reynolds number, Re << 1. 
For very massive particles, St >> a {  3•2, where the Stokes 
number is St = 2mUll3,r#ld 2, the velocity distribution is 
dominated by collisions, so that the fluid-particle 
velocity covariance reads 

. . . .  dp 1 U~, (109) 
( Uli ll2j >2 4~12, S t V / ~ 2  

where ~12,st is the particle relaxation time based on 
Stokes flow, 2 ~12,st=p2dp/181Zl. When the particle 
Reynolds number is greater than one, Louge et al. s4 
proposed the use of Eq. (109) with the corresponding 
particle relaxation time, 42. For moderately massive 
particles, (x~- 3/4 << St << ix2 3/2, the velocity distribution 
is determined by fluid-particle interactions. In the 
present case, a gas-solid suspension in a vertical 
column (z direction), the velocity distribution is aniso- 
tropic, whereas for very massive particles it is 
modeled by the Maxwellian distribution function. The 
velocity fluctuations in the vertical direction are defined 
by < U2z'U2z' >2 =g211, and in the directions 
normal to the vertical one by <u2x'U2x'>2 = 
< U2y'U2y' >2 =M2±, where the turbulent stress 

tensor is determined by <u2i'u2j'>2 =M2±6ij+ 
(M2II - M2±)lilj. li is the unit vector in the vertical direc- 
tion. According to Koch's analysis, the distribution 
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function is 

f(e) = (l/(21r)3/2M2± M~2)exp( - C212M211 

- (Cx + C~)/2M2i). (110) 

With this distribution function, Koch 23 gave algebraic 
expressions for the fluid-particle velocity correlation 
tensor, < uli"u2j' >2 =Fllalj+(FII-Fl)Iilj, where FII 
is defined by FII = Afi(jS), where A=(3dp/ 

2 3 2 ~ 2 , s r ) U f l ~ ,  and F± is given by F± = Af±([3). 
The functions j51(/~) andf±(~) are functions of the dimen- 
sionless parameter/32 = M21J(M211 - M2j_), 

JSt(#) = ( ~  + O)In((# + I ) / (~ - I ) )  - 2~213 - 25 '4, 

f_L (f~) = (B 3 - BS)In(03 + I)I(/3 - I))12 - 2B213 + 5'*. 

(111) 

These expressions are limited to small Reynolds num- 
bers and large Stokes numbers, but they are algebraic. 
Therefore, for suspensions where these conditions are 
fulfilled, one does not need to solve a transport equation 
for the fluid-particle velocity correlation tensor. 

3.4. Closure Model of Reeks 

Before discussing transport equations for the fluid- 
particle velocity correlation tensor and its trace, another 
model similar to the previous ones is presented. 
Reeks 55'56 proposed a closure model describing the net 
acceleration of a particle from interactions with turbulent 
eddies. This acceleration is based on the Lagrangian 
history direct interaction approximation (LHDI), 57 and 
can be written as 

1-~--'tl~12Ult f ~- --  O~j(/.,tj/fl)- O~j()kj / f l ) -  7 i l l  , (112) 

where /~j;, Xji and 3'i are diffusion tensors, which are 
functions of xi, c~ and t. 55'56 Using a reasoning similar 
to that of the closure model of Derevich and Zaichik 5s 
and neglecting the dependency on local particle velocity, 
a closure equation for the drift velocity can be derived. 
This expression reads 

/ I Oot 2 a), j i+ "~ 
Uai- - - - -~2tXJ i~22~xj+~ %) .  (113) 

The fluid-particle velocity correlation tensor is defined 
by 

< u,i'Uvj' >2 = ~2 ( , j i -  Xmi 0U2yX~.ax m J (114) 

For stationary homogeneous turbulence, it can be shown 
tha t27 3q = 0 and that the tensors can be written 

I~ji = < uli' uji' > l f , /~2 and Xji= < Uli' Ulj' > l gu 
provided that < Uli 'Ulj  ¢ > 2  = <~ U l i ' U l j ' > l  • Equations 
(113) and (114) are then equivalent to Eqs (107) and 
(108), respectively. 

3.5. Final Remarks on the Closure Models 

Closure equations based on different physical 

considerations have been presented to model the drift 
velocity and the fluid-particle velocity correlation 
tensor. These algebraic expressions are derived for 
specific cases and their validity should be tested against 
experimental data if possible. It is worthwhile noticing 
that, in the case of stationary homogeneous turbulence, 
the models of Tchen, Derevich and Zaichik, and Reeks 
are equivalent. In the case of practical gas-solid flows, 
most assumptions of the previous models are too 
restrictive and a more general formulation is necessary. 

This general formulation, transport equations for the 
drift velocity and the fluid-particle velocity correlation 
tensor, is now given. In the following, a transport 
equation for the fluid-particle velocity covariance will 
first be derived, with a mathematical derivation which 
is analogous to the single-phase flow derivation for the 
transport equation of the second-order velocity 
moment. Secondly, transport equations for the drift 
velocity and the fluid-particle velocity correlation 
tensor will be expressed from a formulation of the 
fluid-particle joint probability density function. In this 
formulation, an equation of the Maxwell-Boltzmann 
type is derived with a method similar to the one 
adopted in the kinetic theory of granular flow. To close 
this model, the acceleration of a virtual fluid particle 
along the discrete particle trajectory is needed. This is 
done with a generalized form of the Langevin 
equation. 

3.6. Transport Equations 

3.6. I. Fluid-particle velocity covariance 

A transport equation for the fluid-particle velocity 
correlation tensor can be derived from a procedure 
similar to the one used in single-phase flows. 59 Let 
N~(u ~i) = 0 symbolize the local instantaneous momen- 
tum equation for the continuous phase, where N~ denotes 
the Navier-Stokes operator. Accordingly, the local 
instantaneous momentum equation for the discrete 
phase can be written as N2(u2i) = 0, where N2 is the 
corresponding Navier-Stokes operator. The local instan- 
taneous momentum equations are, for the continuous 
phase, 

( a +u,j O~'~u,, 
x2p2 ~ a x : /  

and for the discrete phase, 

a 8 

= - X2 ~ + X2P2 1. uri + X2p2gi. (116) 
ax  i "F[I 2 

In this formulation, Eq. (115) has been rearranged for the 
derivation of the transport equation of the fluid-particle 
velocity correlation tensor. The local instantaneous 



278 E. Peirano and B. Leckner 

momentum equation for the discrete phase (Eq. (116)) is 
written without particle-particle interaction terms. This 
means that, strictly speaking, only "dilute suspensions" 
are considered, ~x2 << 1, and the effect of particle- 
particle collisions on the fluid-particle velocity 
correlation tensor is not included. The derivation of 
Eqs (115) and (116) can be found in Peirano) ° In 
order to derive the transport equation of the fluid- 
particle velocity correlation tensor, the quantity 
< uli"N2(u2j)+ u2j'Nl (uu) > = 0 is evaluated. Empha- 

sizing the transport by the particulate phase, we obtain, 
after some algebra, 

D2 ,, , 0 D 
012#2-'~ < Uli U2j ~2  = ~X m i2ijra + Pl2ij + dPl2a~i 

+ ]'] 12ij -- E I 2 q ,  ( I  17)  

where the terms on the RHS are similar to the single- 
phase flow case: diffusion, production, pressure strain, 
phase interaction (specific to two-phase flows) and 
destruction. The detailed expression of these terms can 
be found in Peirano. 6° The fluid-particle velocity co- 
variance is defined as k~2 = < ui~"u2i'>2. A transport 
equation for fluid-particle velocity covariance can be 
obtained from Eq. (117) with i = j,  modeling the 
diffusion term as 

{ v~2~ a k l 2  (118) 
O12ii= = Ol2102 t'~klkl ) t~X=' 

and the destruction term as Eiz/i=c~20#12, where 
eiz=kl2/~z contains the eddy-particle interaction 
time. Destruction is caused by viscous effects in the 
continuous phase and by crossing trajectories effects. 
Neglecting the trace of the pressure strain (this term is 
not traceless as for single-phase flows), the fluid-particle 
velocity covariance transport equation reads 

D 2 0 { "~20kl2"~ 

,, t OUli 
- -  0/2/02 ( Uli U2j ~2 c)Xj 

OUli 
- -  Ot2P2 ~ Ulj"U2J >2 OXj 

+ ~ I  12 - -  Ot2#2E12, ( 1 1 9 )  

where the phase interaction term, I112, is given by 

a202((1 + X 1 2 ) k 1 2  - 2X12k2 - 2ki). (120) 1 - I I 2 =  - :1 :  

The quantity Xl2 is defined by Xt2=ctzp2/cqol. 
Equation (120) is obtained by assuming statistical inde- 
pendence between the local instantaneous spatial dis- 
tribution of particles and the turbulent kinetic energy 
of the continuous phase, so that one can write 
< uu"uu" >2 = <ii 'uu'>]. The transport equation is 

closed using a Boussinesq approximation consistent with 
the limit tracer case: 

l 
= V12SI20, (121) < UlIrrU2j , >2 .~kl2~ij -- t ^ 

^ 1 • . . 
where Sl2# = S i 2 i "  - "--Sl2mm~i" IS the devmtonc part of the '-I 3 
strain rate t e n s o r  S I 2 / j  which is defined by Sl2ij = UII,j + 
U2j.i. The turbulent fluid-particle viscosity is given by 
v~2 = ki2~2/3. 

3.6.2. Maxwell-Boltzmann type equation 

Transport equations for the drift velocity and the 
fluid-particle velocity correlation tensor can be obtained 
using a method similar to the one adopted in the kinetic 
theory of granular flow. This can be done 27 by 
introducing the fluid-particle joint probability density 
function, fl2(c, ul,x,t), where f12(c, uj,x,0dcduidx 
represents the probable number of particles located in 
the volume dx centered at x, having a velocity in the 
velocity space c + dc and viewing a locally undisturbed 
fluid velocity in the velocity space u I + du i. A correspond- 
ing fluid-particle Maxwell-Boltzmann equation can be 
written as was done for the kinetic theory of granular flow: 

Ofl 2 , O 0 [ du2i ( "~ 
+ < < : ' ?  

O /dull \ 0f121 , + (122) 

where the term Ofi Vatl ¢ is the rate of change of the fluid- 
particle joint probability density function due to par- 
ticle-particle collisions. The notation dui/dtlc~,c 2 rep- 
resents the acceleration along the particle trajectory 
with a conditional expectation that c l /=  fill and c2i = 
u21. The term du2i[dtle,,c2 equals the force acting on the 
particle per unit mass, Fi (Eq. (7)). The term duuldtlc,,c 2 
is more difficult to evaluate. It represents the acceleration 
of a virtual fluid particle along the discrete particle tra- 
jectory, which is the force per unit mass exerted on the 
virtual fluid particle following the discrete particle 
trajectory. According to Simonin, 27 this acceleration 
can be evaluated by a generalized form of the Langevin 
equation. 

The increment over a time dt of the virtual fluid 
particle velocity following the particle trajectory is 

Uli(X2(t +dt) ,  t +dt )  --- ~ii(Xl (t), t) 

+ ul i (x l  (t + dt), t + dt) - u l i (x l  (t), t) 

+ Uji(x2(t + dO, t + dO - Uji(xj (t + dO, t + dr) 

+ U l i '  (X2(t  + dt), t +d t )  - Ull t (Xl (t + dt), t +dt) ,  

(123) 

where the terms on the second line represent the trajec- 
tory of the virtual fluid particle in the turbulent field, 
which is the solution to the Navier-Stokes equation for 
the undisturbed turbulent flow field of the continuous 
phase. The terms on the third line represent the incre- 
ment of the mean fluid velocity due to the mean relative 
velocity between the virtual fluid particle and the dis- 
crete particle. Using a first-order approximation, this 
term can be written as (u2m-Uirn)(OUl/IOxm)dt. The 
terms on the fourth line represent the increment of the 
fluctuation velocity due to the mean relative velocity 
between the virtual fluid particle and the discrete 
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particle, i.e. the crossing trajectories effect. The terms on 
the second line can be evaluated using the work of 
Pope, 6L62 and Haworth and Pope. 63 For single-phase 
flow, in an infinitesimal time interval dt, the velocity of 
a fluid particle changes by 

fil/(xl (t +dt) ,  t +dt )  = fiti(Xl, t) 

( IOP~ O (  OUli~X~dt + + . . . . .  p 1 P 1 OXi OXj OXj /]/I 

( 10151 ' ,9 ( OUu'~d t  ' 
P 10Xi OXj OXj ] J 

(124) 

where the Navier-Stokes equation has been used with 
fL l i=Uu+uu'  and /5~ = P I  +/5t ' .  A generalized 
Langevin equation can then be written: 

Uli(Xl (t -1"- dt), t + dt) = fili(xl, t) 

( 10P 1 0 ( OUli'~'~d t 
+ - - - ~ + O - ~ x j  vl P l Oxi OXj ] .] 

+Glij(ttlj - Ulj)dt+(Coel)l/2dWli . (125) 

Comparing Eq. (124) with Eq. (125) makes clear that 
GIO and Co account for the effects of viscosity and 
fluctuating pressure gradient. Haworth and Pope 63 give 
Co = 2.1. According to Haworth and Pope, the last term 
in Eq. (125) represents a random walk in velocity space. 
The random vector, dW~, is characterized by a zero 
mean, < dW~i > j = 0, and a covariance defined by 

dWl idWlj ~> 1 = t~ijdt. As stated by Haworth and Pope, 
there are limitations to Eq. (125): the infinitesimal time 
increment must be smaller than the dissipation time scale 
(actually it is sufficient that the time increment corre- 
sponds to the inertial range64), the turbulence structure 
is described only by local mean quantities (if G l~j is 
modeled in terms of local mean quantities) and the 
small scales of the flow are isotropic. To close Eq. (125), 
an expression for G t ij has to be found. Haworth and Pope 63 
proposed the following closure model: 

, , OUIm Glij =Glij ( ul,~ urn > ,  ~ x n '  ~lj" (126) 

The study of such a closure expression in the general case 
is not given, but instead a model is proposed for "homo- 
geneotm tm'btdent flows". Haworth and Pope give 

1 1 H OUtm 
Guj=al~l  i j+aZ~lbq+ Limn ~x n , (127) 

where z] = klle I , the normalized anisotropy tensor, b o, is 
defined by bmn = "( Ulra' Uln' >1 I < Uli' Uli' >1 -- 
dt,~/3 and the tensor Ho,~ is given in terms of the normal- 
ized anisotropy tensors and the Kronecker symbol. 
Equation (127) includes 11 model coefficients (a l, a2 
and nine coefficients in the expression of Hq,~). How- 
ever, for practical applications, Haworth and Pope 65 
simplified this model by introducing the simplified and 
intermediate models. These models are not presented 
here, but instead their extension to two-phase flows by 
Simonin 27 is given. 

To carry on in a practical way, Simonin et al. 66 

proposed generalizing Eq. (125) to two-phase flows. An 
equation was given for the infinitesimal increment of the 
local undisturbed velocity of a fluid particle along the 
particle trajectory. This equation reads 

~li(X2(t + dt), t +d t )  = fi~i(x2(t), t) 

+ ( 10Pl t- --O(V 10Uli~) dt 
o~ Oxi Oxj Oxj J 

dff (U2j __ Ulj ~ t  -~ Gl2ij(Ulj -- Ulj) )dt Oxj 

+ (Coel)ll2dWl2i, (128) 

where, as for the single-phase flow case, dWl2i is a 
random vector characterized by a zero mean, 
< dW12i >2 ----0. The form of this equation remains an 

open question. 67 Simonin et al. 66 and Simonin 27 gave 
models for the tensor G~20 which account for the same 
effects as for single-phase flows, but also for the crossing 
trajectories effect. This extension of the Langevin 
equation is valid for "dilute" two-phase flows, other- 
wise Eq. (128) should include terms for the particle- 
particle collision mechanism and terms for the influence 
of the surrounding particles on the particle considered 
(two-way coupling). In other words, this expression is 
only valid for one-way coupling. In addition, the form of 
the mean velocity gradient of the continuous phase, OU~ i~ 
0x s, in Eq. (128) could well be replaced by the mean 
velocity gradient of the continuous phase seen by the 
particle, 0 < u,i > 2/0x/. In order to continue in a 
more practical way, Simonin et al. 66 proposed models 
for G 12ij. The first model, or simplified model, 66 is given 
by 

a l 2 i j :  - - - ~ i j  ( 1 ! -X~lilj, (129) 
- e , 2 U  

where Ii is the unit vector defined by I i = Uri/[Ur I. The 
eddy-particle interaction time in the direction of the 
mean flow is "/'t1211 , and the eddy-particle interaction 
time in the direction perpendicular to the mean flow is 
~2±. These interaction times are defined according to 
Eq. (3), where the constant C a takes a value depending 
on the direction in the flow. The second model, or inter- 
mediate model, 27 is given by 

Gl2ij = - ~12 i j + 0.6 < fill >2 - (130) 

This model neglects the anisotropy caused by the cross- 
ing trajectories effect. To fully understand the form of 
these models, comparisons must be made with the 
single-phase flow models of Haworth and Pope. 63 

As was done in Eq. (9), an averaging operator, < > 2, 
is defined for a given function if(el,c2): 

/1 < I~(el,C2) >12 = j)12ff(cl,CE)dClde2. (131) 

The fluid-particle joint probability density function can 
be defined in terms of the conditional probability 
distribution function, fl12, as fllE(Clle2,x,t)=f~2 
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(el,  C2, X, t)/f2(e2, x, t), where f2(c2,x,t) is the particle 
velocity probability density function (Section 2). As 
for the pair distribution function (Section 2), the fluid- 
particle joint probability density function is not the 
product of the particle velocity probability density func- 
tion and the standard fluid velocity probability distribu- 
tion function, fl(Cl,X,t), and fl2(X,Cl,C2,t) is different 
from fl (x, c l,t)f2(x,cz,t). This means that, along the par- 
ticle path, the fluid velocity and the particle velocity are 
correlated variables. From the previous definitions, it is 
obvious that the particle velocity probability density 
function, f2, and the fluid-particle joint probability den- 
sity function, f l  2, must satisfy 

f2 = ;fl2dCl • (132) 

With these definitions, it can be shown that 
< 6(el,e2)>12 = < ¢(e1,c2) > 2. This is used for 

writing the transport equations for the drift velocity 
and the fluid-particle velocity correlation tensor. Multi- 
plying Eq. (122) by the function ~k(el,e2) and applying 
the averaging operator < > ,  an averaged equation can 
be derived. This equation is written assuming a "dilute 
suspension", so that the rate of change of the fluid- 
particle joint probability density function (Section 2) 
can be neglected. The resulting equation is, using 

0/2P2 = nm2, 

0 
t(0/~p2 < ¢ >2 ) + ~(0/2p2 < c2# >2 ) 

a¢ 

\ t9C2i/2 

+ ( F l i  0~1 / )2 ) ,  (133) 

where F2i is the external force per unit of mass acting on 
a discrete particle and F 1 i is the external force per unit of 
mass acting on a virtual fluid particle following the tra- 
jectory of the corresponding discrete particle. F21 is 
given by Eq. (7), whereas F tl is given by the generalized 
Langevin equation (Eq. (128)). The equation for the 
external force per unit of mass acting on a virtual fluid 
particle which follows the trajectory of the correspond- 
ing discrete particle reads 

Fli = . . . .  Pl ~Xi {- Pl tgXj ] J 

_ O U l i  _ 
dr- (U2j -- Ulj)-~Xj "~ (Ulj -- UIj)GI2 0 

+ (Co~ I )1/2 dWl2i 
dt " 

(134) 

equation reads 

D 2 0 
0/2P2 -~Udi = -- ~xj(O/2P2 < Ulit U2j ' >2 ) 

-- X[2 0~j(°/IPl ( Uli' Ulj t > 1 ) - Xl211i 

OUli 
- 0/2#2gdi-ff---xjxj + 0/2P2Gl2ijgdj. (135) 

The first and second terms on the RHS represent the 
transport of the drift velocity by velocity fluctuations. 
The third term is a result of the interaction of the discrete 
phase with the continuous phase. The fourth term is a 
production term caused by the mean velocity gradients 
of the continuous phase. The fifth term on the RHS 
accounts for the effects of the fluctuating pressure 
gradients, viscosity and crossing trajectories. A simpli- 
fied expression of this transport equation was given by 
Simonin, 27 for "dilute flows" where the inteffacial 
term, Xl2Ili, can be neglected as well as the gradient 
of the mean volume fraction, 00/llOXl. 

3.6.4. Fluid-particle velocity correlation tensor 

From Eq. (133) with ~k=uti'u2j' and Eq. (134), a 
transport equation can be derived for the fluid-particle 
velocity correlation tensor. This equation reads 

D2 
0/2P2 ~-~ < Uli"U2jI>2 

0 
~'= -- O~m(0/202 < Uli"U2/U2ra' >2 ) 

-- 0/202 ~ Uli U2m >2 "+" < Ulm U2j >2 
m 

× ov , ovd,  
C)Xm -~- < U2/U2m' >20Xra / 

0/2P2. ~ . ' >2 -- ~ ffli"Ulj" >2 ) ~---~ t "- u .  u:j 

+ ct2P2Gl2im < Uim"U2j' >2 • (136) 

The first term on the RHS represents the transport of the 
fluid-particle velocity correlation tensor by the particle 
velocity fluctuations. The second term on the RHS re- 
presents the production caused by the mean velocity 
gradients of the discrete and the continuous phase, and 
the interaction between the second-order velocity 
moment in the discrete phase and the gradient of the 
drift velocity. The third term is a production or destruc- 
tion term caused by the interaction of the discrete phase 
with the continuous phase. The fourth term on the RHS 
accounts for the effects of the fluctuating pressure gra- 
dient, viscosity and crossing trajectories. 

3.6.3. Drift velocity 

With Eq. (133) with ~b = u li' and Eq. (134), a transport 
equation can be derived for the drift velocity. This 

3.6.5. Final remarks on the transport equations 

Equations (119) and (136), taking i = j ,  should be 
equivalent as they both give the transport equation for 
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the fluid-particle velocity covariance. It is quite 
straightfoward to observe that these two equations are 
not equivalent for two reasons: the production and 
interaction terms differ. However, two points must be 
emphasized (Simonin, personal communications). (1) In 
the generalized Langevin equation (Eq. (128)), the term 
(U2j- Ulj)OUIi/OXj should rather be written (U2j- Ulj) 
C) < Uli >2/OXj. (2) In the fo rmula t ion  of Eq. (134), two-  
way coupling is neglected. To account for the effect of 
the surrounding particles, an additional drag term must 
be included. This term reads 

dul i (X2 * P2 l . . . t) = ot 2 ~-T~12tUEitX2, t) - uli(x 2, t)), (137) 

where ot~ is the local concentration of the surrounding 
particles and u~i(x 2, t) is the characteristic velocity of the 
surrounding particles. Using Eq. (133) with ¢, = uli'u2j' 
and the modified form of Eq. (134), a transport equation 
can be derived for the fluid-particle velocity correlation 
tensor and the fluid-particle velocity covariance, taking i 
= j .  For dilute flows, this equation is then almost equiva- 
lent to Eq. (119). The interaction term is the same, the 
production terms differ by the mean gas velocity 
gradient, O < Uli>2/Oxj instead of OUtJOxj, and the 
dissipation t e r m  Ot2P2Gl2im < Ulm"U2i'>2 becomes 
t~2P2kl2/r~2 using a simplified Langevin model (Eq. 
(129)). 

The form of the transport equation for the fluid- 
particle velocity correlation tensor is a key point in the 
formulation of the models. Indeed, when solving the 
transport equations for the second-order velocity 
moment, the fluid-particle velocity correlation tensor 
appears in the coupling term (Eqs (30) and (139)). In the 
present section, all derivations were made assuming 
dilute suspensions, so that the collisional term, 

C12(1~) = II~ OO@ cdC, dc2, (138) 

could be neglected in the transport equation of the drift 
velocity (~b = Uli') and the fluid-particle velocity corre- 
lation tensor (¢/=uli'u2j'). We shall see later that the 
models can be extended to dense suspensions by treat- 
ment of the collisional term (Section 7). 

4. CONTINUOUS PHASE FLUCTUATIONS 

In the previous sections, various closure models for 
the stress tensor and the second-order velocity moments 
in the particle phase, the drift veloicty and the fluid- 
particle velocity correlation tensor have been given. To 
complete the closure problem, the second-order velocity 
moment of the gas phase, Mli j = < U litUlj'>I, has to be 
modeled. In this section, we start by giving a deeper 
insight into two-way coupling and discuss models which 
can describe gas phase turbulence. Then, we formulate a 
transport equation for M ~ U and a complete closure for a 
two-equation model (k-e model). Problems specific to 
the k-e model are discussed. 

E(k 
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Fig. 4. Spectral distributions for E(k), D(k) and T(k) without 
gravity field. Solid line: without particles; dashed line: with 

particles. 

4.1. Two-way Coupling 

Two-way coupling was briefly mentioned in Section 1, 
where some basic principles and explanations on the 
nature and the mechanisms of two-way coupling were 
presented, based on semi-empirical models and well- 
known experiments. This description is, however, 
insufficient and needs to be discussed together with 
direct numerical simulation (DNS) results. Indeed, it is 
generally considered 68 that particles with a small 
Reynolds number damp turbulence, whereas particles 
with large Reynolds numbers enhance turbulence due to 
vortex shedding. As a matter of fact, it has been shown 
by Elgobashi and Truesdell, 69 using direct numerical 
simulation of grid turbulence (homogeneous isotropic 
turbulence), that small particles (smaller than the 
Kolmogorov scale) could enhance turbulence in a 
specific range of wavenumbers. As stated by Elgobashi 
and Truesdell, the modulation by particles of E(k), the 
three-dimensional spectrum of energy, and D(k), the 
three-dimensional spectrum of energy dissipation, fol- 
lows a pattern of selective "spectral redistribution" 
rather than a uniform attenuation or augmentation. 

A first set of results was presented by Elgobashi and 
Truesdell for zero gravity (no crossing trajectories 
effect). It is observed that, at low wavenumbers (large 
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scales), the values of E(k) and D(k) for a turbulent field 
with particles are smaller than the corresponding 
quantities of a turbulent field without particles below a 
critical wavenumber, kc, above which the contrary is 
seen (Fig. 4(a, b)). As a decrease of the time-dependent 
turbulent kinetic energy and an increase of the time- 
dependent dissipation were observed, it can be con- 
cluded that, globally, for the kinetic energy, the 
production at high wavenumbers is dominated by the 
destruction at low wavenumbers. For the dissipation, 
attenuation at low wavenumbers is dominated by 
enhancement at large wavenumbers. According to 
Elgobashi and Trnesdell, a possible explanation for this 
spectral redistribution is that particles transfer their 
energy to the small scales, with a corresponding increase 
in dissipation. This rise in dissipation is detected by the 
large scales, which increase their supply of energy to the 
small scales (Fig. 4(c)), and this results in the reduction 
of E(k) at large scales. The detection by the large scales 
is due to non-local triadic interaction of T(k), illustrated 
in Fig. 4(c), the rate of energy transfer to wavenumbers 
of magnitude k. A discussion of these mechanisms can be 
found, for example, in McComb 7° and Domaradzki and 
Rogallo. 7~ A second set of results was given by 
Elgobashi and Truesdell for non-zero gravity. A similar 
behavior for the spectral redistribution was observed, but 
the critical wavenumber, kc, decreased with time. This 
seems to indicate that energy transfer from particles 
starts at high wavenumbers and propagates to lower 
wavenumbers, which gives a reverse cascade phenom- 
enon. The main feature of gravity is to produce 
anisotropy at high wavenumbers. The excess of energy 
in the gravity component is transferred to the other 
directions at the same wavenumber by the pressure strain 
term, and to other wavenumbers by triadic interactions. 

The results of Elgobashi and Truesdell were con- 
firmed experimentally by Tsuji et al. 72 for dilute 
suspensions in the case of homogeneous isotropic 
turbulence. The measurements of Tsuji et al. for the 
one-dimensional spectrum showed the same trend as in 
Fig. 4(a); the energy spectrum of the turbulent field with 
particles takes smaller values than the energy spectrum 
of the turbulent field without particles below a critical 
wavenumber, above which the contrary is observed. The 
measurements of Tsuji et al. were done for very dilute 
suspensions in pipe flows and the smallest particle size 
used in this experiment was greater than the Kolmogorov 
scale by a factor of two. In the experiment, the existence 
of the critical wavenumber is more pronounced in the 
core region, where turbulence can be assumed to be 
isotropic, than in the wall region. In addition, the 
experiment showed that for large particles (3 mm), 
turbulence is increased throughout the whole cross- 
section, while for small particles (200 #m), the contrary 
is observed. For medium-sized particles (500 #m and 
1 mm), turbulence is enhanced in the core region but 
damped near the walls. Moreover, the tendencies 
observed by Tsuji et al. 72 have been predicted theore- 
tically by Derevich, ss whose model compares favorably 
with the measurements of Tsuji et al. The computations 

of Elgobashi and Truesdell, together with the theoretical 
results of Derevich and the measurements of Tsuji et al., 
seem to prove the uncertainty of the early measurements 
of Hetsroni and Sokolov 73 and the theoretical results of 
Baw and Peskin, 74 which predict a decrease of the 
spectral components at high wavenumbers due to the 
presence of particles. 

As a conclusion, three-dimensional spectra of turbu- 
lent kinetic energy and energy dissipation in dilute 
suspensions are governed by "spectral redistribution" 
mechanisms rather than by uniform mechanisms over the 
whole range of wavenumbers. 

4.2. Choice of  a Model 

The purpose is to describe the motion of the 
continuous phase turbulence for "confined" turbulent 
two-phase flows, with application to fluidization. In 
turbulent single-phase flows, two-equation models, and 
especially the k-e model, 75 are commonly used. 
However, it is known in single-phase flow modeling 
that the Boussinesq approximation yields an unsatisfac- 
tory description for certain types of flows, such as flows 
over curved surfaces, three-dimensional flows, flows 
with boundary layer separation and flows with secondary 
motions. Alternatives are possible with, on the one hand, 
an increase of the mathematical and physical complexity 
and, on the other, with powerful computers. Models 
increasing mathematical and physical complexity are 
non-linear models, 76 Reynolds stress models (RSMs) 77 
and algebraic stress models (ASMs). 7s Models requiring 
computer capacity are large eddy simulation (LES) 79 and 
direct numerical simulation (DNS). s° In this study, 
because of the complexity generated by the two-phase 
problem, it is considered that the Boussinessq approx- 
imation is valid in the applications to fluidization. 
Therefore, the study is limited to the k-~ model. The 
reasons why the k-E model is preferred to the other two- 
equation models can be found in Launder and Spald- 
ing. s~ Advantages of the low Reynolds number k-~ 
model over ASMs and RSMs for prediction of pipe flow 
have been shown by Martinuzzi and Pollard. s2 Their 
study s2 does not give any indications on two-phase flow 
prediction, but it provides an argument which can 
strengthen the choice of a low Reynolds number k-~ 
model. In dilute two-phase flows, DNS has been tested 
by Elgobashi and Truesdel169 and LES by Simonin 
et al. s3 

4.3. Second-order Velocity Moment Transport Equation 

The transport equations for the second-order velocity 
moment of the continuous phase, M~ U = < uti'ulj'>~ 
can be obtained as for the single-phase flow equations, s9 
Let N(u~i) = 0 symbolize the local instantaneous 
momentum equation for the continuous phase, where N 
denotes the Navier-Stokes operator. To derive the 
transport equations for the second-order velocity 
moment of the continuous phase, the quantity 
<Uli'N(Ulj)-.~-Uli'N(Ulj)> = 0  is evaluated. After 
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some algebra, this expression becomes 

D, ODlijm 
OilPl - '~tgl, j  : ~xm "~- P1ij + * l i j  ~- I-[ l , j  - Eli j. 

(139) 
The first term on the RHS, 01) I ijm/OXm, is a diffusion term. 
It is the sum of two terms, D~ijm + D~ijm, where Dtlij,, 
represents the transport related to the local instantaneous 
viscous stress tensor which can be compared to the mole- 
cular transport term in single-phase flows, 

D~ijrn = < Xl'rljmUli t + Xl'rlimUlj' > . (140) 

This term is negligible compared to D~ijm, the turbulent 
transport and pressure diffusion term: 

D~ijm = - -  ° q P l  < ttli' Uljt Ulm ' >1 -- Oil < Pl ' uti'~jra>l 

--or1 <pl'ulj't$im >! . (141) 

The second term on the RHS of Eq. (139), Pro, is the 
production term due to the interaction between the vel- 
ocity fluctuations and the spatial gradients of the mean 
velocity: 

Plq = -- °tiP, ( < blli'Ulrn' >1 
OUIj 
OXm 

p OUli~ 
+ <uij  ul,, >l OxmJ" (142) 

The third term on the RHS, O~j, is the pressure strain 
term. It is mostly responsible for the redistribution of 
energy between the different terms of the turbulent stress 
tensor. This term is 

/ , O  , a , 
= Pl - - X l U l i  dPlij ~ OXj +PI''~ixiXIU'j )" (143) 

The trace of this tensor is not zero as in the case of single- 
phase flows. The fourth term on the RHS, IIl~j, re- 
presents the work of the forces exerted on the particles, 
as the particles move in the turbulent flow field. This 
term can be a production term or destruction term and 
is written as 

N l i j  = O/2P2( - -  2 < Ulit'Ulj " >2 '{- < Uli'tu2j">2 
el2 

"[- < ld'lj"U2i" >2 "~ UriUdj @ UrjUdi), ( 1 4 4 )  

where the mean relative velocity is U,~ = < u2i - uli>2 
and the drift velocity is Uai = < uli'>2. The fluctuating 
velocity of the gas phase seen by the particles is denoted 
ul~"=Uli-- < u~>2. Using this definition, it is also 
shown, as in Section 3, that < Uli'Uli" >2 ~-- 
<~ Uli"Uli">2. The fifth term on the RHS, El q, represents 

the viscous dissipation at the small scales of the turbulent 
flow field, as in single-phase flows, but also the pro- 
duction or dissipation of energy due to the presence of 
the particles (wake effects): 

/ Ouli' aulj ' \  
Elij-~-Oll~7"ljm~xm "q-'rlirn~xm/) 1 . ( 1 4 5 )  

In this expression, additional terms which come from 
compressibility effects have been neglected. 

These terms are equivalent to the ones found in the 
Favre- averaged Reynolds stress equation in single- 
phase flow. 59 This terms are  --<XlUli '>OPl/ 
axj - < Xlulj' > OPJOxi. 

4.4. Two-equation Model (kl-e i) 

The second-order velocity moment is given by the 
Boussinesq approximation, 

2 t^ 
M~ij = ~kffSij - 2vlSlij, (146) 

where the turbulent viscosity reads ~,~ = C~k21/el and el is 
the dissipation of turbulent kinetic energy. The 
Boussinesq approximation is valid provided that 
~,~ IOUli/Oxjl << k, (first-order approximation). This con- 
dition states that the characteristic time scale of the fluc- 
tuating motion must be much smaller that the time scale 
of the mean flow, r~ IOUli/Ox/I << 1. The equation for the 
turbulent kinetic energy of the continuous phase, 
kl = < Uli'Uli' > ]2 ,  is obtained from Eq. (139) setting 
i = j :  

OllPl D1kl I (  o q D ).  I.)t -~" 2 ~ ~X m lilm Jl- eli i  "~ ~lii ~- [-Ilii - Elii 

(147) 

The transport term is modeled as for single-phase 
flows, 59 as 

akl 
Dtiira = Dk, 0 ~  m, (148) 

where Dk, =¢xlpl(v I --I-v~/ak, ) and Ok, is the effective 
Prandtl number which relates the eddy diffusion of k l 
to the momentum eddy viscosity. Neglecting the trace 
of the pressure strain term, the equation for the turbulent 
kinetic energy reads 

Dl 0 =  (ok. ok,  Ox./ 

- -  o / IPl  < Ulil Ulra r >1 f~Uli 
OXm 

+ oqPiI-[l - ~iPlel. (149) 

The interface term, 1-I l, is given by 

I-It = ~1~22 - 2  < kl >2 +kl2+UriUdl), (150) 

where 2 < kl >2 = < Uli"141i"~>2 represents the turbu- 
lent kinetic energy of the continuous phase seen by the 
particles. As in Section 3, if statistical independence is 
assumed between the local instantaneous spatial distri- 
bution of particles and the turbulent kinetic energy of the 
continuous phase, one can write < kl >2 = kt. A trans- 
port equation must now be written for the dissipation, ~ i. 
This equation is obtained with a similar procedure as for 
single-phase flows. 59 After some algebra, the differential 
equation for dissipation of turbulent kinetic energy, e l, is 
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given by 

o, 0__(o 0e,' 1 
oqp, ~-:, = ax~ \ "ax,~) 

e I f OUli --aWl~LC,,M,i,-g--xSxs +C,=e,) +nll, 
(151) 

where D,~ =oqp,(v I +vi i%,)  and %~ is the effective 
Prandtl number which relates the eddy diffusion of el 
to the momentum eddy viscosity. The interaction term, 
1I, ,, is modeled according to Elgobashi et al. 84 as 

e, 
I-lit = C,, ~,,-i r [ , .  (152) 

This term expresses the work of the forces exerted on the 
particles divided by the characteristic time of turbulence. 
The system of equations is closed if the constants 
ok,, %z, C~,, C~,, C~2 and C~3 are defined. The effec- 
tive Prandtl numbers are ok, = 1.0 and %, = 1.3. The 
other constants have been determined by applying the 
model to simple turbulent flows: C, = 0.09, 
C~, = 1.44, C,2 = 1.92. The constant in the term specific 
to two-phase flows was given by Elgobashi et al. s4 as 

C~3 = 1.2. The constants defined above and in Eqs (149)- 
(152) define the k t -e l  model derived by He and Simo- 
nin. s5 In this formulation (Eqs (149) and (151)), the 
effect of the velocity fluctuations produced by the 
wakes is not considered. Such effects are assumed to 
be in local equilibrium with the viscous dissipation 
(the particle diameter is smaller than the Kolmogorov 
scale in the gas phase, so that wake effects are directly 
dissipated into heat). Therefore, turbulence is modeled 
for the length scales of the flow which are much larger 
than the particle diameter, dp << L]. A k-e model which 
accounts for the wake effects was presented by Yoko- 
mine and Shimizu. s6 

Moreover, the present k - e  model, expressed by Eqs 
(149) and (151), is only valid for dilute, turbulent, fully 
developed two-phase flows: the "high Reynolds 
number"  k-e model. The subject of interest in this 
study is applications to fluidization, which means 
confined flows. Near walls, regions exist where the 
local Reynolds number of turbulence, Ret = C~,k2fle, v l, is 
small and viscous effects dominate over the turbulent 
ones. There are two methods to deal with this problem, 
"wall functions" and "low Reynolds number"  k-e 
models. Wall functions have been extensively treated for 
single-phase flows, but there are few results concerning 
two-phase flows. Rizk and Elgobashi s7 showed by means 
of a low Reynolds number model, that, even for dilute 
suspensions, the use of the law of the wall is questionable 
and that a significant deviation from single-phase flow 
can occur with a relatively low particle volume fraction, 
for example a deviation of U + of 16% at y+ = 30, for 
oe2 = 0.004. Bolio et al. ss used a low Reynolds number 
model, the k-e model of Myong and Kasagi, s9 a choice 
motivated by a comparative study of low Reynolds 
number k-e models. 9° The model presented by Bolio 
et al. rises fundamental questions concerning the 

universality of the constants Ok,, %,, C,, and C,2. 
Bolio et al. made a sensitivity analysis on their k-e 
model by varying the model constants 
ok,, %,, C~, and C~= over an interval + 0.1 and found 
that their predictions did not exhibit a significant 
sensitivity to these variations. However, this does not 
give any indication of the modification of the constants 
due to the presence of particles. 

A more systematic investigation was done by Squires 
and Eaton 91 based on their DNS database, sl The DNS 
database is generated from particle-laden "homoge- 
neous isotroplc turbulence" and therefore the influence 
of the presence of particles is investigated only for C~2 
and C~3. Results are presented for the following cases: a 
ratio of particle relaxation time to time scale of 
turbulence, ~2/~ ,  ranging from 0.14 to 1.5, and a 
loading, X,2, ranging from 0 to 1.0. The results show 
that, for example, for ~2/~ =0.14 and X,2 = 1.0, C~2 
increases by a factor of 6 and C~ decreases by a factor of 
4 compared to the single-phase flow values. For 
~2/r~ = 1.5, the influence of particles does not depend 
very much on the loading. 

An attempt to account for particle effects on C, was 
made by Cao and Ahmadi, 92 who proposed correcting 
the turbulent viscosity by modifying C~ as C~, = 0.09C.*, 
where C~ is given by C~- '  = 1 + (~121~1)(1 -- O/210[m) ].  
In summary, more research is needed in this field. 

4.5. Low Reynolds Number  k~-e l  Model  

There are several low Reynolds number k-e models 
for single-phase flows. Reviews of these models can be 
found in Patel et al. 93 and Wilcox. 59 In low Reynolds 
number k-e models, the entire boundary layer is solved 
and the viscous effects at the wall are accounted for by 
means of damping functions. The study of the limiting 
behavior of the fluctuating velocities near the wall leads 
to two implementations of the low Reynolds number k-e 
model. 

The first implementation is to modify the e, equation 
and solve it instead for ~,, defined by ~, = e, - ew. Here, 
ew represents the dissipation rate at the wall, which can 
be defined in several ways, the most famous being 
e w m 2V l (O V/'~i/0y)2. 75 This solution has the advantage of 
having a Dirichlet boundary condition, which reads 
g(y = 0) = 0. The transport equation for g is 

o,_ 2-(o 
" 'P ' - f i t  = " Ogre) 

°qPl gLf' C', uY-~xyxy i 

+ I ' I H  +E ,  (153) 

wherefj and f2 are damping functions and E accounts for 
consistency at the wall. This term must satisfy 

oL,plV, fJ2cq--~'J'OLlPlf2Ce2~-l"F]"Iil'{'E=O. (154) 

If the influence of particles can be neglected, E can be 
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modeled as for single-phase flows. When the dissipation 
rate equation (Eq. (151)) is solved for gi, the transport 
equation for k~ reads 

D l k  1 O [ _  3klX~ 3Uli  
0/1'01 D-~- OX m t ljk' ~Xm) --0/l,0lMlim OX-"-'m 

+ 0/1,011-I1 - -  0/1P161 - -  0 / l P l E l w ,  (155) 

where the turbulent viscosity is defined by l,~ = Cj~k21¢l 
(see Eq. (146)) andf~ is a damping function. The low 
Reynolds number model is then defined by a modified t l 
equation, three damping functions,f~,fl and f2, the value 
of the dissipation rate at the wall, ew, and an additional 
term, E, for consistency at the wall. The boundary con- 
ditions are kL ---- ~i = 0 for y = 0. 

The second possible implementation is to solve the 
dissipation rate equation for el ( ~  = 0 and E = 0) and 
find a suitable boundary condition at the wall. The low 
Reynolds number k-E model is then defined by the three 
damping functions, f~, f i  and f2, and the boundary 
conditions ki = 0 and e I = lqOk2/Oy 2 or Oei/Oy = 0. 94 

Reviews of these models can be found in Patel et al. 93 
and Wilcox. 59 

In the two-phase flow approach, the formulation of a 
low Reynolds number k-e model is quite intricate. 
Damping functions and boundary conditions must 
account for the presence of particles. There has been 
almost no work done in this field; most researchers use 
the single-phase results. In general, more research is 
needed in this field. 

4.6. Concluding Remarks 

The formulation of a model which describes the 
velocity fluctuations in the gas phase is a difficult task. 
When using a k l - t i  model, the main difficulties are: (1) 
to find values of the constants ok,, o~,, Cu, C,,, C~ and 
C,3, which account for the presence of particles; (2) to 
find an accurate form of the interaction terms, HI and 
HI l, if wake effects are important; and (3) to find a 
proper treatment of the wall layer when particles are 
present. More research is needed in this field. 

5. D I S C R E T E  P H A S E  F L U C T U A T I O N S  

The models presented here are a direct application of 
the kinetic theory of granular flow (Section 2) and of the 
models of fluid-particle interactions (Section 3). Three 
models are presented, the models of Koch 23 (algebraic 
models), a two-equation model and a second-order 
closure model. The two-equation model, called the k : -  
k l2 model, is based on two transport equations, one for 
the turbulent kinetic energy of the discrete phase, k2, and 
one for the fluid-particle velocity covariance, kt2. The 
second-order closure model, similar to an RSM in single- 
phase flow, is based on the transport equation for the 
second-order velocity moment, M2q (Eq. (30)). 

5.1. Algebraic Models 

Koch 23 gave asymptotic steady state solutions of the 
energy equations for Re << 1 and St >> 1 (Section 3). 
For very massive particles, St >> 0/2 3/2, in a homo- 
geneous suspension at steady state, the granular 
temperature is given by T2 = St-  2/3Uf/(36ir)l/3, where 
the Stokes number has been redefined as 
St=2[Url~2/dp. For moderately massive particles, 
0/2 3/4 << St << 0/2- 3/5, in a homogeneous suspension at 
steady state, the stress tensor is defined by (Section 3): 
M211 : 0 . 8 0 2 U r 2 S t  - 2/3 and M 2 3  - = 0.034U2St- z'3. 

Algebraic models can also be derived from the two- 
equation model (see Section 5.2). These models are 
based on the assumption of local equilibrium: the only 
terms remaining are production, dissipation and interac- 
tion terms. Examples of such models are given, for 
example, by Boemer et al. 95 

5.2. Two-equation Model 

The transport equation for turbulent kinetic energy 
of the discrete phase, k 2 =- < u2i'u2i' ~ 2  /2 related to 

3 the granular temperature by k2 = ~ / ' 2 ,  can be written 
using Eq. (30) with i = j .  This equation reads 

D2k 2 1 0 OU2i 
0/202 Dt ~2 O~ii Eijj - ~"2q OXj 

- 0/2~02(2k2 - k 1 2 ) +  lXjj. (156) 
~2 Z 

From the previous results, Eq. (156) becomes 

D2k2Dt 0 /" Ok2"X _ OU2i_~jxj ~PZ(2kz 
0/2'02 = ~x/t  Dk2 -~-x/) - L2/) k12) 

' 1 2  

e 2 _ 1 k 
+0/202- -~ -  2 2, (157) 

where Dk2 = 0/2"02(K~ + K~), K~ and K~ are defined by 
Eqs (79) and (80), respectively. The effective stress 
tensor is given by I~20 = Oij + 0/2P2M2ij. The collisional 
stress tensor, Ois, is given by Eq. (64) and the second- 
order moment, M2q, by Eq. (68). The fluid-particle 
velocity covariance, k12, is given by Eq. (119), 

o5 o (o Okl2  0/2"0:-ffk,:= W)  
OU2i 

- o/21o2 ( Uli"u2j' ~2  - -  % 

OUli ..}. ]-'l 
-- 0/2P2 ~ U lj"u2i ' ~ 2 ~ X j  I 112 

- 0/2P2eI2, (158) 

where Dk,2 "=0/2P2e~210k I • The turbulent fluid-particle 
viscosity is given by I,~2 = k12"r~2/3 and the destruction 
term by E l 2 = k l 2 / ' r ~ 2 .  The fluid-particle velocity 
correlation t enso r ,  (U"ljU2i'~2, is defined by Eq. 
(121) and the phase interaction term, II12, is given by 
Eq. (120). 
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5.3. Second-order Closure Model 

The second-order moment closure is based on the 
transport equations for the second-order moment of the 
particle velocity fluctuations, M2i j = < u2i' u2/>2 (Eq. 
(30)), which reads 

D 2 O E..m _ E2im OU2j 
Ot2P2 ~ tM2/ j  = --  OX m o OX m 

OU2i 2°t202"M . . - M  .." ' .. 
-- ~2jm OX m 7~12 I, 2q 121/) -P Xff. 

(159) 

In this equation, the terms have been defined before: the 
third-order tensor, Eijm = O ijm + a2la2Mzom, where O ijm is 
defined by Eq. (65); the source term, X/j, is given by Eq. 
(61), and the fluid-particle velocity correlation tensor, 
Ml2ij. To close the system, closure equations for the 
third-order velocity moment, M2ijm = < U2i' U2jt U2m'>2, 
and M~2ij must be derived. 

A closure equation for the third-order velocity 
moment can be derived from Eq. (32), neglecting the 
mean transport and mean gradient effects. 27 This gives 

aO~21a2M2ijr n 0 i e t 0 
OXm : -~Xm~Ol2P2g2mn~xmM2i j ) ,  (160) 

where the diffusivity tensor is 

/ G ~ 2  M ~ / G~ D 
g ~ n n ~ 1 2 ~ - ~ M l 2 i j - q  - 2mn)/(~12"~--~22) , (161) 

and where D = (1 + e)(49 - 33e)/100. The constants G ~ 
and G' are 9/5 and 3CJ2C~', respectively, where 
C~' = 0.25. Various models for a transport equation for 
the fluid-particle velocity correlation tensor are found in 
Eqs (119) and (121) or Eq. (136). 

5.4. Concluding Remarks 

The second-order velocity moment can be modeled in 
three ways: (1) algebraic models, (2) two-equation 
models and (3) second-order closure models. Whenever 
possible, algebraic models should be used for the sake of 
simplicity. However, time and spatial derivative terms 
are not always negligible: if the quasi-isotropy assump- 
tion (Boussinesq approximation) holds, two-equation 
models are a good alternative to algebraic models. When 
the flow is highly anisotropic, for example vertical gas- 
solid flows, second-order closure models should be used. 

6. BOUNDARY CONDITIONS 

An accurate description of the boundary conditions is 
necessary. An example of the importance of the wall 
boundary conditions in the discrete phase can be found in 
the computations of Louge et al. 54 For computations of 
dilute gas-solid flows in a vertical riser, Louge et al. 
noticed that, at least in their narrow rig, the overall 
pressure drop was very sensitive to changes in the value 
of the coefficient of dynamic friction. In the following 

section, boundary conditions at a solid wall are given for 
the continuous and the discrete phases. Inlet and outlet 
boundary conditions are not treated here, as these are 
case dependent, but, nevertheless, their importance 
should not be underestimated. In fiuidization, it has 
been shown 96 that the pressure drop over the air 
distributor gives different types of flow patterns in the 
lower region of the riser, which in turn probably 
influences the upper regions. Consequently, in some 
applications, the inlet boundary conditions should 
definitely account for the coupling between the plenum 
or the pipe system and the combustion chamber. To our 
knowledge, such an attempt has not been made and this 
question is still open. 

6.1. Continuous Phase Boundary Conditions 

When local agglomeration of particles occurs in the 
near wall region, the flow field is disturbed. This is why, 
as mentioned by Rizk and Elgobashi s7 and He and 
Simonin, Is the use of the law of the wall might be 
questionable. However, according to Louge et al., 54 in 
very dilute suspensions, the law of the wall should not be 
greatly affected by the presence of particles. This might 
not be the case in fiuidization, but the approach is 
presented as it can be used in other gas-solid flows. The 
first node of the computational domain is placed in the 
log-layer at 30 < y+ < 100, and the tangential velocity 
component is given by the law of the wall, 
UI + =ln(Ey)+lr, where the dimensionless quantities 
are defined by Ul + = Ulxlu* and y+ =yu*/p I. Kfirm~in's 
constants are r = 0.41 and E = 9.0. The friction velocity 
is defined in terms of the stress tensor at the wall, rw, as 
r w = - p l u  .2. In the log-layer, the solution to the 
momentum equation and the kt-el  equations is 

*2 UI + =ln(Ey+)lr, kl =u  /V/"~ and el =u*31ry. Sol- 
ving the law of the wall for u* gives the boundary 
conditions for k l and E I and the value of the turbulent 
viscosity, ~ = v ly + dln( Ey + ). Boundary conditions for 
the velocity components are U ~ = 0. If the low Reynolds 
number k-¢ model is used, the boundary layer is solved 
in its integrality. The first node is placed, for example, at 
y+ = 1. The boundary conditions for the mean velocity 
and the turbulent kinetic energy are U l = 0 and k I = 0 ,  

respectively. The boundary condition for dissipation 
depends on the model which is used (Section 4). It can be 
~l = 0  or vlOk2/Oy or Oel/Oy=O. 

6.2. Discrete Phase Boundary Conditions 

Boundary conditions have to be specified at the wall 
for the mean velocity, U2, the turbulent kinetic energy, 
k:, the fluid-particle velocity covariance, km and the 
mean particle volume concentration, t~2. For t~2 and kl2, 
it is customary to use Oa2/On = 0 and Ok~2/On = 0 o r  k12 

= O, where n is the direction normal to the wall. For the 
velocity field and the granular temperature, a zero 
momentum and turbulent kinetic energy flux at the wall, 
i.e. OU2/On = 0 (free slip) and Ok2/On = 0 are often 
formulated. 
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In rapid granular flows, it has been observed 0.4 
experimentally that the roughness of the boundaries is 
a critical parameter concerning the magnitude, for 0.35 
example, of shear stresses (cf. Savage and Sayed 97 and 0.3 
Hanes and Inmang8). The problem of the formulation of 
boundary conditions in rapid granular flows was first (in 0.25 
a formal way) addressed by Jenkins and Richman 99 and ~ 0.2 
Richman ~°° for frictionless spheres. Friction was 
accounted for by Johnsson and Jackson, 1°1 following 0.15 
the work of Hui et a/., 1°2 and by Jenkins 1°3 using 0.1 
different arguments. However, in the model of Johnsson 
and Jackson, colliding particles (distinction is made 0.05 
between colliding and sliding particles) are characterized 
by a specularity coefficient whose physical meaning is 
not obvious. As a matter of fact, attention is now 
focussed on the work of Jenkins, which is based on a 
more rigorous approach (probability density function 
approach together with wall-particle collision proper- 
ties), and in the following it is assumed that the results of 
Jenkins are valid for gas-solid flows. 

Jenkins derived a theory, using a simple velocity 
distribution function (it is assumed that the three 
components of the second-order moment of the fluctuat- 
ing velocity are equal to the granular temperature at the 
wall), to calculate the rate at which momentum and 
energy are supplied to the flow per unit area of the wall. 
From these two quantities, boundary conditions can be 
derived for U2x and k2. According to Jenkins, the shear 
stress, S, and the energy flux, Q, at the wall can be related 
to the normal shear stress, N, wall-particle collisional 
properties (normal and tangential restitution coefficient, 
ew, 3 ,  and coefficient of friction /zw) and the ratio 
r= u 2 x l J v ~ 2  (here x is the direction parallel to the 
wall and the normal direction will be denoted y). The 
latter parameter, r, represents the ratio of the slip velocity 
and the square root of the turbulent kinetic energy for the 
discrete phase. The analytical results of Jenkins are valid 
for two asymptotic cases: a case where the contact point 
slides (small friction/all sliding limit) and a case where 
the contact point sticks (large friction/no sliding limit; in 
this case it is necessary to assume r >> 1). These results 
were extended by the computer simulations of Louge, 1°4 where 

who gave an empirical fit. Louge noticed that, while the 
shear stress was well predicted by Jenkins, the energy 
flux was over-predicted in both limits. 

In the following, the correlations of Louge are 
presented. For wall-particle collisional properties ver- 
ifying 0.1 - / z w  -< 0.4, 0.5 --< ew <- 1 and 0 -</~0 -< 0.6, 
the ratio of the shear stress S and the normal stress N is, 
according to Louge, 

S 
=/zw(1 - exp( - ar//zw)), (162) 

where the exponent a is defined by 

a = alexp( - a2(1 - ew))(1 - exp( - a3/z))(1 +/~0) a', 

(163) 

with a '  = a4(1 - exp( - as/z)). For the constants al-a5, 
Louge gives al = 0.3537, a2 = 1.042, a3 = 4.453, a4 = 
2.068 and a5 = 0.8468. The ratio SIN is plotted in 

~ = 0 . 4 ~  
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Fig. 5. SIN(a) and QINv~T2 (b) as a function o f  r, wi th e = 0.9 
and/~ = 0.1, 0.2, 0.3 and 0.4 (particle rotation is neglected, so 

that 30 = 0). 

Fig. 5(a) for e = 0.9 and various friction coefficients. 
For the energy flux at the wall, Q, Louge identifies two 
asymptotic limits. When r ---, 0, 

Q =Blr2+B2r-B3,  (164) 

BI =bl / (1  +ew), 

B 2 = b2(1 - e,)(1 - exp( - b3/zw)), 

B 3 =B4(1 - exp( - Bs/Z,) ), 

B4 = b4(1 - ew) 2 d- bs(1 - ew) + b6, 

B5 =bT(1 - ew) +bs .  

The constants bl-b8 are given as bl = 0.02, b: = 0.3, 
b3 =3.4 ,  b4 = 1.8, b5 = 1.1, b6 = 0.1, b7 = 4.6, and 
b8 = 8.6. When r ---, 0% 

N ~ ~ ~ "  = dl (1 + ew)/z~ + d2(1 - e)/zw - d3( 1 - ew), 

(166) 

where d l =  0.522, d2 = 2.57 and d3 = 1.08. The ratio 
Q I N v ~  2 is plotted in Fig. 5(b) for e = 0.9 and different 
friction coefficients (the transition value of r 
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between the two regions is given by the positive root of 
BI r2 + B 2 r - ( B  3 + d l ( l + e w ) p  2 + d2(1-e)pw 
- d 3 ( l  - e w ) )  = 0 ) .  

The boundary conditions can then be derived from 
Mir.2ijnj and qlnl = Q (cf. Jenkinsl°3). Here, nl is the unit 
vector normal to the wall and pointing into the flow. M~, 
whose normal and tangential components are N and S, 
respectively, is the rate of momentum supplied to the 
flow per unit area of the wall, and q~ is the energy flux in 
the flow. The boundary conditions read 

OUEx Q = ot2P2K 2 0ff.~. (167) N = ~2yy, S = t~2P2P 2 W '  

Finally, in a recent paper, Jenkins and Louge 1°5 have 
improved the analytical results of Jenkins 1°3 for the 
energy flux in both limits, and the new expressions 
agree well with the computer simulations of Louge. 

7. DISCUSSION 

7.1. Usefulness o f  the Models 

We start with some final remarks on the kinetic theory 
of granular flow presented in Section 2 and on the closure 
models presented in Section 5, where closure models for 
the collisional stress tensor, the diffusivity of the 
granular temperature, and a transport equation for the 
second-order velocity moments are given. These results 
are almost free from empirical constants: only the 
restitution coefficient, e, and the radial distribution 
function, go, have to be given. According to Lun and 
Savage, 37 the restitution coefficient depends, at least, on 
the material of the particles and on the relative velocity 
between two colliding particles. In our analysis the 
restitution coefficient is constant: its value has been 
measured for different cases. 43 Sensitivity analyses on 
the restitution coefficient have been carded out in dilute 
suspensions by Bolio et al., as and only a minor 
sensitivity in the predictions was observed. In dense 
suspensions, Balzer et al. 29 found a great sensitivity of 
this parameter: numerical results showed that, for 
relatively small values of e (approximately 0.9), the 
non-stationary motion of the bed (bubbling motion) was 
changed (more bubbles were observed). Low values of 
the restitution coefficient decrease the granular tempera- 
ture, which in turn decreases viscosity and diffusivity, 
and in this way larger gradients are observed. However, 
the limitations of the kinetic theory of granular flow do 
not only result from the empirical factors, but mostly 
from the assumptions made to derive this theory: flows 
with small spatial gradients, nearly elastic particles, low 
level of anisotropy, binary collisions and a simplified 
model of particle-particle collision. A more general 
formulation than the one of Grad 25 might be needed: this 
could be achieved by a more advanced particle velocity 
probability density function, but mathematical diffi- 
culties are encountered. 3t More research is needed to derive 
a general model of the particle-particle interactions. It 

should be emphasized that the model presented in this 
work includes the influence of the gas phase on the 
granular flow, an influence which is not taken into 
account in other formulations and therefore reduces the 
quantitative ability of models used by, for example, Ding 
and Gidaspow 14 and Bolio et al. ss to predict accurate 
results in the dilute case, ~'[ >> ~2. To illustrate this 
effect, a sensitivity analysis on the influence of an 
interstitial gas on granular flows was done by Bo~lle et 

al. 3~ This does not mean that particle-particle collision 
is not an important mechanism in dilute flows. For 
example, Louge et al. 54 found, in their computations for 
comparisons with the measurements of Tsuji et al., 72 
positive particle velocities through the whole cross- 
section of the duct, even close to the wall, where the gas 
velocity is near zero, and where the particles are 
consequently expected to fall. According to Louge 
et al., observation of particle velocities higher than gas 
velocities in the near wall region is due to the shear stress 
in the particle phase. Particles located further away from 
the wall have a positive velocity and they transfer 
momentum through collisions with particles near the 
wail. In addition, in the kinetic theory proposed in the 
present work, only binary collisions were considered. It 
has been shown experimentaUy, 1°6 by means of a high 
speed video system and a reflective type of particle 
image scope, that triple or quadruple collisions occur. In 
dense suspensions, the probability of multiple collisions 
is expected to be relatively high, but in dilute suspen- 
sions a binary collision model seems to be appropriate. 
Other analyses are necessary to determine if collisions 
involving more than two particles are encountered as 
frequently as the binary collisions. Finally, as far as the 
turbulent motion is concerned (Section 5), it seems that 
the local equilibrium hypothesis (Boussinesq approx- 
imation) is satisfied in the case of dense fluidization, 
whereas in a dilute suspension this assumption is more 
uncertain. In this case, separate equations for the 
turbulent stresses have to be solved. 4 Anisotropy has 
been observed experimentally by Azario et al., t°7 who 
have reported a high level of anisotropy (about a factor 
of two) in dilute suspensions. 

In Section 3, closure models are given for the drift 
velocity and the fluid-particle velocity correlation 
tensor. Practical closure models are limited to the case 
of homogeneous isotropic turbulence or homogeneous 
simple shear flows, because in these cases the description 
of turbulence is analytically simple. In the coarse particle 
case, ~lr<< 1 or rt~2<<~2, particle motion is only 
slightly affected by the fluid fluctuations and the 
modeling of diffusion caused by the drift velocity is 
not critical. On the contrary, in the scalar case, ~/r >> lor 
z~2 >> ~2, particle motion is governed by the fluid 
turbulence, and the influence of the drift velocity is 
critical. Some models omit the drift velocity, whereas 
other models, for example, those of Louge et al. 54 and 
Bolio et al., ss use the simplified formulation of Koch. 23 
For accurate modeling of this term, the general 
formulation of Simonin, 27 using the fluid-particle joint 
probability density function and the Langevin equation, 
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should be used. In addition, one of the key issues of 
the Eulerian/Eulerian formulation is to derive an 
accurate model for the fluid-particle velocity correla- 
tion tensor, as this term is very important for two-way 
coupling. This term appears in the interfacial terms of 
the transport equations for the fluctuating motion and 
can give production or destruction of the velocity 
fluctuations in both phases. More research is needed in 
this field for an accurate formulation of the transport 
equation of the fluid-particle velocity correlation 
tensor, <Uli"U2i'>2. Indeed, the formulations of 
Simonin are given for very dilute flows, where the 
influence of particle-particle collisions can be neglected. 
As the suspension becomes denser, the effect of 
collisions should influence the fluid-particle velocity 
correlation tensor. 

In Section 4, closure models are given for gas velocity 
fluctuations in the case of dilute flows with a low 
anisotropy level ( k r e l  model). The limitations of this 
model are numerous, and the formulation as it stands is 
not satisfactory for the following reasons. (1) The values 
of the constants are not known for application to two- 
phase flow, and some studies in dilute flows have shown 
that they are different from the single-phase flow case, 91 
depending on the loading and on the particles and the gas 
phase turbulence properties. (2) The interaction term 
represents momentum exchange between the phases; 
particles are accelerated by the gas phase and can give 
back some of their momentum to the gas phase in regions 
where the turbulent kinetic energy of the gas phase is 
small. However, this term does not represent the 
interaction at the particle level, such as wakes, which 
are supposed to be in local equilibrium. The present two- 
equation model is written for scales of turbulence which 
are large compared to the particle size, otherwise the 
model becomes very crude. (3) When particles agglom- 
erate in the near wall region, the flow field is disturbed. 
Kaftori et al. 1°8 studied the wall region in a horizontal 
water-particle flow, with P2 = 1.05 kg m -3, d p =  100, 
275 and 900/~m, and X t2 = 10-'* and 2 × 10 -4. The 
study showed that the particles do not modify the 
structure of turbulence, but modify some of its 
characteristics: the frequency of the coherent structures 
is modified by the particles in the wall region. This has 
also been observed in numerical simulations by 
Komori et al. 1°9 In addition, the particles in the wall 
region follow a pattern which is directly related to the 
coherent structures in the wall region. Indeed, it has been 
shown that the particle motion in an horizontal wall 
region can be affected by different types of wall-particle 
interactions: (1) wall-particle collisions tend to lift 
up particles from the wall region; ll° (2) the Saffman 
force also tends to lift up particles from the wall 
region; (3) coherent structures, characterized by 
ejection and in-sweep motions, can influence particle 
motion both ways; Its (4) if the inertia of the particles is 
sufficiently high, particles can be trapped in the viscous 
layer. 111 These results are valid for dilute suspensions 
and they cannot be readily generalized to dense 
suspensions. 

7.2. Application to Fluidization 

In this section, the discussion is separated into two 
parts, which correspond to two levels of understanding. 
The first level, the most fundamental, is an analysis of 
microphenomena, whereas the second level is an 
analysis of macrophenomena. By microphenomena is 
meant the mechanisms which are characteristic of the 
behavior of a single particle: to carry out an analysis of 
these phenomena, particle dispersion in simple turbulent 
flows is discussed, as well as estimates of the 
characteristic time scales in the freeboard region of a 
CFBC. By macrophenomena is meant an analysis of the 
mechanisms which are characteristic of the behavior of a 
group of particles (mechanisms which can be visualized 
by experiments): to do this, the flow pattern in a CFBC is 
discussed. 

7.2.1. Gas-sol id  f lows in the frame o f  fluidization 

In this section, an analysis of the microphenomena is 
made. In fluidization, and especially in a CFB, the 
motion of a particle is described by three parameters: the 
particle relaxation time (drag force), gravity and 
particle-particle collision time (collision mechanisms). 
The particle mass loadings observed in a CFB render 
difficult comparisons between available results, mostly 
concerned with very dilute suspensions, and the real 
situation of a CFB riser. However, these results are 
presented here because they give a basic understanding 
of particle motion in a turbulent flow field. Few 
experimental results are available in the literature, so 
that most researchers use LES and DNS to generate 
turbulence in the continuous phase and a Lagrangian 
description of the discrete phase in order to study the 
behavior of particles in a turbulent flow field. Unfortu- 
nately, most of these studies assume one-way coupling 
(the flows are dilute enough to neglect the influence of 
particles on turbulence and the influence of particle- 
particle collisions). These studies have been carried out 
in ideal cases: homogeneous isotropic turbulence (with 
and without gravity) and homogeneous turbulent shear 
flows (without crossing trajectory effects). For homo- 
geneous isotropic turbulence, many researchers have 
focussed their attention on particle dispersion. In this 
case, the combined effect of particle inertia and fluid 
turbulence results in a low level of particle velocity 
fluctuations, below that of the gas. 16 For particles in 
homogeneous isotropic turbulence in a gravity field, 
particle dispersion in the streamwise direction (gravity 
direction in the treated case) is higher than particle 
dispersion in the transverse direction due to the 
continuity effect. 17 A detailed study of the three- 
dimensional fluctuating motion of particles in homo- 
geneous isotropic turbulence has been carried out by 
Hajji et aL 112 (the study is presented for a vertical flow, 
streamwise direction, with a given mean velocity). The 
computations show that, for particles in homogeneous 
isotropic turbulence in a gravity field, particle velocity 
fluctuations in the streamwise direction (gravity 
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direction) are higher than particle velocity fluctuations in 
the transverse direction, and that the particle velocity 
fluctuations are lower than the gas velocity fluctuations. 
Hajji e t  al .  also made a sensitivity analysis on particle 
diameter, particle density, turbulent intensity of the fluid, 
Eulerian integral length scale and mean relative velocity. 
The study showed that when the particle diameter 
increases, the particle velocity fluctuations decrease. 
The difference between the streamwise and the spanwise 
fluctuations is of course smaller when particles have a 
small diameter (greater sensitivity to the fluid fluctu- 
ations), but converges towards a fixed value for larger 
diameters. The particle density influences the fluctu- 
ations in such a way that, the higher the density, the 
lower the particle velocity fluctuations (increased 
inertia). The rest of the study treated different particle 
densities and diameters. There was no effect of the 
turbulent intensity of the fluid: the ratio of the particle to 
fluid turbulent intensity was unchanged in both direc- 
tions. On the contrary, the fluid Eulerian integral scale 
seems to be proportional to the particle velocity 
fluctuations in both directions. Finally, the higher the 
relative velocity, the higher the particle velocity 
fluctuations, with a stronger effect in the streamwise 
direction. 

For homogeneous simple shear flows, in the absence 
of an imposed bodyforce (gravity), Simonin e t  al.  s3 have 
observed that the degree of anisotropy between the 
particle and the gas velocity fluctuations increases with 
increasing particle relaxation time. More precisely, on 
the one hand, the particle velocity fluctuations in the 
streamwise direction increase with increasing particle 
relaxation time, and exceed the gas velocity fluctuations. 
On the other hand, particle velocity fluctuations in the 
transverse direction decrease with particle relaxation 
time. These results mean that inertia increases the degree 
of anisotropy. Such observations were also reported by 
Roger and Eaton, ~3 Reeks 56 and Kulick e t  al.  ~ 24 This 

anisotropy can be measured in terms of the dimension- 
less anisotropy for the particle velocity fluctuations, 
b2 r = < b i 2 i , u 2 j t  > / ( u 2 i , u 2  i ,  > _ 5ill 3 83 The study Y _ _ • 
of Simonin e t  al.  s3 gives an answer on the influence of 
the first parameter (inertia) in a case where gravity 
(crossing trajectory effects) and collisions are not 
included. As far as collisions are concerned, they lead 
to a return to isotropy, a phenomenon that can be 
observed in numerical simulations of dense fluidized 
beds. In the general case, where all three mechanisms 
are considered, He and Simonin 85 presented a study 
concerning gas-particle vertical pneumatic conveying, 
including wall-particle bouncing. It was found that the 
streamwise particle velocity fluctuations are dominant 
due to the production by the mean gradient, whereas the 
transverse particle velocity fluctuations are controlled by 
particle-particle collisions, which act as a redistribution 
mechanism. 

Two-way coupling (modulation of gas phase turbu- 
lence by particles) has not been included in the studies 
mentioned above. Some experimental and numerical 
results have been discussed in Section 4, and the 
conclusion seems to be that modulation of turbulence 
by particles follows a selective spectral redistribution 
rather than a uniform distribution. This is strengthened 
by the observations of Kulick e t a l .  114 in fully developed 
channel flow (the channel is vertical and gas is flowing 
downwards): turbulence modulation (destruction in this 
case) is stronger in the transverse direction than in the 
streamwise direction, with a particle mass loading 
varying from zero to one and particles smaller than the 
Kolmogorov scale, except in the near wall region. 
According to the authors, this phenomenon can be 
explained by the power spectra of single-phase flow, 
which show that energy in the transverse direction is 
contained at much higher wavenumbers than in the 
streamwise direction. Heavy particles are less responsive 
to the higher frequencies. In general, most studies are far 
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from the flow encountered in a CFB, but they give 
valuable information on the fundamental mechanisms 
involved in gas-solid suspensions. More research is 
needed for suspensions at higher mass loading before 
one knows to what extent the present results can be 
applied to fluidization. 

Estimates of the time scales presented in Section I can 
be made, more precisely estimates of the characteristic 
time scale ratios, T/r = r~2/~2 and ~/c = ~2/r~, in the core 
region of the transport zone of a CFBC. The ratios are 
evaluated from algebraic models for a simple shear 
flow 1~5 in the following case representative of the 
transport zone: hot conditions (850°C), a2 = 0.005, 02/ 
p i = 2600 and a fluidization velocity of 5 m sec -~. The 
solution to the set of non-linear algebraic equations is 
plotted in Fig. 6. If we consider the range 80 #m to 
I mm, which is typical for a CFBC, the results show that 
in the transport zone, the ratio ~2/r~ is always smaller 
than one. This means that the particle mean free path is 
influenced by the presence of the gas, and therefore this 
effect should be accounted for in the expression of the 
discrete phase viscosity (Section 2 and Bo~lle et al.31). In 
addition, the ratio r]2/~2 is larger than one for particles 
smaller than approximately 100 ttm, and the motion of 
particles is governed by gas phase turbulence. In this 
case, the drift velocity is a key parameter for accurate 
modeling. For particle sizes above 100 #m the reverse is 
observed, and the motion of particles is governed by the 
mean flow. 

7.2.2. Gas-solid flows applied to CFB combustors 

In this section, an analysis of the macrophenomena is 
made. At Chalmers University of Technology, exper- 
imental studies in a 12-MW CFBC (1.7 m × 1.5 m × 
12 m) and a two-dimensional cold rig model (0.7 m x 
0.12 m × 8.5 m) have given an overall picture of the 
two-phase mean flow structure. 96"116"t17 The riser is 
divided into three distinct, but interacting regions: the 
bottom bed, the splash zone and the transport zone. The 
bottom bed, typically 0.5 m in height with a particle 
concentration of 1000 kg m -3 (the particle density is 
typically 2600kg m-3), is a region which has the 
characteristics of a bubbling bed. 96.lls Above the 
bottom bed, the splash zone, typically 1.5 m in height 
with a particle concentration decreasing from 1000 to 
20 kg m -3, is a region with important concentration 
gradients and backmixing activity. Above the splash 
zone, the transport zone, typically with a particle 
concentration of 10 kg m -3, is a region which exhibits 
a core/wall layer structure: particles are entrained 
upwards in the core region and fall down along the 
walls in a thin boundary layer. 119 In the transport zone, 
the volume concentration of the particle phase is not 
homogeneous; regions where the volume fraction is high 
compared to the mean volume concentration are 
characterized by particle agglomeration or clusters, 
which can be defined by various criteria, t2°'121 A 
detailed description of the vertical distribution of solids 
in a CFBC can be found in Johnsson and Leckner.122 The 

set of equations presented above to describe isothermal 
turbulent gas-solid flows must be able to predict the 
mean flow structure of a CFBC, and especially the bottom 
bed, the particle boundary layer and the inhomogeneities. 

The bottom bed is a key parameter for combustion 
predictions, as it is the part of the combustor, where most 
of the fuel is contained. The bubbles formed in the 
bottom bed are believed to generate large scale 
turbulence, 123 which in turn should be coupled to the 
splash zone, where the breakdown of the gas phase 
turbulent scales takes place, or in other words, where 
particles are accelerated and decelerated. Comprehen- 
sive numerical simulations 4 display the main features of 
the flow field of a CFB combustion chamber. One of the 
principal items of discussion is the absence of a bottom 
bed in the calculations (sufficient measurements are 
lacking to verify if this is also the case in the boiler 
considered). There are some reasons for the lack of a 
bottom bed either in the calculations or in the real 
situation. (1) The total mass of particles in the 
combustion chamber is not sufficient to form a dense 
bottom bed (it has been observed experimentally that the 
bottom bed region can disappear when the total mass of 
solids in the combustion chamber is insufficient). (2) The 
granularity of the suspension in the boiler's bed differs 
from that of the single particle size of the calculations. 
(3) The boundary conditions: the set of equations is 
sensitive to boundary conditions. Proper boundary 
conditions at the wall, but also at the solid recirculation 
inlet, will give an accurate value of the recirculation rate, 
and this may affect the calculated bottom bed. 

The particle boundary layer is a key factor for accurate 
prediction of heat transfer in the combustion chamber of 
a CFBC: particles in the boundary layer exchange heat 
with the wall as they descend, but they also influence the 
mean beam length of radiation. The mechanisms 
responsible for the formation of the particle boundary 
layer are believed to be (1) the gas phase boundary layer 
and (2) the particle transport between the core region and 
the wall region. 1 ~7.124 In addition, the boundary layer is 
not a stationary, homogeneous flow pattern, but fluctua- 
tions of the volume fraction of solids can be observed, 120 
as well as backmixing of gas.125 These phenomena seem 
to be predicted by preliminary numerical simulations, 6° 
but validation is a task for further calculations. 

Inhomogeneities in the particle phase represent the 
non-stationary, non-homogeneous behavior of the flow 
pattern in a CFBC. There are three possible mechanisms 
which may cause inhomogeneities: the first mechanism 
is a local modification of the collision stress tensor. 4° A 
deeper insight into stability of rapid granular flows can 
be found, for example, in Babic 126 and McNamara. J27 In 
fluidization, particle collision is also identified as a 
reason for formation of inhomogeneities.128 The second 
effect is the preference for certain particles for low 
vorticity and high strain rate regions: ~ The third effect 
can be large scale turbulence) 23 The preferential 
concentration of particles by turbulence is presented by 
Eaton and Fressler ~29 in an extensive review article 
dealing with small particles at low mass loading (less 
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Fig. 7. Particle size distribution for bed material in the 12-MW boiler at Chalmers. 

than unity). In such a case, two main mechanisms for 
preferential concentration are identified: centrifuging of 
particles away from vortex cores and accumulation of 
particles in convergence zones. These phenomena 
appear when the particle relaxation time is of the same 
order of magnitude as the relevant time scale of gas 
phase fluctuations. When considering high mass loading 
and coarse particles, other mechanisms may occur, for 
example coarse particles create disturbances (wakes) 
which may result in the formation of inhomogeneities.130 

Finally, some comments on numerical simulations of 
CFBCs should be made. The research group at the 
Illinois Institute of Technology and the Argone National 
Laboratory initiated two-dimensional numerical simu- 
lations of CFBCs. The first simulations were performed 
using constant gas and particle phase viscosities, lal 
Comparisons with measurements showed that the mean 
flow parameters (profiles of ~2, U2y and Uly, where y is 
the vertical direction) were predicted fairly well. Later, 
the simulations were improved by introducing the kinetic 
theory of dry granular flow and large eddy simulation. 132 
No validation of the results was made but, as explained 
in Section 2, the theory of dry granular flow cannot be 
accurate in dilute suspensions and, in addition, large 
eddy simulation in a two-dimensional model is ques- 
tionable as large scale eddies are always three- 
dimensional. Additional simulations of the same type 
were performed by the research group at RWTH, 133 with 
an algebraic model for the granular temperature. 
Different models for the drag coefficient and the radial 
distribution function were tested. Comparison with 
vertical and radial profiles of particle volume fraction, 
c~2, showed reasonable agreement. Similar computations 
were also made by the research group at the Telemark 
Technological R&D Centre and the Telemark Institute of 
Technology, 134 but with a significant improvement: the 
authors presented efforts to simulate, after the work of 
Syamlal, 135 two-dimensional multi-phase (three particle 

sizes, four phases) fluidization, based on the theoretical 
results of Jenkins and Mancini. 136 The model given by 
Mathiesen et al. 134 for effective stress tensor in each 
phase is, at present, that of a dry granular flow. The 
simulations were compared to the measurements of 
Tadrist and Azario. 137 The results seem to predict 
segregation effects and the particle velocity fluctuations 
quite well. The most advanced simulations were done by 
the group at Electricit6 de France (EDF): 4 three- 
dimensional simulations of an industrial CFBC unit 
with the complete set of equations presented in this work, 
Eqs (1), (2), (93), (149), (151), (157) and (158). The 
validation of the time-averaged vertical pressure profile 
over a period of 30 sec showed that, generally, the model 
predicted the main features of the mean flow field fairly 
well. An attempt to make simplified simulations of large 
CFB units has been made by Kallio. t3s The results also 
gave reasonable agreement with the experimental 
observations. As a concluding remark, most simulations 
were performed for small CFB units (pilot plants), 
except for those of the EDF group. All simulations seem 
to give reasonable predictions of the main features of the 
mean flow field, but a more complete review is necessary 
for a closer look at these simulations, as other parameters 
are of great importance, for example the drag models, the 
validation procedure and so on. A more complete review 
of publications on simulation of the hydrodynamics of 
bubbling and circulating fluidized beds is given by 
Enwald et al. s 

7.3. Polydisperse Suspensions 

So far, to derive the results, particles have been treated 
as a population of identical, smooth, rigid, non-rotating 
spheres. The influence of these assumptions has been 
discussed previously, except the first one: that of 
identical spheres. The kinetic theory of granular flow 
(Section 2), as well as the closure models for the drift 



Turbulent gas-solid flows 293 

velocity and the stress tensors in both phases (Sections 
3-5), are derived assuming that the particles have the 
same diameter (monodisperse suspension). In most 
engineering applications and more precisely in a 
CFBC, we are dealing with "l~iydisperse suspensions", 
which means that the suspension consists of particles 
with different diameters and densities. In CFB appli- 
cations, the particle size distribution function covers a 
wide range of diameters, for a CFBC mainly particles 
between 100#m and 1 mm, with a particle density 
ranging from 2600 (silica sand) to 2000 kg m -3 (coal). 
The range of particle diameters is variable depending on 
the applications: it is mainly controlled, for small 
diameters, by the fractional efficiency of the cyclone, 
and for large diameters it is a result of the characteristics 
of the fuel particles (ash content and related properties) 
and of the limestone particles (fragmentation properties). 
Figure 7 displays an example of a typical particle size 
distribution function. 

Is it possible to draw conclusions for monodisperse 
suspensions which are valid for polydisperse ones 
represented by a mean diameter? This question needs 
to be answered both theoretically and experimentally. 
Experimentally, it can be shown that the mean diameter 
is not sufficient for the calculation of the recirculation 
rate in a CFBC; particle recirculation takes place for 
fluidization velocities lower than the free fall velocity of 
the mean particle diameter, mainly a contribution of the 
small particles whose free fall velocity is lower than that 
of the gas. On the contrary, it has been shown 
experimentally 139'1'~° that coarse particles (particles 
whose terminal velocity is higher than the fluidization 
velocity) can be fluidized and exit the combustion 
chamber. Fine particles collide with coarse particles and 
transfer momentum, so that the coarse particles can be 
fluidized. For accurate prediction of the recirculation 
mass flow rate, the particle size distribution of the bed 
material should be taken into account. ~¢~ Theoretical 
descriptions of suspensions with more than one particle 
size, employing the kinetic theory of granular flow 
reformulated by Jenkins and Mancini, t36 seem to be able 
to capture these phenomena. T M Yarin and Hetsroni ~42 
made a study of the influence of the particle size 
distribution function on the turbulence of the carrier 
fluid, taking into account two-way coupling. They 
studied dilute bidisperse suspensions (no collision 
mechanism), assuming that particles have Reynolds 
numbers below 110 (no wake effects) and that particles 
stay in the fluid element as long as this fluid element 
persists as en entity (non-settling particles). This implies 
a particle whose relaxation time and eddy-particle 
interaction time are at least of the same order of 
magnitude (Fig. 6). With these assumptions, Yarin and 
Hetsroni showed that the turbulence intensities of a 
bidisperse suspension depend on the mass fraction of 
each particle size, as well as on the total loading, 
diameter ratio, fluid-particle density ratio, particle 
Reynolds numbers and ratio of the mixing length to 
each particle diameter. They also showed that the fluid 
turbulence in a bidisperse system can be higher or lower 

than in a monodisperse system, depending on the ratio of 
the particle diameters and their mass contents. More 
precisely, let us consider the case of equal loading for the 
monodisperse and polydisperse suspensions, equal load- 
ing for each particle size. The diameters of the coarse and 
fine particles are denoted as dpl and dp2, respectively. 
The diameter of the monodisperse suspension is noted as 
do. The modulation of the carrier fluid turbulence is 
defined by M =  (Ulb'--Ulm')/Ulm', where Ulb' and ulm' 
represent the fluctuating velocities of the continuous 
phase in the bidisperse and monodisperse suspensions, 
respectively. Yarin and Hetsroni found that if de2 = do, 
then M increases when dpl increases. On the contrary, if 
dpl = do, then M decreases when dp2 decreases. 
According to Yarin and Hetsroni, this can be explained 
by an increase of the energy required to accelerate the 
particles when the diameter of the fine particles is 
reduced, whereas less energy is required to accelerate the 
particles when the diameter of the coarse particles is 
larger. In a second study, Yarin and Hetsroni ~4a modeled 
the vortex shedding phenomenon by assuming that the 
wake behind a particle is a stationary boundary layer. 
Assuming a self-similar form of the turbulent kinetic 
energy in the cross-section of the wake, the authors 
showed that, for a polydisperse suspension of coarse 
particles (index p), the turbulent kinetic energy gener- 
ated by the particles per unit volume of two-phase 
mixture can be written as 

n 
Ak I ~-~C ~ Urp2 fo lY  ~1"5~8/9 p=' ~,-~2~,,p,..op j , (168) 

where C is a constant which must be determined. Speak- 
ing in terms of turbulent intensity, the authors refer to 
this equation as the 4/9-power law. This result shows 
that, for coarse particles, turbulence modulation is a 
function of the gas-particle density ratio, the mass of 
particles in the suspension and the aerodynamic proper- 
ties. In conclusion, the previous remarks show the diffi- 
culties encountered in modelling CFB flows with a single 
particle diameter. More research is needed to understand 
polydisperse suspensions, including the effects of par- 
ticle diameter and particle density, as the CFBC consists 
of several groups of particles (inert material, fuel and 
limestone) which have different densities and different 
particle size distribution functions. 

8. CONCLUSION 

In the present work, it has been shown that turbulent 
non-reacting gas-solid flows can be modeled by 
classical transport equations, continuity and momentum 
equations, which are closed for the interfacial momen- 
tum transfer, the stress tensor in the particle phase, the 
drift velocity, the fluid-particle velocity correlation 
tensor and the second-order velocity moments in both 
phases. The derivations of the closure models were only 
possible with simplifying assumptions. It is found that, 
for the discrete phase (stress tensor and second-order 
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velocity moment), the most limiting assumption is that of 
the particles being a population of identical, rigid, 
smooth spheres, with a low level of anisotropy and a 
small departure from the Maxwellian state. The collision 
model is based on binary collisions between particles in 
translational motion. In contrast, the bed material of a 
CFBC is a polydisperse suspension of rigid, non- 
spherical, rotating particles, where the anisotropy level 
can be high. For the continuous phase (second-order 
velocity moment), the difficulty lies in the extension of 
the classical single-phase flow models to two-phase 
flows. Some specific problems are the value of  the 
constants included in the equations, the treatment of the 
wall region and the form of the coupling term. For the 
fluid-particle velocity moments (drift velocity and 
fluid-particle velocity correlation tensor), a general 
formulation (fluid-particle joint probability density 
function and Langevin equation) is possible, but two- 
way coupling is omitted. Algebraic models can be 
derived for homogeneous isotropic turbulence, asymp- 
totic cases, but these ideal cases are far from real CFB 
flows. The models formulated in this work need to be 
solved by numerical methods and further validated 
against experiments to see to what extent they capture 
the essential physical mechanisms of turbulent non- 
reacting gas-particle flows applied to fluidization. 
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