Cours Supaéro : LE DEFI TECHNIQUE (mise à jour du 30 juillet 2014)

L'objectif de cette analyse est de voir comment évolue l'efficacité technique de l'avion de transport civil subsonique à réaction mesurée parla consommation kilométrique par siège (kg / km / siège) en fonction de :

- des caractéristiques de la mission : capacité « N » sièges et rayon d'action « R » en km ;
- de l'année de mise en service « t » caractéristique du savoir-faire technologique ;
- de la personnalité du constructeur pouvant influer sur les compromis retenus.

Cette approche est volontairement limitée à une évolution ne présentant aucune rupture ; dans une telle perspective, une modélisation est rendue possible et peut permettre une projection dans l'avenir.

plan : 1 – prologue sur la méthodologie de « prospective »

- 2 définition de la mission de transport
- 3 devis de masse et efficacité technique
- 4 consommation pour la mission
- 5 aménagement commercial, définition du fuselage
- 6 aérodynamique, finesse, définition de l'aile
- 7 efficacité de la propulsion
- 8 facteur de Breguet-Leduc
- 9 estimation des masses
- 10 modélisation de l'avion dans sa mission.

1 – PROLOGUE SUR LA METHODOLOGIE DE « PROSPECTIVE »

La prospective, un art difficile et exigeant :

1 – les fondements :	- un support pour toute prise de décision, - l'avenir, prolongement du passé - un environnement limité (fini).
2 – les qualités requises :	- des compétences dans le domaine, - de l'expérience et de l'imagination, - de l'honnêteté et de l'humilité.
3 – la préparation : - ana	lyse circonstanciée du passé,

- élimination des comportements empiriques,
- distinction des ruptures dans l'évolution,
- recueil des paramètres représentatifs.

4- une démarche basée sur l'établissement d'un modèle :

- application aux évolutions en dehors des ruptures,
- structure représentative des phénomènes physiques,
- estimation des coefficients à partir du constat
- 5 *la modélisation :* Dans *un environnement fini, pour toute évolution d'un phénomène x :*
 - la vitesse d'évolution dx /dt tend vers 0 lorsque t tend vers l'infini
 - plus on est près de la limite X0, plus les progrès dx demandent d'effort.

Le modèle « type », inspiré de phénomènes naturels (désintégration radioactive), se caractérise par une vitesse de rapprochement *dx/dt* proportionnelle à la distance de la limite *X0*.

$$\frac{dx}{dt} = k \cdot (X_0 - x)$$
$$x = X_0 - a \cdot e^{-k \cdot t}$$

soit par intégration :

2 – DEFINITION DE LA MISSION DE TRANSPORT

2.1 – les paramètres :

- le **rayon d'action R** (en km ou NM),

la capacité N (en sièges) ou charge utile P (en kg),
 le Mach de croisière M variable avec le rayon d'action (plus celui-ci est important plus un Mach élevé est recherché : voir modèle 1 proposé au §2.4).

2.2 – le diagramme « payload-range » :

Il donne l'ensemble des missions possibles compte tenu des 3 limitations :

- la masse maximale sans carburant ou ZFWmax = OEW + Pmax,
- la masse maximale au décollage TOWmax,
- la masse maximale de pétrole Fmax

CU

On considère souvent les 3 points de calcul :

Masses :	Point A	Point B	Point C
de décollage TOW	TOW max	TOW max	TOW=OEW + F max
sans carburant ZFW	ZFW max	ZFW=TOW max – F max	ZFW = OEW
en exploitation OEW	OEW	OEW	OEW
de charge utile P	P max=ZFW max - OEW	P = ZFW - OEW	P = 0
de carburant F	F=TOW max –ZFW max	F max	F max

R

et

L'avion est dans la plupart des cas optimisé pour répondre à une mission située sur le segment AB : nous préciserons plus loin le choix de l'hypothèse de mission retenue dans notre recherche de modèle.

2.4 - modélisation :

1 – L'analyse des caractéristiques de l'avion portera sur une **mission correspondant au point du segment AB obtenu pour l'adaptation du fuselage** (capacité Nm retenu dans la modélisation : voir § 5 ci-dessous) **:**

- masse au décollage W = Wmax
- charge utile P proportionnel à la capacité Nm (voir § 5 et 9)
- masse sans carburant Z = O + P < Zmax
- carburant F = Wmax Z = Wmax O P < Zmax
- masse moyenne = Wmax F / 2

2- Le **rayon d'action R** intervient par son impact sur la consommation **avec comme facteur caractéristique** : **r** = **R** / **K** (K représente le facteur de Breguet-Leduc défini au § 3)

3 – Le **Mach de croisière** croit avec le rayon d'action R : une analyse statistique conduit à une relation (nommée **« modèle M 1 » :** voir § 6.5 caractéristiques des ailes) :

 $M = 0,7 \times (1+0,4 \times r)$

où « r » représente le rayon d'action réduit défini au § 4.1.

3 – DEVIS DE MASSE ET EFFICACITE TECHNIQUE

3.1-équation du devis de masse au	u décollage,	elle fait interver
planeur	+	А
propulsion	+	В
systèmes	+	С
aménagements toutes missions	+	D
aménagements suivant mission	+	E
masse à vide en ordre d'exploitation charge utile	0EW (ou +	« o ») P
masse sans carburant carburant masse au décollage	ZFW (0	ou « Z ») F
Les masses seront exprimées en k	g ou en ton	nes.

3.2 - La sensibilité (ou « effet boule de neige ») :

Elle est mise en évidence à partir de la détermination de l'avion répondant à une mission par une méthode de balayage :

- on se donne « W » comme variable,
- on détermine l'avion dans la mission : aile, fuselage, propulsion, carburant...
- on calcule la masse au décollage « W' » par sommation ;
- on obtient la solution recherchée lorsque W = W;
- on analyse l'impact de « δW » additionnel (translation deδ W // à l'axe W')
- on obtient une masse au décollage augmentée de« ΔW ».

3.3 – L'efficacité technique globale du produit :

Dans la méssion de transport (N slèges et R km myon d'action), celle-ci se mesure par la consommation unit aire mayenne de carburant au cours de la méssion exprimée en kgislège/km.5

Son évaluation repose sur une approche synthétique d'u devis de masse :

a F = est le carburant emb arqué pour la méssion
 a P = la charge utile= 92 kg / passager (variable avec R etl'année).

Les deux postes = O_{-} (OEW) et = F = sont les facteurs cara chiritéques de cette efficacté ; ils vont être analysis (et modélisés) en fonction de la méssion et du niveau technologique

44

4 - CONSOMMATION POUR LA MISSION

4.1 - estimation de la consommation en croisière :

(estimé à partir de la méthode de Breguet-Leduc)

Pendant le temps dt, on peut évaluer les variations :

- de consommation :
$$dF = (T \cdot C_s) \cdot dt = \begin{pmatrix} M \cdot g \\ f \end{pmatrix} \cdot C_s \cdot dt$$

- de masse de l'avion : $dM = -dF'$

- de distance parcourue $dR = V \cdot dt$

ďoù :

 $dM = M \cdot \left(\begin{array}{c} g \cdot C_s \\ f \cdot V \end{array} \right) \cdot dR$

Cette dernière équation devient :

$$\left(\frac{dM}{M}\right) = -\frac{dR}{K}$$
avec
$$K = \frac{f \cdot V}{g \cdot C_s}$$
appelé facteur de rayon d'action
lo facteur K pratiquement constant, s'exprime en km commo

le facteur K, pratiquement constant, s'exprime en km comme R.

En intégrant entre les masses M1 et M2 avec K constant, la **formule dite de Breguet-Leduc** permet le calcul du rayon d'action parcouru R :

$$L\begin{pmatrix} M_2\\ M_1 \end{pmatrix} = -\frac{R}{K} \quad \text{ou} \quad M_2 = M_1 \cdot e^{-\frac{R}{K}}$$

On mesure ici l'importance, du rapport **R** / **K** = **r appelé « rayon d'action réduit »,** lequel interviendra prioritairement dans toutes nos analyses et tentatives de modélisation.

4.2 – estimation du carburant F nécessaire à la mission

2.6 L'EFFICACITE GLOBALE (suite) 2.6.3 – Le pétrole « F » nécessaire pour la mission (suite) 2 – estimation de F : Il comprend - le carburant consommé Fo couvrant le rayon d'action R, la pénalité de montée et descente équivalant à SR = 300 km, le déroutement D et l'attente A équivalant à δR = 700 km, les réserves représentant 5% du carburant de mission. rayon d'action R D consommation F R+1000

La formule de Breguet-Leduc appliquée entre le décollage (W1 = W) et la fin du carburant (W2 = Z), permet le calcul du rayon d'action R

$$Z = W \cdot e^{-(R+1000)_{0,95 \cdot K}}$$

4.3 – efficacité en consommation

Celle-ci dépend de :

- de la technologie marquée par l'année de mise en service : « t = année 2000 »,
- de l'adaptation des réacteurs à la taille de l'avion mesurée par sa masse au décollage : « W »,
- du rayon d'action « R »,
- du choix de la voilure et en particulier de l'envergure « b »

L'efficacité de consommation est prise en compte dans le **facteur de Breguet-Leduc « K »** intégrant aussi la finesse de la voilure :

$$K = \frac{f \times V}{g \times C_s}$$

(il est important d'indiquer ici que la consommation spécifique Cs retenue correspond à une consommation des moteurs installés y compris l'impact des prélèvements)

4.4 – analyse des avions Airbus et Boeing : (se reporter au § 8.3 ci-après)

4.5 – modélisation :

Celle-ci sera abordée au § 8 traitant du facteur de Breguet-Leduc après l'analyse des paramètres intervenant tels, la finesse aérodynamique « f », la consommation spécifique des moteurs « Cs » et de la vitesse « V ».

La formule de Bréguet-Leduc appliquée à la mission globale peut être redue linéaire autour de la valeur 0,25 du rapport « r » avec un écart toujours inférieur au % pour des missions comprises entre 2500 et 15000 km.:

$$\frac{Z}{W} = e^{-\frac{R+1300}{0.95 \times K}} \approx 0.92 - 0.72 \times \frac{R}{K} = 0.92 - 0.72 \times r$$
 avec $r = \frac{R}{K}$

La plage de variation du rapport « r » est comprise entre 0 et 0,5 (très longs rayons d'action) ; dans la suite, nous retiendrons pour nos évaluations 3 valeurs caractéristiques : 0, 0,25 et 0,5

Nous retiendrons pour la masse moyenne en croisière la demi somme Wm = (W + Z)/2; nous pouvons en déduire son expressions en fonction de « r = R / K » : ۲

$$Wm / W = 0.96 - 0.36 * r = 0.96 * (1 - 0.375 * r)$$

5 – LE FUSELAGE ET L'AMENAGEMENT COMMERCIAL :

5.1 – détermination de la capacité :

La capacité de l'avion varie avec l'aménagement retenu ; les constructeurs utilisent la **capacité nominale Nn** correspondant à l'aménagement standard de leur avion. Pour obtenir des approches comparables on retiendra la **capacité théorique No** en aménagement totalement touriste (32 pouces).

Le confort de la capacité nominale croissant avec le rayon d'action et le temps, le rapport Nn / No en dépend et nous retiendrons pour la **capacité de référence N de notre modèle** l'expression statistique :

$$\frac{N}{No} = 1 - 0,25 \times r$$

5.2 - définition du fuselage « mono pont » :

La forme géométrique du fuselage est caractérisé par :

- sa longueur Lf,
- sa largeur lf
- sa hauteur hf,
- son diamètre moyen Df = (lf + hf) / 2,
- son allongement $\lambda f = Lf / Df$.

La surface « mouillée » du fuselage peut être estimée à partir de la formule prenant en compte les paries évolutives avant et arrière :

Smouillée = $3,14 \times Df \times (Lf - 2,5Df)$

La surface de plancher utilisable pour la cabine s'exprime d'une façon analogue :

 $Splancher = 0.97 \times Df \times (Lf - 1.5 - 2.5Df)$

L'aménagement de la cabine fait intervenir :

- le nombre « p » de sièges par rangée,
- le nombre de couloirs associé « c » (p < 6, c = 1 et p > 6, c = 2)

La surface de plancher utile exclue les couloirs (facteur de réduction : p / (p + c)) et les passages au niveau des issues (facteur de réduction : (1 - 0.02 * p)) :

$$Sutile = \frac{p}{p+c} \times (1-0.02 \times p) \times Splancher$$

La capacité théorique No est obtenue en supposant un besoin de 0,48 m² (pas de 32 pouces augmenté des besoins commerciaux : toilettes, sièges des hôtesses...) :

$$No = \frac{Sutile}{0,48}$$

5.3 - cas du fuselage « deux-ponts » :

La présentation des caractéristiques des fuselages des avions Airbus et Boeing (voir §5.5) mettra en évidence l'impact du deuxième pont sur les différents paramètres d'efficacité du fuselage.

5.4 - masse du fuselage A2

1 – estimation de A2 : Ici les données et analyses sont moins disponibles et développées que pour la voilure ; ici, une modélisation moins élaborée essaye de prendre en compte les principes de dimensionnements géométriques, opérationnels, structuraux et massiques. La masse du fuselage « A2 » prend en compte les dimensionnements liés

- à la pressurisation (en proportion de L*D²),
- aux efforts de flexion (en proportion de L*TOW/D),
- et à la surface du revêtement (en proportion de L*D)

$$A2(kg) = (400 + L \times D \times (5 \times D + 0.03 \times \frac{TOW}{D^2} + 18)) \times (0.85 + 0.15 \times e^{-0.02 \times (t - 2000)})$$

d'où l'on en déduit le modèle pour notre étude :

 $A2(kg) = m \times (400 + 0.028 * W + 20 \times N \times (1 + 0.25 \times r) + 2.2 \times N^{1.5} \times (1 + 0.4 \times r))$

Cas particulier du « 2 ponts » : la réduction de 15% de la surface extérieure du fuselage par rapport au mono pont de même capacité se traduit par une réduction de la masse du fuselage estimée à 6% pour les éléments de masse dépendant de N ; d'où :

$$A2_{2.ponts}(kg) = m \times (400 + 0.028 W + 18 \times N \times (1 + 0.25 \times r) + 2.0 \times N^{1.5} \times (1 + 0.4 \times r))$$

L'application de cette modélisation est présentée dans le tableau donnés § 5.6. Une validation complète de la méthode exigerait d'avoir accès à plus d'informations de géométrie et de masse.

5.5 - modélisation pour ma mission N, r et W en technologie 2000

1 – **capacité maximale No** = 1,15 * p * (1 – 0,02 * p) * (Lf -1,5- 2,5 * Df) avec « p » sièges par rangée 2 – **capacité de référence N** = No * (1 - 0,25 * r)

3 – la **surface mouillée** de fuselage rapportée à la capacité théorique No reste voisine de :

- 2,2 m² par siège pour un avion « mono pont monocouloir »
- 2,4 m² par siège pour un avion « mono pont bi couloir »
- **1,9 m² par siège pour un avion deux-ponts** (avantage en aérodynamique et masse)

5.6 – caractéristiques des fuselages des avions Airbus et Boeing :

AIRBUS	300-В	318	319	320	321	300-6	310-3	330-2	340-2	340-3	340-5	340-6	380-8	350-8
année	1974	2002	1996	1988	1993	1984	1986	1998	1992	1993	2003	2002	2007	2013
effet techno	1,102	0,994	1.012	1,041	1,023	1.057	1,048	1.006	1,026	1.023	0.991	0.994	0,980	0,966
Wmax	137000	59000	64000	73500	83000	170500	157000	230000	260000	275000	380000	380000	560000	245000
R nominal	2300	1860	1690	4900	3210	3670	8180	11575	7470	12416	16020	13890	15100	15100
N nominal	281	115	130	150	188	276	218	293	270	295	313	360	555	276
К	17454,6	24806,2	23780,7	23839,3	24047,3	22049,4	25111,7	29556,4	26182,8	29110,6	32726,5	31422,7	32694	33262,1
r	0,13	0,07	0,07	0,21	0,13	0,17	0,33	0,39	0,29	0,43	0,49	0,44	0,46	0,45
Définition														
lf (m)	5,64	3,95	3,95	3,95	3,95	5,64	5,64	5,64	5,64	5,64	5,64	5,64	7,14	5,86
hf (m)	5,64	4,14	4,14	4,14	4,14	5,64	5,64	5,64	5,64	5,64	5,64	5,64	8,55	6,07
Df (m)	5,64	4,05	4,05	4,05	4,05	5,64	5,64	5,64	5,64	5,64	5,64	5,64	7,85	5,96
Lf (m)	52,00	31,45	33,84	37,57	44,51	53,30	45,89	57,50	58,60	62,88	66,02	73,46	69,90	58,91
λf	9,22	7,60	8,17	9,07	10,75	9,45	8,14	10,20	10,39	11,15	11,71	13,02	8,18	9,71
Spl (m)	199	78	87	102	129	206	166	229	235	259	276	317	594	246
sièges/rangée	8	6	6	6	6	8	8	8	8	8	8	8	18	8
nb couloirs	2	1	1	1	1	2	2	2	2	2	2	2	4	2
Capacité														
N nominal	281	115	130	150	188	276	218	293	270	295	313	360	555	276
modèle No	281	120	135	158	200	291	234	324	332	365	390	447	646	328
modèle N	217	118	103	120	151	223	178	256	242	270	298	338	506	256
Surfaces														
Spl (m2)	199	78	87	102	129	206	166	229	235	259	276	317	371	246
Sut (m2)	134	59	66	77	97	139	111	154	158	174	185	213	194	165
Sut / Nn	0,48	0,51	0,51	0,51	0,52	0,50	0,51	0,53	0.59	0,59	0,59	0,59	0,35	0,60
Sm (m2)	671	271	301	349	437	694	563	769	788	864	919	1051	1239	824
Sm / No	2,39	2,25	2,23	2,21	2,19	2,38	2,41	2,37	2,37	2,36	2,36	2,35	1,92	2,51
masse A2														
A2 (kg) réel				8975	11436	18053	15351	23398	23979	25377				
A2 (kg) est	19554	6600	7329	8593	10248	20204	16974	22554	24392	26568	30677	34187	45833	23624
A2 (kg) mod	17748	7329	6753	8420	10342	18613	15273	23059	22628	26104	30976	34439	55933	22818

BOEING	707-12	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
année	1961	1962	1968	1970	1982	1983	1984	1989	1995	1997	2010
effet techno	1,177	1,171	1,134	1,123	1,065	1,061	1,057	1,037	1,016	1,009	0,973
Wmax	116729	72576	43999,2	322056	127915	99792	56473,2	362880	229522	60328,8	219996
R nominal	8000	4100	2700	10550	6300	7100	4700	13400	13100	7300	18000
N nominal	140	106	85	374	216	186	128	412	375	125	246
К	12162,5	10854,7	14388,9	19901,6	22859,4	23624,8	22615,9	28762,8	29874,9	27039,5	34592,2
r	0,66	0,38	0,19	0,53	0,28	0,30	0,21	0,47	0,44	0,27	0,52
Définition											
lf (m)	3,76	3,76	3,76	6,50	5,02	3,76	3,76	6,50	6,20	3,76	5,76
hf (m)	4,01	4,01	4,01	6,81	5,41	4.01	4,01	6,81	6,20	4.01	5.96
Df (m)	3,89	3,89	3,89	6,66	5,22	3,89	3,89	6,66	6,20	3,89	5,86
Lf (m)	42,31	35,40	27,60	68,63	47,23	46.89	32,20	68,63	62,94	32,18	55,90
λf	10,55	8,83	6,88	10,08	8,73	11,68	8,03	10,08	10,15	8,02	9,38
Spl (m)	117	91	62	391	165	134	79	456	276	79	226
sièges/rangée	6	6	6	16	7	6	6	16	9	6	8
nb couloirs	1	1	1	3	2	1	1	3	2	1	2
Capacité											
N nominal	281	115	130	150	188	276	218	293	270	295	313
modèle No	189	147	100	632	226	217	127	632	390	127	307
modèle N	133	133	72	407	173	160	98	438	308	98	237
Surfaces											
Spl (m2)	117	91	62	326	165	134	79	326	276	79	226
Sut (m2)	88	69	47	187	111	101	60	187	185	60	152
Sut / Nn	0,31	0,60	0,36	1,24	0,59	0,37	0,27	0,64	0,69	0,20	0,49
Sm (m2)	398	313	218	1086	560	454	274	1086	924	274	759
Sm / No	2,11	2,13	2,19	1,72	2,47	2,09	2,15	1,72	2,37	2,15	2,47
masse A2											
A2 (kg) réel								36881			
A2 (kg) est	12202	8817	6070	37949	15689	11492	6853	36339	26929	6641	21587
A2 (kg) mod	12965	10803	5176	45551	14072	12347	6712	45927	28118	6632	21041

6 - L'AILE : ADAPTATION, FINESSE AERODYNAMIQUE ET MASSE

6.1 – définition de l'aile

1 – paramètres de définition :

- la **surface S** intervenant souvent sous la forme de la charge alaire W / S ;
- l'**envergure b** souvent exprimée par l'**allongement** $\lambda = b^2 / S$ intervenant sous la forme W / b^2
- la **flèche φ** mesurée à 25% des cordes ;
- l'épaisseur relative moyenne e (difficile à connaître)..
- 2 contraintes d'adaptation :
- les performances basses vitesses pour le décollage et l'atterrissage ;
- l'adaptation aérodynamique en croisière marquée par la finesse
- la masse de l'aile A1 (voir § 7 ci-après)
- la capacité en carburant
- 2 ailes Airbus et Boeing : voir les caractéristiques au § 6.5

6.2 - adaptation « basses vitesses » et surface de l'aile :

1 – décollage :

A technologie aérodynamique donnée, le facteur dimensionnant est la charge alaire au décollage W / S mesurée en kg / m².

Le graphique ci-dessous rappelle la charge alaire des principaux produits d'Airbus et Boeing mesurée à la masse maximale au décollage W ; cette évolution met en évidence :

- un niveau de charge alaire généralement plus élevé pour les avions Airbus que pour les avions Boeing ;
- une convergence actuelle des approches des deux constructeurs vers un niveau de charge alaire voisin de 600 kg / m²;

	Evolution W/S	5	Boeing W/S	Airbus	w/s		
kg/m2			C C				
900							
800							
700							
600							
500							
400							
300							
200							
100							
0							
1950	1960	1970	1980	1990	2000	2010 année	s 2020

2 – atterrissage :

A technologie aérodynamique donnée, le facteur intervenant est la charge alaire à l'atterrissage ; comme la masse à l'atterrissage est proche de la masse sans carburant, le facteur retenu ici est représenté par la charge alaire mesurée au ZFW maximal soit Z / S mesurée en kg / m^2 .

Le graphique ci-dessous rappelle la charge alaire Z / S des principaux produits d'Airbus et Boeing mesurée à la masse maximale sans carburant Z ; cette évolution met en évidence :

- un niveau de charge alaire généralement plus élevé pour les avions Airbus que pour les avions Boeing avec un écart plus réduit que pour la charge alaire au décollage;
- une convergence actuelle des approches des deux constructeurs vers un niveau de charge alaire voisin de 400 kg / m^2 .

kg/m2	Evolution Z / S		Boeing Z/S	Airbu	s Z/S			
600								
500								
400								
300								
200								
100								
0								
1950	1960	1970	1980	1990	2000	2010	années 20	020

6.3 – adaptation en croisière, finesse de l'avion (hors nacelles) et envergure de l'aile : 1 – analyse à Mach 0,8 :

La finesse de l'avion **(hors trainée des nacelles** prise en compte avec la propulsion**)** peut être analysée en séparant les effets liés à la voilure, au fuselage et à la trainée induite par la portance :

$$f = \frac{C_{Z}}{C_{X}} = \frac{S \times C_{Z}}{\left(S \times C_{X0}\right)_{fuselage} + \left(S \times C_{X0}\right)_{aile} + \left(S \times C_{Xinduit}\right)}$$

Nous partons ici de l'analyse détaillée des caractéristiques aérodynamique de l'A300 :

- définition de l'avion : W = 130000 kg, S = 260 m², b = 44,84 m, λ = 7,73 et No = 280 passagers

- vitesse de l'avion V = 236 m / s correspondant à M = 0.8

- aérodynamiques : Cz = 0,484 = 0,000968*W/S (proportionnel à W / S) = 0,000125* W / b²,

Cxof = 0,01 (proportionnel à S fuselage \approx 2,3*N_o),

Cxoa = 0,008 (hors nacelles ; proportionnel à S), Cxi = 0,013 = 0,429* Cz² / λ (proportionnel à Cz² / λ) = 0,429* S*Cz² / b²,

d'où Cx = 0,031 (0,033 avec nacelles) et f = 15,6 (14,7 avec nacelles)

- soit en fonction de W, S, No et b :

$$f_{1975..M=0,8} = \frac{1}{9.5 \times \frac{N_0}{W} + 8.3 \times \frac{S}{W} + 0.000415 \times \frac{W}{b^2}}$$

Cette formule permet d'estimer l'évolution de la finesse de l'A300B en fonction de la masse W.

2 – influence de l'envergure b sur la finesse :

L'expression de la finesse met en évidence l'importance du choix de l'envergure « b » sur la finesse avec comme premiers constats :

- pour un fuselage fixé (c'est à dire une capacité donnée), la finesse maximale est obtenue pour une aile conduisant à l'égalité des 2 derniers termes de l'expression ci-dessus :

 $7 * S / W = 0,00035 * W / b^2$ ou $(W / S)^2 = 20000 * \lambda$

soit $\lambda = 8$ pour W / S = 400 kg / m² et $\lambda = 12,5$ pour W / S = 500 kg / m²

- des limitations interviennent telles la masse de l'aile et les contraintes aéroportuaires ;
- l'évolution historique du facteur (W + Z) / 2 b² proche de la masse moyenne de croisière pour les avions Airbus et Boeing converge aujourd'hui vers un niveau de 50 kg / m²

kg/m2	Evolution (W	+ Z) / 2 b2		Boeing		Airbus	
90							
80							
70							
60							
50							
40							
30							
20							
10							
0 195	50 1960	1970	1980	1990	2000	2010 années	2020

3 – influence du Mach sur la finesse :

Le Mach intervient dans le calcul des coefficients de portance et de trainée du fait des perturbations transsoniques lorsque le **Mach de vol** Mo se rapproche de 1 ; la définition de l'aile intervient par son épaisseur (paramètre « **e** » : épaisseur relative moyenne) et par sa flèche (« **φ** » : angle de flèche mesurée à 25% des cordes). Pour mesurer l'impact aérodynamique, nous allons utiliser plusieurs approches complémentaires en commençant d'abord **par l'écoulement bidimensionnel** :

incompressible, le niveau de survitesse sur le profil proportionnel à l'épaisseur relative « e » donne une estimation du Mach Mo critique (apparition de la 1^{ère} vitesse sonique) :

$$1 = Mo * (1 + e) soit Mo \approx 1 - e;$$

- **compressible**, les règles de similitude transsoniques de Von Karman donnent une nouvelle estimation du Mach Mo critique :

 $1 - Mo^2 = 1,65 * e^{2/3}$ soit **Mo ≈ 1 - 2 * e**

- **en attaque oblique** (effet de flèche φ), l'écoulement est la superposition de :

- l'écoulement tangentiel uniforme Mo * sin ϕ

- et de l'écoulement normal Mo * cos ϕ contournant le profil normal avec pour

épaisseur e / cos φ et pour Mach maximal : Mo * cos φ *(1+ 2 * e / cos φ);

d'où l'écoulement résultant Mo * $\sqrt{(\sin^2 \varphi + \cos^2 \varphi * (1 + 2 * e / \cos \varphi)^2)}$ **> Mo * (1 + 2 * e * cos \varphi)**

L'écoulement réel doit prendre en compte les effets tridimensionnels et le savoir-faire technologique ; une analyse statistique des avions Airbus et Boeing conduit à une expression de même forme que celle obtenue en bidimensionnel et mettant en évidence le facteur caractéristique « $e * \cos \phi$ » :

$$Mo = 1 - k \times e \cdot \cos \varphi$$

k = 1.5 + 0.2 × exp^{-0,035×(t-2000)}

La relation entre la définition de l'aile et le Mach M de croisière constitue le « **modèle M 2** » dont les résultats seront comparés à ceux obtenus par le **modèle M 1** défini au § 2.4 (voir le § 6.4 comparant les caractéristiques des ailes des avions Airbus et Boeing et les résultats données par les modèles GV).

Si l'on retient une définition de l'aile permettant quelque soit le Mach retenu de maintenir un même niveau de trainée de compressibilité (épaisseur et flèche conduisant au même niveau de traînée d'onde), l'impact de la vitesse conduit à prendre en compte dans la formule ci-dessus le facteur « $M^2 / 0,64$ » :

- sous une forme multiplicative dans les termes « / W » et « S / W »,
- sous une forme inverse dans le terme « W / b² ».

$$f_{1975.Mach.M} = \frac{1}{(15 \times N_W + 13 \times S_W) \times M^2 + 0,00027 \times W_{(b^2 \times M^2)}}$$

3 – influence du savoir-faire technologique sur la finesse (t = année de mise en service) On retient le modèle suivant pour représenter l'évolution technologique de la finesse (voir § 6.4 ci-

On retient le modèle suivant pour représenter l'évolution technologique de la finesse (voir § 6.4 ci-dessous) : $f_{année,t} = f_{2000} (1,08-0,08 \times e^{-0.04 \times (t-2000)})$

D'où le modèle dénommé « **modèle 1** » dans la suite de l'exposé :

$$f_{ann\acute{e.t.Mach.M}} = \frac{1,08 - 0,08 \times e^{-0,04 \times (t-2000)}}{(12,8 \times \frac{N0}{W} + 11 \times \frac{S}{W}) \times M^2 + 0,00023 \times \frac{W}{(b^2 \times M^2)}}$$

4 – modélisation « mission » de la finesse : Du fait de leurs effets contradictoires sur les facteurs techniques (masses, performances aérodynamiques, encombrement..), la définition de l'aile résulte de compromis délicats peuvant évoluer en fonction du prix du pétrole. Les approches d'Airbus et Boeing ont conduit dans le passé à des situations différentes et ont tendance à se rapprocher aujourd'hui.

Nous appellerons :

- W : la masse au décollage (kg)
- P : la charge utile (kg)

- F : la masse du carburant pour la mission (kg)
- O : la masse à vide en ordre d'exploitation (kg)
- Z = W F = 0 + P: la masse sans carburant (kg)
- Wm = (W + Z) / 2 : la masse moyenne en croisière
- K le facteur de Breguet-Leduc (voir §8 ci-après)

– technologie 2000 : Sur la base des analyses présentées (et à présenter), nous avons retenu les bases suivantes pour la définition de notre modèle estimée aux conditions technologiques de 2000 (année de mise en service), à la masse moyenne de croisière Wm et en fonction du rayon d'action r = R / K):

$$\begin{split} & Z = (0,92 - 0,72 \times r) \times W \\ & Wmoyen = \frac{W+Z}{2} = (0,96 - 0,36 \times r) \times W = \frac{0,96 - 0,36 \times r}{0,92 - 0,72 \times r} \times Z \\ & \frac{Z}{S} = 400 kg \ / \ m^2 \dots (vitesse.d' \ approche) \\ & \frac{Wmoyen}{b^2} = \frac{W+Z}{2 \times b^2} = 50 kg \ / \ m^2 \dots (trainée.induite) \\ & \frac{O}{No} = \frac{200}{1 - r} \dots (impact.du.rayon.d' \ action.sur.la.masse) \\ & \frac{N}{No} = 1 - 0,25 \times r \dots (avec..r = \frac{R}{K}) \\ & P = N \times 85 \times (1 + 0,2 \times r) \\ & e \times \cos \varphi = \frac{1 - M}{1,7} \dots (trainée.d' \ onde) \\ & M = 0,7 \times (1 + 0,4 \times r) \dots (Mach.de.croisière) \end{split}$$

On en déduit les trois termes intervenant dans le calcul de « f » au § 6.3.3 :

$$\frac{Wm}{N} = \frac{Wm}{Z} \times \frac{Z}{No} \times \frac{No}{N} = \frac{0.96 - 0.36 \times r}{0.92 - 0.72 \times r} \times \left(\frac{200}{1 - r} + \frac{85}{1 - 0.2 \times r}\right) \times \frac{1}{1 - 0.25 \times r}$$
$$\frac{Wm}{S} = \frac{Wm}{Z} \times \frac{Z}{S} = 400 \times \frac{0.96 - 0.36 \times r}{0.92 - 0.72 \times r}$$
$$\frac{Wm}{b^2} = 50$$

D'où l'estimation de la finesse « f » en fonction de « r » et sa représentation par le modèle : $fm_{2000} = \frac{16,6}{1-0.5 \times r}$

Evolution de f en fonction de r=R/Km (année 2000)						
r	0	0,1	0,2	0,3	0,4	0,5
		308,9		375,8	425,1	
Z/N	285	2	338,4	1	3	493,5
	297,3	336,6	387,2	454,8	548,9	687,3
Wm/N	9	1	4	2	1	8
	417,3	435,8	457,7	484,0	516,4	557,1
Wm/S	9	5	3	9	6	4
Wm/b2	50	50	50	50	50	50
allong	8,35	8,72	9,15	9,68	10,33	11,14
Μ	0,7	0,728	0,756	0,784	0,812	0,84
		18,00	18,85	19,90	21,23	22,94
f	17,3	4	3	2	1	9
fm	16,6	17,47	18,44	19,52	20,75	22,13

	4	4	9	3

– évolution au cours du temps : Sur la base d'une analyse statistique, nous avons retenu le modèle (dénommé « modèle 2) pour représenter l'évolution en fonction du temps :

mise.en.service.année."t"...fm_t =
$$\frac{16,6}{1-0,5\times r} \times (1,08-0,08\times e^{-0,04\times (t-2000)})$$

A géométrie donnée, ce modèle laisse présager pour la finesse un potentiel d'amélioration de 6% au-delà de l'an 2000 ; sur le graphique suivant, les finesses des avions connues ont été positionnées par rapport à l'application du modèle pour les trois valeurs de « r » :

_{fine SSE} volution de	la finess	e		Airbus mod r=0	Bo	oeing od r=0,25	Do mo	uglas od r=0,5
20								
15								
10								
5								
0								années
1960 1965	1970	1975	1980	1985	1990	1995	2000	2005

Cas particulier des avions « 2 ponts » : en raison d'une réduction de l'ordre de 15% de la surface mouillée, on retient

- une diminution de 15% de la traînée du fuselage,
- une diminution de 5% de la traînée globale (en supposant que le fuselage représente le 1/3 de la traînée totale),
- une augmentation de 5% de la finesse.

D'où le modèle « 2 ponts » :

2. ponts.en.service.année."t"...fm_t =
$$\frac{17,5}{1-0,5 \times r} \times (1,08-0,08 \times e^{-0,04 \times (t-2000)})$$

6.4 – masse de l'aile A1

L'analyse repose sur la distinction de trois parts dans la masse de l'aile :

 l'ensemble des longerons, nervures et attache de train, dimensionnés aux efforts tranchant, est proportionnel à la masse sans pétrole « Z » et à la longueur du longeron « b / cosφ » ;

- les panneaux, dimensionnés en flexion et torsion (en raison de la flèche), font intervenir une formulation plus complexe correspondant au calcul d'une poutre de portée « b / cosφ » et d'épaisseur « e / cosφ ».
- les **becs**, **volets et divers** sont supposés évoluer en proportion de la masse au décollage W.

La masse de l'aile est estimée à partir de la formule GV (dénommée « modèle 1 » ci-après) :

$$A1 = m \times (1000 + 0.0007 \times \frac{b \times Z_{M}}{\cos \varphi} + 4 \cdot 10^{-6} \times \frac{n \times b^{3} \times Z_{M}}{e \times \cos^{2} \varphi \times S} \times \frac{1 + 2\sigma}{1 + \sigma} + 0.04 \times W_{M})$$

avec :

- « W_M » masse maximale au décollage en kg,
- « Z_M » masse maximale sans carburant en kg,
- « n » facteur de charge limite (3,75 en manœuvre),
- « S » surface d'aile en m²,
- « b » envergure de l'aile en m (définition anglaise),
- e épaisseur relative moyenne
- φ flèche à 25°
- σ effilement de l'aile,
- m facteur d'amélioration technologique variable avec les années

Les résultats obtenus par application de cette formule en retenant n = 3,75 (facteur de charge limite en manœuvre) et σ voisin de 0,25 ont été comparés avec les données réelles connues ainsi qu'avec les résultats obtenus par une estimation Aerospatiale (note de synthèse d'avril 1999 donnant une estimation semi-analytique de la structure, des efforts et de la masse de l'aile) ; la cohérence est tout à fait satisfaisante.

Une modélisation de A1 pour M = 0,8 en fonction de N, R et W est obtenue ensuivant une approche similaire à celle exposée au §6.4 pour le choix de la modélisation de la finesse. Il faut ici prendre en compte le fait que « Z_M » masse maximale sans carburant correspond à un rayon d'action réduit par rapport au rayon d'action nominal (repéré par le rapport r = R / K) ; l'analyse des avions existants met en évidence une réduction de l'ordre de 25% conduisant à retenir entre W_M et Z_M l'expression suivante dans laquelle « r » correspond au rayon d'action retenu dans la mission nominale :

$$Z_{M} = (0,92 - 0,54 \times r) \times W_{M}$$

On retiendra pour Mach 0,8 une flèche voisine de 30° et e * cos φ = (1-0,8) / 0,17 ≈ 0,12. $Z_{max} = (0,92-0,54 \times r) \times W$

$$b = \sqrt{\frac{W_{moen}}{50}} = \sqrt{\frac{0.96 - 0.36 \times r}{50}} \times W^{0.5}$$

$$0,0003 \times \frac{b \times Z_{max}}{\cos \varphi} = \frac{0,0003}{0.866 \times 10} \times \sqrt{2 \times (0.96 - 0.36 \times r)} \times (0.92 - 0.54 \times r) \times W^{1.5} \approx 0,000045 \times (1 - 0.75 \times r) \times W^{1.5}$$

$$0,00002 \frac{b^3 \times Z_{max}}{e \times \cos \varphi \times S} = \frac{0,00002 \times 400}{0.9 \times 0.12 \times 50^{1.5}} \times \frac{(0.96 - 0.36 \times r)^{1.5} \times (0.92 - 0.54 \times r)}{(0.92 - 0.72 \times r)} \times W^{1.5} \approx 0,00019 \times (1 - 0.35 \times r) \times W^{1.5}$$

On en déduit le « modèle 2 »

:

$$A1(kg) = m \times (1000 + 0.05 \times W + 0.0002 \times (1 - 0.6 \times r) \times W^{1.5})$$

Les résultats sont indiqués dans les tableaux présentant l'ensemble des caractéristiques et performances des ailes « Airbus » et « Boeing » au § 6.5 ci-dessous.

Avec les précautions d'usage, quelques remarques peuvent être dégagées de ces résultats :

 les masses connues des voilures d'Airbus sont plus lourdes que l'indication donnée par le modèle alors que le résultat inverse est observé pour les masses des voilures de Boeing ; l'écart concerne principalement les panneaux et serait dû (selon le document Aerospatiale) à l'utilisation de matériaux haute performance par Boeing (contraintes limites réévaluées de 18,5% en traction et 12,5% en compression) :et l'on se pose la question : compte tenu du fort impact de ce choix sur l'efficacité de l'avion, pourquoi Airbus (BAé) n'utilise-t-il pas le même matériau ?

- la masse de l'aile A1 exprimée en % de la masse au décollage croit avec la taille de l'avion (effet d'échelle défavorable) : voisin de 10% pour les « single aile » à comparer à 17% pour l'A380.

6.5 – caractéristiques des ailes des avions Airbus et Boeing

1 – Airbus

AIRBUS	300B4	310-2	300-6	310-3	320-2	340-3	330-3	330-2	340-6	380-8	350-8
année	1075	1092	108/	1096	1099	1003	1003	1008	2002	2007	2011
effet techno	1 007308	1 06/000	1 056569	1 0/8/69	1 0/0687	1 0225/1	1 0225/1	1 006122	0 00/118	0 980404	0 970378
R (km)	5500	5000	7200	7/00	1900	10650	10000	16450	1/300	17000	17/00
N	281	218	276	218	150	205	205	253	360	555	276
No	279	232	289	232	160	362	363	321	443	648	344
K (km)	19681	22520	23991	24683	24202	28139	30194	32238	31648	33739	34527
r	0.28	0.22	0.30	0.30	0.20	0.38	0.33	0.51	0.45	0.50	0.50
W (kg)	165000	142000	170500	157000	73500	275000	230000	230000	380000	560000	245000
Z (kg)	123000	114000	130000	114000	61000	178000	173000	168000	245000	358000	171000
F (kg)	53000	45000	53000	49000	19200	113000	77500	105500	162500	247500	103000
M croi	0,79	0,79	0,79	0,79	0,76	0,82	0,82	0,82	0,83	0,85	0,85
géométrie	300B4	310-2	300-6	310-3	320-2	340-3	330-3	330-2	340-6	380-8	350-8
S (m2)	260	219,9	260	219,9	122,4	362	362	362	437,3	845	442,9
b (m)	44,84	43,9	44,84	43,9	33,91	58	58	58	61,2	79,8	64,75
λ	7,7	8,8	7,7	8,8	9,4	9,3	9,3	9,3	8,6	7,5	9,5
e (%)	0,105	0,125	0,105	0,125	0,125	0,119	0,119	0,119	0,103	0,102	0,11
effilement	0,29	0,26	0,29	0,26	0,25	0,22	0,22	0,22	0,22	0,23	0,2
flèche	28	28	28	28	25	29,7	29,7	29,7	29,7	33,6	30
adaptation	300B4	310-2	300-6	310-3	320-2	340-3	330-3	330-2	340-6	380-8	350-8
W/S	634,6	645,7	655,8	714,0	600,5	759,7	635,4	635,4	869,0	662,7	553,2
(W + Z) / 2S	553,8	582,1	577,9	616,2	549,4	625,7	556,6	549,7	714,6	543,2	469,6
(W-F)/S	430,8	441,1	451,9	491,1	443,6	447,5	421,3	343,9	497,4	369,8	320,6
W/S opt f	393,3	418,7	393,3	418,7	433,5	431,1	431,1	431,1	413,9	388,2	435,1
W / b2	82,1	73,7	84,8	81,5	63,9	81,7	68,4	68,4	101,5	87,9	58,4
(W + Z) / 2 b2	71,6	66,4	74,7	70,3	58,5	67,3	59,9	59,2	83,4	72,1	49,6
(W-F/2)/b2	68,9	62,0	71,6	68,8	55,6	65,0	56,9	52,7	79,8	68,5	46,2
réservoir	300B4	310-2	300-6	310-3	320-2	340-3	330-3	330-2	340-6	380-8	350-8
V est	71	62	71	62	25	121	121	121	145	411	150
Vreel	62,0	55,1	68,2	61,1	23,9	138,6	97,9	139,1	194,1	315,3	139,1
Vest/vr Maah arai	1,15	1,12	1,05	1,01	1,04	0,87	1,24	0,87	0,75	1,30	1,08
Mach crui	300B4	310-2	300-6	310-3	320-2	340-3	330-3	330-2	340-6	380-8	350-8
M róol	1975	1982	1984	1980	1988	1993	1993	1998	2002	2007	2011
	0,79	0,79	0,79	0,79	0,70	0,82	0,82	0,82	0,83	0,85	0,85
flèche	0,105	0,125	0,105	0,125	0,125	20.7	20.7	0,119 20.7	20.7	33.6	30
e*cosf	0.09	0.11	0.09	0.11	0.11	0 10	0.10	23,7	0.09	0.08	0 10
M mod 2	0.82	0,79	0.83	0.80	0.80	0.82	0.82	0.82	0.85	0.86	0.84
M mod 1	0.78	0.76	0.78	0.78	0.76	0.81	0.79	0.84	0.83	0.84	0.84
finesse	300B4	310-2	300-6	310-3	320-2	340-3	330-3	330-2	340-6	380-8	350-8
f réel	15,5	17,5			17,3	19,5				20,5	
f mod1	15,6	17,9	16,8	18,3	18,2	19,9	20,1	21,1	19,0	20,1	22,3
f mod2	15,9	16,6	17,5	17,7	17,2	19,1	18,7	20,7	20,4	21,2	21,3
masse A1	300B4	310-2	300-6	310-3	320-2	340-3	330-3	330-2	340-6	380-8	350-8
A1 réel	21637	18617	21228	19116	8768	35509	34647		50165	86097	
A1r / W	0,131	0,131	0,125	0,122	<u>0,11</u> 9	0,129	0,151		0,132	0,154	
mod longeron	4236	3731	4311	3673	1507	7390	7182	6863	10434	19606	7521
mod panneau	9275	7658	9438	7540	3213	16803	16331	15604	25264	44236	18684
mod mobile	8340	7114	8262	7633	4100	12270	10430	10262	16105	22941	10480
A1 mod 1	21850	18504	22012	18845	8820	36463	33943	32729	51803	86783	36685
A1 mod 2	22393	18506	22262	19977	8509	37878	30857	27977	53830	85761	29276

2 – Boeing :

BOEING	707-12	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
annáa											
annee	1961	1962	1968	1970	1982	1983	1984	1989	1995	1997	2010
B (km)	1,177221	1,170741	1,134472	1,123318	1,064999	1,000742	1,050509	1,030912	1,015770	1,009275	0,97281
	8000	4100	2700	10550	6300	/100	4700	13400	13100	100	18000
No	174	1/2	07	374 467	210	211	120	41Z	3/5	125	240
K (km)	12162	10955	1/200	10002	230	22625	22616	20762	20075	27020	24502
r	0.66	0.38	0.10	19902	0.28	0.30	0.21	0.47	29075	0.27	0.52
W (ka)	116780 9	72608	44018.6	322108	127071 6	0,00	56/08 1	363040	229622.8	60355 /	220093
7 (ka)	77146	53548.4	37075.46	238925 7	1098196	83499.2	47649	242783	190596	54682.9	158830
F (ka)	52686 18	23352 55	10764 14	143536.9	36912.09	34284 59	16148.02	163470.6	94254 26	20903.39	99836
M croi	0.82	0.8	0.73	0.84	0.8	0.8	0.74	0.85	0.84	0.78	0.85
géométrie	707-12	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
S (m2)	234,2	157,9	91,05	511	283,3	185,25	105,4	541,16	427,8	124,6	373,6
b (m)	39,37	32,92	28,35	59,64	47,57	38,05	28,88	64,44	60,93	34,32	62,08
λ	6,6	6,9	8,8	7,0	8,0	7,8	7,9	7,7	8,7	9,5	10,3
e (%)	0,1	0,11	0,129	0,101	0,115	0,105	0,129	0,101	0,12	0,129	0,12
effilement	0,25	0,25	0,25	0,24	0,25	0,25	0,25	0,24	0,17	0,25	0,2
flèche	35	32	25	37,3	31,5	25	25	37,5	31,6	25	32
adaptation	707-12	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
W/S	498,6	459,8	483,5	630,5	451,7	538,9	536,0	670,9	536,8	484,4	589,1
(W + Z) / 2S	414,0	399,5	445,3	549,0	419,7	494,8	494,1	559,7	491,1	461,6	507,1
(W-F)/S	273,7	311,9	365,2	349,6	321,4	353,9	382,8	368,8	316,4	316,6	321,9
W/S opt f	363,8	370,5	420,2	373,1	399,7	395,4	397,8	391,7	416,6	434,8	454,2
W / b2	75,3	67,0	54,8	90,6	56,6	69,0	67,7	87,4	61,9	51,2	57,1
(W + Z) / 2 b2	62,6	58,2	50,4	78,9	52,5	63,3	62,4	72,9	56,6	48,8	49,2
(W-F/2)/b2	58,3	56,2	48,1	70,4	48,4	57,1	58,1	67,7	49,2	42,4	44,2
réservoir	707-12	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
Vest	63	37	17	199	87	43	22	207	162	26	121
Vreel	65,6	29,1	13,4	178,7	46,0	42,7	20,1	204,4	117,3	26,0	126,9
Vest/Vr	0,96	1,29	1,27	1,11	1,90	1,00	1,11	1,01	1,38	1,01	0,96
Mach croi	707-12	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
annee M ráol	1961	1962	1968	1970	1982	1983	1984	1989	1995	1997	2009
	0,82	0,8	0,73	0,84	0,8	0,8	0,74	0,85	0,84	0,78	0,85
flàcha	0,1	0,11	0,129		0,115	0,105	0,129	0,101	0,12	0,129	0,12
e*cosf	0.08	0.09	0.12	0.08	0 10	0.10	0.12	0.08	0.10	0.12	0 10
M mod 2	0,00	0,03	0,12	0.83	0,10	0,10	0.78	0,00	0,10	0,12	0,10
M mod 1	0.88	0.81	0.75	0.85	0.78	0.78	0.76	0.83	0.82	0.78	0.85
finesse	707-12	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
f réel	11	12	13		17.5		16	16.5	19	19	
f mod1	11,9	11,9	15.0	14,4	18,0	16,7	16,8	17,9	19,7	20,1	22,8
f mod2	14,4	12,9	13,7	16,7	17,0	17,4	16,8	19,5	19,8	18,4	21,5
masse A1	707-12	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
A1 réel		8594		42737				44057	31500		
A1r / W		0,118		0,133				0,121	0,137		
mod longeron	2503	1445	835	11205	3895	2359	1018	11356	8257	1326	6714
mod panneau	5200	2733	1621	24828	8158	4982	1771	27813	17207	2757	17016
mod mobile	6676	4571	3132	15601	6517	5297	3444	16095	10346	3446	9537
A1 mod 1	14379	8749	5587	51633	18569	12638	6233	55263	35809	7528	33267
Ai mod 2	13739	8964	5491	47240	16018	11841	6525	52542	29151	6563	25496

7 – LA PROPULSION : FACTEUR DE CONSOMMATION « Cs » ET MASSE

7.1 – efficacité de la propulsion (mesurée par Cs) :

Puissance calorifique du kérosène
$$P_{cal} = C_s \times 43 \cdot 10^6$$
 Joules $\times T$ avec C_s en kg/N/s T poussée en N
Rendement thermique $\eta_{th} = \frac{P_c}{P_{cal}}$
Puissance cinétique $Pc = \frac{1}{2} \times q \times (V_E^2 - V_0^2)$ avec $q = débit d'air (kg/s)$
 $V_E = vitesse d'éjection (m/s)$
 $V_0 = vitesse avion (m/s)$
Puissance utile $P_u = T \times V_0 = q \times (V_E - V_0) \times V_0$ avec $T =$ poussée du réacteur

Le **rendement thermique** η_{ther} incorpore le rendement de Carnot avec pour température chaude la température de l'entrée de la turbine $T_{turbine}$ et pour température froide la température extérieure T_o :

$$\eta_{Carnot} = 1 - \frac{T_{externe}}{T_{turbine}}$$

Le **rendement de propulsion** η_{prop} incorpore l'efficacité de Froude :

$$\eta_{Froude} = \frac{P_u \times V_0}{P_c} = \frac{2 \times q \times (V_E - V_0) \times V_0}{q \times (V_E^2 - V_0^2)} = \frac{2 \times V_0}{V_E + V_0}$$

La vitesse d'éjection dépend du taux de dilution \delta ; pour un réacteur simple flux (δ = 0), la vitesse d'éjection V_{E0} varie en proportion de la vitesse du son estimée pour la température d'entrée de la turbine T_{turbine} et l'on retiendra :

$$V_{E0}(m/s) = 16 \times \sqrt{T_{tur}(^{\circ}K)}$$

Pour un réacteur double flux, on supposera :

- dans le flux primaire de débit q₀ des niveaux de vitesses (et Mach) comparables à l'entrée et à la sortie du réacteur à ceux du réacteur simple flux dont il est issu ;
- une répartition uniforme de l'énergie cinétique apportée par la combustion du flux primaire avec une même vitesse d'éjection V_E entre flux primaire et secondaire :

$$P_{c} = \frac{1}{2} \times (1+\delta) \times q_{0} \times (V_{E}^{2} - V_{0}^{2}) = \frac{1}{2} \times q_{0} \times (V_{E0}^{2} - V_{0}^{2}) \qquad \text{et} \qquad V_{E} = \sqrt{\frac{V_{E0}^{2} + \delta \times V_{0}^{2}}{1+\delta}}$$

Au-delà, il faut prendre en compte les pertes dues à l'entrée d'air, le compresseur, la combustion, la turbine et le fan ; celles-ci sont conventionnellement incluses dans le rendement thermique η_{ther} .

On peut alors estimer la
$$C_s$$
 à **11000m** et **en fonction du Mach** (vitesse du son = 295 m/s) :

$$\begin{split} V_{E} &= \sqrt{\frac{V_{E0}^{2} + \delta \times V_{0}^{2}}{1 + \delta}} = 295(vitesse - son - \dot{a} - 11000\,m) \times \sqrt{\frac{0,003 \times T_{tur} + \delta \times M^{2}}{1 + \delta}} \\ P_{u} &= \eta_{th} \times \eta_{prop} \times P_{cal} \\ avec: Pu &= T \times V_{0}, \qquad P_{cal} = T \times C_{s} \quad \text{et} \qquad V_{0} = 295m/s(vitesse - son) \times M(Mach) \\ C_{s}(kg / daN / h) &= 3600 \times 9,81 \times C_{s}(kg / N / s) = \frac{3600 \times 9,81 \times 295 \times M}{4300000 \times \eta_{th} \times \eta_{prop}} = \frac{0,245 \times M}{\eta_{th} \times \eta_{prop}} \end{split}$$

Le diagramme ci-dessous présente sous la forme classique (du tapis) retenue par les motoristes, **l'évolution à** Mach = 0,8 (236 m / s) et Z = 11000 m (T = 216 ° K) de la consommation spécifique en fonction des rendements de propulsion et thermique :

$$Cs = \frac{0,196}{n \times n}$$

 $\eta_{th} \times \eta_{prop}$ soit sous forme graphique

Dans le diagramme on a représenté en gras les deux limitations fixées par les spécialistes pour lés évolutions possibles :

- 0,6 pour le rendement thermique η_{th} représentant le niveau optimal d'efficacité de la combustion obtenu pour un mélange stœchiométrique ;
- 0,925 pour le rendement de propulsion η_{prop} représentant un même niveau d'efficacité que celui de l' « open rotor » avec hélices contrarotatives.

	Cs	en rouge en bleu	e en fonct I en fonct	tion de N ion de N t	orop (vari h (variant	ant de 0 de 0,3 à	,4 à 0,925) . 0,6)	
Cs (kg /kg/ł	n)		en vert	la tendan	ce histori	que		
1,3								
1,2								
1,1								
1								
0,9								
0,8								
0,7								
0,6								
0,5								
0,4								
0,3								
0,2 0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	

A l'intersection de ces deux limitations, nous obtenons ainsi une estimation de l'optimum théorique de consommation :

$$Cs = \frac{0,196}{\eta_{th} \times \eta_{prop}} = 0,353 kg / daN / h$$

7.2 - rendement de propulsion (en croisière à 11000 m) :

Le rendement de propulsion peut s'exprimer en fonction du Mach M et de la technologie (T_{turbine}) :

$$\eta_{prop} = \frac{2 \times M}{M + \sqrt{\frac{0,003 \times T_{turb} + \delta \times M^2}{1 + \delta}}}$$

$$\eta_{prop} = \frac{0.9 \times M}{0.45 \times M + \sqrt{\frac{1 + 0.2 \times \delta \times M^2}{1 + \delta}}}$$

= 1650 °K d'où

avec en 2000, T_{turbine} =

On peut estimer la **consommation spécifique** :

$$Cs = \frac{0,245 \times M}{\eta_{th} \times \eta_{prop}} = \frac{0,1225}{\eta_{th}} \times \left(M + \sqrt{\frac{0,003 \times T_{turb} + \delta \times M^2}{1 + \delta}} \right)$$
$$C_s = 0,60 \times \left(0,45 \times M + \sqrt{\frac{1 + 0,2 \times \delta \times M^2}{1 + \delta}} \right)$$

avec en 2000, η_{th} $= 0,455 \text{ et } \Gamma_{\text{turb}} = 1650 \text{ °K} \text{ d'où}$

1

Evolution Cs (techno 2000) en fonction du Mach et du taux de dilution d Cs (kg/daN/h d=0 d=1 d=5 d=10

7.3 – rendement thermique et d'installation (en croisière à 11000 m) :

A partir des informations recueillies (en particulier le colloque AAAF Autopropulsion en 1990), il est possible de reconstituer le tableau ci-dessous et de déterminer l'évolution des rendements (propulsion, thermique et global).

Z=11000 et M=0,8	1950	1960	1970	1980	1990	2000	2010	2020	2030	2040	2050
T turbine (°K)	1450	1500	1545	1585	1620	1650	1675	1700	1720	1735	1750
taux dilution	0	1	3	5	7	8	8,5	9	9,4	9,7	10
Cs réel	1,1	0,8	0,65	0,57	0,52	0,5					
Cs prévisionnel							0,48	0,47	0,46	0,452	0,445
rendement carnot	0,851	0,856	0,8602	0,8637	0,8667	0,8691	0,871	0,8729	0,8744	0,8755	0,8766
rend propulsion	0,5545	0,6658	0,7692	0,8199	0,8508	0,8612	0,8651	0,8686	0,8712	0,873	0,8747
rend prop mod	0,5545	0,7035	0,7833	0,8261	0,8489	0,8612	0,8677	0,8713	0,8731	0,8741	0,8747
rend thermique	0,3214	0,368	0,392	0,4194	0,443	0,4552	0,472	0,4801	0,4891	0,4967	0,5035
rend th mod	0,3214	0,36	0,3915	0,4172	0,4381	0,4552	0,4691	0,4805	0,4898	0,4973	0,5035
rend global	0,1782	0,245	0,3015	0,3439	0,3769	0,392	0,4083	0,417	0,4261	0,4336	0,4404
rend gl mod	0,1783	0,2493	0,3021	0,3413	0,3704	0,392	0,4081	0,4201	0,4289	0,4355	0,4404

	Evolution	des renden	nents (Mach	= 0,8)	
rendement	rend thermiq mod prop	ue rend mod	l propulsion th	rend global mod glo	
1					
0,9					
0,8					
0,7					
0,6					
0,5					
0,4					
0,3					
0,2					
0,1					
0 1950 1	L960 1970	1980 1990	2000 2010	2020 2030	2040 2050 années

Ces évolutions peuvent être représentées par les modèles suivants :

$$\begin{split} \eta_{propulsion} &= 0,8753 - 0,01412 \times e^{-0,062464(t-2000)} \\ \eta_{thermique} &= 0,5308 - 0,07554 \times e^{-0,020378(t-2000)} \\ \eta_{global} &= 0,4546 - 0,06256 \times e^{-0,029716(t-2000)} \end{split}$$

La consommation spécifique Cs « moteur nu » suit une évolution inverse de celle du rendement global susceptible d'être représentée par le modèle ci-dessous laissant présager pour la consommation spécifique du moteur nu un potentiel d'amélioration de 20% au-delà de l'an 2000 :

 $Cs, en, kg / daN / h, (moteur - nu) = 0.50 \times (0.8 + 0.2 \times e^{-0.035 \times (t - 2000)})$

7.4 - impact des prélèvements et de la trainée des nacelles :

En l'absence de données précises, on a supposé ici un niveau d'impact des prélèvements sur la consommation voisin de 10% ; compte tenu de la plus forte sensibilité du moteur double flux au prélèvement d'air, on a retenu en s'appuyant sur une estimation ancienne d'Aerospatiale:

$$\Delta Cs / Cs = 0,07+0,012 * \delta * M^2$$

La traînée des nacelles représentant pour l'A300B (taux de dilution δ = 5 et Mach M = 0,8) de l'ordre de 5% de la traînée totale de l'avion entraîne de ce fait une croissance de la consommation de l'avion de même niveau ; nous pouvons traiter celle-ci comme une augmentation de Cs (évoluant en proportion de M²) :

$$\Delta Cs / Cs = 0.01$$
 $\delta = 0.015$ δ M^2

soit au total :

$$\Delta Cs / Cs = 0,07+0,027 * \delta * M^2$$

d'où l'expression de la Cs installée :

$$Cs_{install\acute{e}e} = \frac{0,1312 \times (1+0,025 \times \delta \times M^2)}{\eta_{th}} \times \left(M + \sqrt{\frac{0,003 \times T_{turb} + \delta \times M^2}{1+\delta}}\right)$$

7.5 – quelques remarques en technologie 2000

1 – **impact du taux de dilution sur la Cs installée :** l'expression de Cs installée donnée en 4.3, devient en technologie 2000 ($\eta_{th} = 0,455$ et $T_{turb} = 1650$ °K) et pour l'altitude de croisière de 11000 m :

$$C_{S_{install\acute{e}}} = 0,64 \times (1+0,025 \times \delta \times M^2) \times \left(0,45 \times M + \sqrt{\frac{1+0,2 \times \delta \times M^2}{1+\delta}}\right)$$

soit pour M = 0.8

$$C_{S_{installée}} = 0,64 \times (1+0,016 \times \delta) \times \left(0,36 + \sqrt{\frac{1+0,128 \times \delta}{1+\delta}}\right)$$

dont nous présentons, dans le diagramme ci-dessous, l'évolution en fonction du taux de dilution et en comparaison avec celle du réacteur nu

ette évolution met en évidence :

- l'impact du taux de dilution sur les pertes d'installation dues principalement à la croissance de la traînée des nacelles;
- une valeur optimale du taux de dilution voisine de 10.

2 – impact couplé de la Cs et de la vitesse sur le facteur de Breguet Leduc :

Dans la formule de Breguet Leduc, Cs intervient en association avec la vitesse :

$$K = \frac{f \times V}{g \times C_s}$$

ce qui conduit à analyser le facteur V / Cs ou plutôt le facteur « Mach / Cs » en fonction du Mach

On met en évidence un impact favorable du Mach (donc de la vitesse) sur le facteur K de Breguet-Leduc mais cet effet s'atténue avec les taux de dilution élevée comme le montre la planche ci-dessous ; ainsi, pour une augmentation du Mach avec un taux de dilution de 10, il n'y a pas d'amélioration du facteur de Breguet-Leduc (résultat confirmé par la planche ci-dessus).

7.6 - modélisation de la Cs installée (en kg / daN / h):

1 – **en 2000 :** pour δ = 8 l'expression donnant Cs devient :

$$C_{S_{installée}} = 0.64 \times (1 + 0.2 \times M^2) \times \left(0.45 \times M + \sqrt{\frac{1 + 1.6 \times M^2}{9}}\right)$$

En raison de la croissance du Mach en fonction de r = R /K (selon le **modèle M 1** présenté au § 3.3 point 3) la Cs évolue aussi en fonction de « r » sous la forme modélisée :

 $C_{S_{installée}} = 0,535 \times (1+0,4 \times r)$

2 –**au cours du temps :** On retient le modèle suivant laissant présager pour la consommation spécifique du moteur installé un potentiel d'amélioration de 11% au-delà de l'an 2000 (14% pour le moteur nu réduit de 3% pour l'installation) :

$$Cs(install\acute{e}) = 0,535 \times (1+0,4 \times r) \times (0,85+0,15 \times e^{-0.04 \times (t-2000)})$$

Les résultats ainsi estimés sont comparés avec les données constatées et leurs évolutions prévisionnelles dans le diagramme ci-dessous :

Evolution de la Cs installée Cs (kg/daN/h)	Cs r=0 Csm r=0	Cs r=0,25 Csm r=0,25	Cs r=0,5 Csm r=0,5	
1,3				
1,2				
1,1				
1				
0,9				
0,8				
0,7				
0,6				
0,5 1950 1960 1970 1980	1990 2000	2010 2020	2030 2040	20 50 nées

7.7 – masse « B » de l'ensemble propulsif :

Dans la décomposition du devis de masse (voir §3.1 ci-dessus), l'ensemble propulsif comprend :

- la propulsion, c'est-à-dire les réacteurs dont une grande part de la masse évolue en proportion de la poussée (donc de la masse W au décollage);
- les nacelles et les mats (classés souvent dans le poste A cellule du devis de masse) ;
- le circuit de carburant ;
- les « inconsommables » (carburant, lubrifiants...).

Une analyse statistique conduit à la modélisation :

 $B(kg) = 1800 + (0.09 - 0.5 \times r) \times W$

8 – FACTEUR DE BREGUET-LEDUC

L'efficacité de consommation est prise en compte dans le facteur de Breguet-Leduc « K » :

Les paramètres intervenant dans le facteur de Breguet-Leduc et analysés dans les paragraphes précédents permettent l'évaluation de K :

- la finesse « f » caractéristique de l'efficacité aérodynamique de l'avion,
- la consommation spécifique « Cs » caractéristique de l'efficacité de la propulsion, (la consommation Cs retenue correspond à une consommation des moteurs installés y compris l'impact des prélèvements)
- la traînée des nacelles est prise en compte avec la propulsion et non dans l'évaluation de la finesse ; ce choix est justifié par l'importance du taux de dilution dans cette évaluation.
- la vitesse V (ou la valeur du Mach « M ») avec son impact sur la finesse et la consommation.

8.1 - technologie 2000 :

Il est possible d'estimer : partir des modèles proposés pour « M », « f » et « Cs » aux § 6.3, 6.4 et 7.6 :

$$M = 0.7 \times (1 + 0.4 \times r)$$

$$f = \frac{16.6}{(1 - 0.5 \times r)}$$

$$Cs = \frac{0.535}{(1 + 0.4 \times r)}$$

On obtient ainsi :

- pour coefficient numérique : 3,6 * 295 * 0,7 * 16,6 /0,535 = 23000 km
- pour impact de r : 1 / (1 -0,5 * r)

$$K(km) = \frac{23000}{(1 - 0.5 \times r)} = \frac{23000}{\left(1 - 0.5\frac{R}{K}\right)} = 23000 + 0.5 \times R(km)$$

8.2 – évolution en fonction du temps :

L'application des modèles retenus pour « f », « Cs installée » et « Mach » nous conduit à la modélisation suivante :

$$K(km) = (23000 + 0.5 \times R) \times (1.2 - 0.2 \times e^{-0.035 \times (t - 2000)})$$

avec :t = année.de.mise.en.service

Expression qui laisse présager pour le facteur de Breguet-Leduc un potentiel d'amélioration de 20% au-delà de l'an 2000 ;:

Cas particulier du « 2 ponts » : en prenant en compte l'amélioration de 5% de la finesse, l'expression devient :

$$K_{2.ponts}(km) = (24000 + 0.5 \times R) \times (1.2 - 0.2 \times e^{-0.035 \times (t-2000)})$$

8.3 - caractéristiques des missions des avions Airbus et Boeing :

Le diagramme ci-dessous montre l'évolution de K en fonction du temps pour les 3 valeurs caractéristiques de « r » dans nos analyses r = 0, r = 0,25 et r = 0,5; nous avons reporté aussi les points pour quelques avions anciens et estimés à partir de diagrammes connus « charge utile et rayon d'action ».

Evolution du K (km) 40000	facteur I	K de Bre	guet		avions co modèle r=	nnus 0,25		modèle r=0 modèle r=0),5
35000									
30000									
25000									
20000									
15000									
10000									
5000									
0 1960	1970	1980	1990	2000	2010	2020	2030	anné 2040	es 2050

Le tableau suivant présente les estimations du facteur de Breguet-Leduc :

- « Kréel » à partir de la mission réalisée (voir § 4.2),
- « Kmodèle » à partir du modèle ci-dessus,

pour 4 missions représentatives de chacun des avions :

- La mission nominale caractérisée par son rayon d'action Rnom. Et sa capacité Nnom.

- Les 3 points caractéristiques du diagramme « payload-range »
 - A (W = Wmax et Z = Zmax)
 - B (W = Wmax et Z = Wmax Fmax),
 - C(W = O + Fmax et Z = O)

	A300B										
AIRBUS	4	A310-2	A300-6	A310-3	A320-2	A340-3	A330-3	A330-2	A340-6	A380-8	A350-8

année	1975	1982	1984	1986	1988	1993	1993	1998	2002	2007	2013
S	260	219,9	260	219,9	122,4	362	362	362	437,3	845	442,9
b	44,84	43,9	44,84	43,9	33,91	58	58	58	61,2	79,8	64,75
No	280	230	290	230	160	360	360	320	440	730	350
Mcroi	0,79	0,79	0,79	0,79	0,76	0,82	0,82	0,82	0,83	0,85	0,85
Wmax	165000	142000	170500	157000	73500	275000	230000	230000	380000	560000	248000
Zmax	123000	114000	130000	114000	61000	178000	173000	168000	245000	358000	171000
Fmax	53000	45000	53000	49000	19200	113000	77500	105000	162500	247500	103000
0	88000	80000	91500	82000	42500	134000	130000	125000	180000	275000	126000
Mission nom,											
Nnom,	254	237	266	220	150	300	300	246	372	555	276
Rnom,	5600	6000	7250	8200	4800	13300	9600	11600	14600	15500	14500
Kr	17470	21836	22268	22353	22451	28116	29222	29692	28478	31912	32815
Kmod	18582	21436	22628	23673	22748	28004	26256	28382	30710	32086	32462
Point A											
Ra	3900	3700	5000	6300	3000	10680	7100	8100	11000	12700	10500
Ka1000	17558	22526	23288	24010	22587	28265	29939	30495	28779	32233	32562
Point B											
Rb	5500	6900	7200	7400	5560	13200	10650	16450	14300	17000	15500
Kb1000	17659	21820	23185	23635	22808	28247	29844	30124	28864	32481	32362
Point C											
Rc	6600	8100	8700	9300	6760	15350	12100	16450	16350	18500	17500
Kc1000	16970	21464	22345	23143	21912	28143	29490	30124	28389	31980	32595

BOEING	707-1B	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
année	1961	1964	1968	1970	1982	1984	1984	1989	1995	1997	2010
S	234,2	157,9	91,05	511	283,3	185,25	105,4	541,16	427,8	124,6	373,6
b	39,37	32,92	28,35	59,64	47,57	38,05	28,88	64,44	60,93	34,32	62,08
No	185	145	95	465	230	210	125	580	385	125	315
Mcroi	0,82	0,8	0,73	0,84	0,8	0,8	0,74	0,85	0,84	0,78	0,85
Wmax	117000	72600	43999,2	322100	127913	99800	56473,2	362874	229500	70080	227930
Zmax	77200	53600	37059,1	238780	109769	83450	47628	242672	190470	55202	161025
Fmax	52470	23360	10758	143475	36894	34260	16140,9	163396	94240	20894,2	101323
0	57834	39800	26581	162500	78975	60800	31479,8	178756	135550	37648	117707
Mission nom,											
Nnom,	137	106	103	385	216	186	134	420	305	148	242
Rnom,	6630	3950	1800	8700	4250	3850	4300	11300	8000	5970	14500
Kr	15707	13491	14391	20800	21080	20229	21450	25082	27688	23040	33225
Kmod	10970	12361	14030	17189	20715	21183	21374	25959	25967	25410	32037
Point A											
Ra	5170	3050	1400	4650	1950	2300	2500	8600	3900	4200	10000
Ka1000	15621	14051	14717	19870	20300	19415	21628	25116	27670	22937	33323
Point B											
Rb	8000	4100	2700	10550	6300	7100	5700	13400	13100	6300	17500
Kb1000	15921	13827	13891	20622	22582	20276	20952	25333	28073	21705	33121
Point C											
Rc	8600	4900	3300	11650	6900	7900	7100	14350	13000	8150	18550
Kc1000	15651	13448	13319	21042	21694	20962	20599	24888	27920	21817	33138

9 – ESTIMATION DE LA MASSE A VIDE

9.1 – bases générales et hypothèses simplificatrices

1 – estimation des masses de référence « W », « F » et « Z » de l'avion :

La formule de Bréguet-Leduc appliquée à la mission globale peut être linéarisée autour de la valeur 0,25 du rapport « R rayon d'action / K coefficient de BL » (l'écart reste de l'ordre du %)

$$\frac{Z}{W} = e^{-\frac{R+1300}{0.95 \times K}} \approx 0.92 - 0.72 \times \frac{R}{K} \qquad \frac{F}{W} = 1 - e^{\frac{-(R+1300)}{0.95 \times K}} \approx 0.08 + 0.72 \times \frac{R}{K}$$

2 – estimation de l'impact de la technologie :

Les modèles d'estimation des masses seront établis aux conditions de l'année 2000 (année de certification) ; la technologie intervient sous diverses formes :

- utilisation de matériaux plus performants (résistance mécanique rapportée au poids)
- méthodes d'optimisation structurale plus élaborée s'appuyant sur une meilleure connaissance des phénomènes physiques et des moyens de calcul plus puissants ;
- fournitures extérieures (équipements, réacteurs...) plus légères pour une performance meilleure.

Pour tenir compte de l'impact de la technologie avec le temps on retiendra la formule suivante

représentant au mieux les réductions constatées en fonction de l'année « t » de certification :

$$m = 0,85 + 0,15 \times e^{-0,02 \times t}$$
 avec t = année certif - 2000

Cette expression correspond à l'impact moyen sur la masse à vide sans possibilité de séparation les parts dues aux matériaux, à la propulsion, aux équipements et aux méthodes de calcul ; faute d'une telle distinction, le facteur global ainsi estimé sera appliqué à l'ensemble des éléments constituant la masse à vide.

Au niveau de la mission, il faut prendre en compte l'effet multiplicatif dû à la sensibilité (voir §3.2).

9.2 – modélisation de la MVOE « O » :

Le modèle prenant en compte les analyses déjà présentées pour l'aile, le fuselage et la propulsion, est établi :

- en fonction des paramètres de mission « N » et « R »,
- du paramètre de technologie « m »,
- du coefficient de Breguet-Leduc « K »,
- du rayon d'action réduit « r » :

	fixe	W	W*r	W ^{1,5}	W ^{1,5} * r	N	N * r	$N^{1,5}$	N ^{1,5} * r
A1	1000	0,05		0,0002	-0,00012				
A2	400	0,028				20	5	2,2	0,9
A3	100	0,007		0,00003	-0,000015				
A5	<u>100</u>	<u>0,025</u>		<u>0,00004</u>	<u>-0,000035</u>	<u></u>	<u></u>	<u></u>	<u></u>
A	1600	0,11		0,00027	-0,00017	20	5	2,2	0,9
B+A4	1800	0,09	-0,045						
С	2300	0,035				2	3	0.1	0.1
								0,1	0,1
D	200					28	22		
OEW	5900	0,235	-0,045	0,00027	-0,00017	50	30	2,3	1

 $O = m \times \left[5900 + (0,235 - 0,045 \times r)W + (0,00027 - 0,00017 \times r)W^{1,5} + (50 + 30 \times r)N + (2,3 + 1 \times r)N^{1,5} \right]$

Cas particulier du « 2 ponts » : il faut prendre en compte l'effet sur la masse du fuselage d'où : $O_{2.ponts} = m [5900 + (0,235 - 0,045 \times r)W + (0,00027 - 0,00017 \times r)W^{1.5} + (49 + 29,5 \times r)N + (2,2 + 0,8 \times r)N^{1.5}]$

Application aux avions Airbus et Boeing :

AIRBUS	300-B	310-2	300-6	310-3	320	330-2	340-2	340-3	340-6	380-8	350-8
année	1974	1982	1984	1986	1988	1998	1992	1993	2002	2007	2011

effet techno	1,10	1,06	1,06	1,05	1,04	1,01	1,03	1,02	0,99	0,98	0,97
N nom	254	237	266	220	150	246	259	300	360	555	276
R nominal	2300	6000	2300	2300	2300	2300	2300	2300	2300	2300	2300
Kmod	17322	21963	20697	21241	21749	23816	22664	22873	24461	25150	25620
r = R / K	0,1328	0,2732	0,1111	0,1083	0,1058	0,0966	0,1015	0,1006	0,094	0,0915	0,0898
TOW (kg)	137000	142000	170500	157000	73500	230000	258000	258000	365000	560000	248000
O réel	86000	80000	91500	82000	42500	115000	128785	130000	180000	275000	126000
A mod	48341	45976	56505	48793	22898	69155	79993	83005	120029	206892	74178
B mod	14673	13669	17214	15900	8393	21632	24462	24390	32911	48918	22433
C mod	8998	8949	9900	9088	5644	11406	12708	12876	16546	24107	11747
D mod	8878	8797	8768	7218	4942	7657	8239	9472	10960	16526	8222
O mod	80890	77391	92387	80999	41877	109850	125403	129744	180445	296443	116581
Om / Or	0,94	0,97	1,01	0,99	0,99	0,96	0,97	1,00	1,00	1,08	0,93
•											
BOEING	707-12	727-1	737-1	747-1	767-2	757-2	737-3	747-4	777-2	737-7	787-8
BOEING année	707-12 1961	727-1 1962	737-1 1968	747-1 1970	767-2 1982	757-2 1983	737-3 1984	747-4 1989	777-2 1995	737-7 1997	787-8 2009
BOEING année effet techno	707-12 1961 1,18	727-1 1962 1,17	737-1 1968 1,13	747-1 1970 1,12	767-2 1982 1,06	757-2 1983 1,06	737-3 1984 1,06	747-4 1989 1,04	777-2 1995 1,02	737-7 1997 1,01	787-8 2009 0,98
BOEING année effet techno N nom	707-12 1961 1,18 140	727-1 1962 1,17 106	737-1 1968 1,13 85	747-1 1970 1,12 374	767-2 1982 1,06 216	757-2 1983 1,06 186	737-3 1984 1,06 128	747-4 1989 1,04 400	777-2 1995 1,02 375	737-7 1997 1,01 128	787-8 2009 0,98 295
BOEING année effet techno N nom R nominal	707-12 1961 1,18 140 6000	727-1 1962 1,17 106 3300	737-1 1968 1,13 85 3000	747-1 1970 1,12 374 8700	767-2 1982 1,06 216 6020	757-2 1983 1,06 186 4760	737-3 1984 1,06 128 4700	747-4 1989 1,04 400 11229	777-2 1995 1,02 375 13800	737-7 1997 1,01 128 3500	787-8 2009 0,98 295 14600
BOEING année effet techno N nom R nominal Kmod	707-12 1961 1,18 140 6000 11062	727-1 1962 1,17 106 3300 10415	737-1 1968 1,13 85 3000 14554	747-1 1970 1,12 374 8700 18884	767-2 1982 1,06 216 6020 22705	757-2 1983 1,06 186 4760 22338	737-3 1984 1,06 128 4700 22616	747-4 1989 1,04 400 11229 27569	777-2 1995 1,02 375 <i>13800</i> 30260	737-7 1997 1,01 128 3500 24949	787-8 2009 0,98 295 14600 32626
BOEING année effet techno N nom R nominal Kmod r = R / K	707-12 1961 1,18 140 6000 11062 0,542	727-1 1962 1,17 106 3300 10415 0,317	737-1 1968 1,13 85 3000 14554 0,206	747-1 1970 1,12 374 8700 18884 0,461	767-2 1982 1,06 216 6020 22705 0,265	757-2 1983 1,06 186 4760 22338 0,213	737-3 1984 1,06 128 4700 22616 0,208	747-4 1989 1,04 400 11229 27569 0,407	777-2 1995 1,02 375 13800 30260 0,456	737-7 1997 1,01 128 3500 24949 0,140	787-8 2009 0,98 295 14600 32626 0,448
BOEING année effet techno N nom R nominal Kmod r = R / K TOW (kg)	707-12 1961 1,18 140 6000 11062 0,542 116729	727-1 1962 1,17 106 3300 10415 0,317 72600	737-1 1968 1,13 85 3000 14554 0,206 43999	747-1 1970 1,12 374 8700 18884 0,461 322100	767-2 1982 1,06 216 6020 22705 0,265 127915	757-2 1983 1,06 186 4760 22338 0,213 99800	737-3 1984 1,06 128 4700 22616 0,208 58968	747-4 1989 1,04 400 11229 27569 0,407 362874	777-2 1995 1,02 375 13800 30260 0,456 229522	737-7 1997 1,01 128 3500 24949 0,140 60329	787-8 2009 0,98 295 14600 32626 0,448 227930
BOEING année effet techno N nom R nominal Kmod r = R / K TOW (kg) O réel	707-12 1961 1,18 140 6000 11062 0,542 116729 57600	727-1 1962 1,17 106 3300 10415 0,317 72600 39800	737-1 1968 1,13 85 3000 14554 0,206 43999 26581	747-1 1970 1,12 374 8700 18884 0,461 322100 162500	767-2 1982 1,06 216 6020 22705 0,265 127915 78975	757-2 1983 1,06 186 4760 22338 0,213 99800 60800	737-3 1984 1,06 128 4700 22616 0,208 58968 32600	747-4 1989 1,04 400 11229 27569 0,407 362874 178756	777-2 1995 1,02 375 13800 30260 0,456 229522 135550	737-7 1997 1,01 128 3500 24949 0,140 60329 37648	787-8 2009 0,98 295 14600 32626 0,448 227930 108860
BOEING année effet techno N nom R nominal Kmod r = R / K TOW (kg) O réel A mod	707-12 1961 1,18 140 6000 11062 0,542 116729 57600 34332	727-1 1962 1,17 106 3300 10415 0,317 72600 39800 22026	737-1 1968 1,13 85 3000 14554 0,206 43999 26581 13915	747-1 1970 1,12 374 8700 18884 0,461 322100 162500 111572	767-2 1982 1,06 216 6020 22705 0,265 127915 78975 40799	757-2 1983 1,06 186 4760 22338 0,213 99800 60800 31752	737-3 1984 1,06 128 4700 22616 0,208 58968 32600 18592	747-4 1989 1,04 400 11229 27569 0,407 362874 178756 118983	777-2 1995 1,02 375 13800 30260 0,456 229522 135550 76512	737-7 1997 1,01 128 3500 24949 0,140 60329 37648 18068	787-8 2009 0,98 295 14600 32626 0,448 227930 108860 65854
BOEING année effet techno N nom R nominal Kmod r = R / K TOW (kg) O réel A mod B mod	707-12 1961 1,18 140 6000 11062 0,542 116729 57600 34332 11133	727-1 1962 1,17 106 3300 10415 0,317 72600 39800 22026 8545	737-1 1968 1,13 85 3000 14554 0,206 43999 26581 13915 6071	747-1 1970 1,12 374 8700 18884 0,461 322100 162500 111572 27085	767-2 1982 1,06 216 6020 22705 0,265 127915 78975 40799 12552	757-2 1983 1,06 186 4760 22338 0,213 99800 60800 31752 10422	737-3 1984 1,06 128 4700 22616 0,208 58968 32600 18592 6927	747-4 1989 1,04 400 11229 27569 0,407 362874 178756 118983 28834	777-2 1995 1,02 375 13800 30260 0,456 229522 135550 76512 18027	737-7 1997 1,01 128 3500 24949 0,140 60329 37648 18068 6912	787-8 2009 0,98 295 14600 32626 0,448 227930 108860 65854 17286
BOEING année effet techno N nom R nominal Kmod r = R / K TOW (kg) O réel A mod B mod C mod	707-12 1961 1,18 140 6000 11062 0,542 116729 57600 34332 11133 8416	727-1 1962 1,17 106 3300 10415 0,317 72600 39800 22026 8545 6202	737-1 1968 1,13 85 3000 14554 0,206 43999 26581 13915 6071 4716	747-1 1970 1,12 374 8700 18884 0,461 322100 162500 111572 27085 17855	767-2 1982 1,06 216 6020 22705 0,265 127915 78975 40799 12552 8288	757-2 1983 1,06 186 4760 22338 0,213 99800 60800 31752 10422 6992	737-3 1984 1,06 128 4700 22616 0,208 58968 32600 18592 6927 5150	747-4 1989 1,04 400 11229 27569 0,407 362874 178756 118983 28834 18058	777-2 1995 1,02 375 13800 30260 0,456 229522 135550 76512 18027 12853	737-7 1997 1,01 128 3500 24949 0,140 60329 37648 18068 6912 4932	787-8 2009 0,98 295 14600 32626 0,448 227930 108860 65854 17286 11701
BOEING année effet techno N nom R nominal Kmod r = R / K TOW (kg) O réel A mod B mod C mod D mod	707-12 1961 1,18 140 6000 11062 0,542 116729 57600 34332 11133 8416 6817	727-1 1962 1,17 106 3300 10415 0,317 72600 39800 22026 8545 6202 4574	737-1 1968 1,13 85 3000 14554 0,206 43999 26581 13915 6071 4716 3364	747-1 1970 1,12 374 8700 18884 0,461 322100 162500 111572 27085 17855 16246	767-2 1982 1,06 216 6020 22705 0,265 127915 78975 40799 12552 8288 7996	757-2 1983 1,06 186 4760 22338 0,213 99800 60800 31752 10422 6992 6661	737-3 1984 1,06 128 4700 22616 0,208 58968 32600 18592 6927 5150 4616	747-4 1989 1,04 400 11229 27569 0,407 362874 178756 118983 28834 18058 15537	777-2 1995 1,02 375 13800 30260 0,456 229522 135550 76512 18027 12853 14691	737-7 1997 1,01 128 3500 24949 0,140 60329 37648 18068 6912 4932 4218	787-8 2009 0,98 295 14600 32626 0,448 227930 108860 65854 17286 11701 11083
BOEING année effet techno N nom R nominal Kmod r = R / K TOW (kg) O réel A mod B mod C mod D mod O mod	707-12 1961 1,18 140 6000 11062 0,542 116729 57600 34332 11133 8416 6817 60697	727-1 1962 1,17 106 3300 10415 0,317 72600 39800 22026 8545 6202 4574 41347	737-1 1968 1,13 85 3000 14554 0,206 43999 26581 13915 6071 4716 3364 28067	747-1 1970 1,12 374 8700 18884 0,461 322100 162500 111572 27085 17855 16246 172758	767-2 1982 1,06 216 6020 22705 0,265 127915 78975 40799 12552 8288 7996 69635	757-2 1983 1,06 186 4760 22338 0,213 99800 60800 31752 10422 6992 6661 55827	737-3 1984 1,06 128 4700 22616 0,208 58968 32600 18592 6927 5150 4616 35285	747-4 1989 1,04 400 11229 27569 0,407 362874 178756 118983 28834 18058 15537 181412	777-2 1995 1,02 375 13800 30260 0,456 229522 135550 76512 18027 12853 14691 122082	737-7 1997 1,01 128 3500 24949 0,140 60329 37648 18068 6912 4932 4218 34130	787-8 2009 0,98 295 14600 32626 0,448 227930 108860 65854 17286 11701 11083 105924

10 – APPLICATION DES MODELES AUX MISSIONS

10.1 – processus de calcul :

1- détermination de W à partir des équations :

- devis de masse :
$$W = O + P + F$$

- calcul de la OEW :
$$O = a + b \cdot W + c \cdot W^{3/2}$$

- calcul du carburant :
$$F = W - Z = W \cdot (1 - e^{-(R+1300)/0.95K}) = k.W$$

→ soit W à partir de l'équation du 3^{eme} degré $c \cdot W^{3/2} - (1-b-k) \cdot W + (a+P) = 0$

20/12/2010

$$F_0 = W \cdot \left(1 - e^{-(R+300)/K} \right)$$

3 – calcul de la sensibilité σ :

on prend en compte un supplément δW : « a » devient « a + δW »
 on estime l'effet sur la masse au décollage : « W » devient « W + ΔW

$$\begin{array}{l} \text{on estime l'effet sur la masse au décollage : « W » devient « W + ΔW »

$$W + \Delta W = a + \delta W + b \cdot (W + \Delta W) + c \cdot \left(W^{\frac{3}{2}} + \frac{3}{2} \cdot W^{\frac{1}{2}} \cdot \Delta W \right) + P + k \cdot (W + \Delta W) \\ \text{soit} \quad \Delta W = \delta W + b \cdot \Delta W + \frac{3}{2} c \cdot W^{1/2} \cdot \Delta W + k \cdot \Delta W \\ \hline \end{pmatrix}$$

$$\begin{array}{l} \text{d'où la sensibilité} \quad \sigma = \frac{\Delta W}{\delta W} = \frac{1}{1 - b - k - 1, 5 \cdot c \cdot \sqrt{W}} \end{array}$$$$

32

10.2 - masse du passager :

On retiendra une évolution en fonction du temps (par l'intermédiaire du facteur « m ») et du rayon d'action (facteur « r ») pour la masse du passager : 90 *(1 + 0,2 * r) * (1 + (1-m)/3)

10.3 - technologie 2000 : consommation en fonction de la mission (N, R)

kg / km /	l siège	Evo	lution	de la ((techr	conso nologie	mmat e 2000	ion un))	itaire		150 450) sièges) sièges			300 sièg 450 s 2 p	es ionts
0,026															
0,024															
0,022															
0,02															
0,018															
0,016															
0,014															
0,012														Р.//	(m)
0,01														K (I	(m)
0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000	12000	13000	14000	15000

10.4 - impact de la technologie entre 2000 et 2050 :

1 – évolution des facteurs élémentaires « m » et « K » : les modèles retenus donnent une extrapolation dans la continuité du passé :

- réduction des masses « m » : -9,5% entre 2000 et 2050 ;
- croissance du facteur « K » de Breguet-Leduc de l'ordre de 10% entre 2000 et 2050.

2 – **impact sur la consommation unitaire** : le niveau dépend de la sensibilité de la mission et principalement du rayon d'action ; dans le diagramme ci-dessous nous avons représenté l'évolution de l'amélioration en fonction du temps et de la mission :

- moyen courrier 5000km et 150 sièges,
- long courrier 10000km et 300 sièges,
- très long courrier 15000 km et 450 sièges

écart en %	Gain de Ckg/km/siège par	rapport à 2000	150s/5000km	150s/5000km 300s/10000		
5						
0						
2000 -5	2010	2020	2030	2040	2050	
-10						
-15						
-20						
-25						
-30						
-35						

10.4 - stratégie de l'avion « standard body » moyen-courrier :

En appliquant notre modélisation, nous avons regardé par rapport à une référence technologique 1988, l'impact sur la consommation unitaire (kg / km / siège) de 2 stratégies de livraison en 2015 :

- avion nouveau : gain de consommation, 25,3 %
- moteur nouveau : gain de consommation 13,8 % .

STRATEGIE successeur A320									
	référence	nouvel av	ion	nouvelle prop,					
mise en service	1988	2015	écart	2015	écart				
Cs propulsion	référence		-11,0%		-11,0%				
finesse	référence		5,5%		0,0%				
masses	référence		-9,5%		0,0%				
MTOW (kg)	70230	60180	-14,3%	66140	-5,8%				
OEW (kg)	39040	33040	-15,4%	37860	-3,0%				
Cuni (kg/km/siège)	0,0189	0,0141	-25,3%	0,0163	-13,8%				