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The model RIS

Definition (Distributed protocol)

A distributed protocol is given by P =

@ : control states

@ D: possible values of the register

e T: transitions of the form p —= (d)

deD.

(Q,D,T)

qandp#qforp,qu
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The model RIS

Definition (Distributed protocol)
A distributed protocol is given by P = (Q, D, T)
@ : control states

@ D: possible values of the register

@ T: transitions of the form p ﬂ g and p M g for p,qg € Q,

deD.

Example




Definition (Configuration of the protocol)
v ={f, d>

with f: Q — N (multiset) and d € D the register value. We write
7(q) = f(q) and v(y) =d.
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Definition (Configuration of the protocol)
v = {f, d>

with f: Q — N (multiset) and d € D the register value. We write
7(q) = f(q) and v(7) =d.

Some notations:
@ [ is the set of configurations
o [v]=2>_,7(q) (size)
o 5(v) =g [~(q) >0},v(7))
e Pre(X), Post(X)
@ +, — operations on multisets are extended to configurations.
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The model Definitions

Definition (Configuration of the protocol)

v = (f,d)
with f: @ — N (multiset) and d € D the register value. We write
7(q) = f(q) and v(v) = d.

Some notations:
@ [ is the set of configurations
o [v]=2>_,7(q) (size)
o 5(v) =g [~(q) >0},v(7))
e Pre(X), Post(X)
@ +, — operations on multisets are extended to configurations.

Definition (Semantics)
v =~ if Y =+ —q+ g with either
° g ), q' (write operation)

e ord=v(y)=v(y)and ¢q (), q' (read operation)




The model RIS

Semantics
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(Non-)Deterministic Model Checking

© (Non-)Deterministic Model Checking
@ Symbolic graph
@ Reconstructing the symbols
@ Conclusion
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(Non-)Deterministic Model Checking

Definition (Reachability problem )

Let (qo,do) € @ x D and some target gr € Q. Does there exist
v € I with y(gr) > 0 reachable from (q(lf‘, do) 7
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(Non-)Deterministic Model Checking

Definition (Reachability problem with leader)

Let (qo,do) € @ x D, g, € Q and some target gr € Q. Does there exist
v € [ with y(gf) > 0 reachable from (g, + q(‘)ﬁ’/‘./ do) ?

@ Once 7 is fixed, the number of processes in the run is fixed.

@ Monotonicity : if g is reachable with n processes, still reachable with
a bigger number of processes.

@ Bound of the maximal parameter value to consider ?



(Non-)Deterministic Model Checking BESulIltR-(ET:1]
Symbolic graph
In the following, we consider the leader-less case.

Definition (Symbolic graph)
Gayrab = (S, E) with

e S=29%xD
o E is defined by (X1, d1) — (Xz, do) if there exists x1 € X1, x2 € Xz
such that
Xi\{x1, 2} = Xo\{x1, %} (1)
X1 MX2\/(X]_ MXQ/\d]_:dQ) (2)




(Non-)Deterministic Model Checking BESulIltR-(ET:1]

Symbolic graph

In the following, we consider the leader-less case.

Definition (Symbolic graph)
Gaymb = (S, E) with
e S5=29xD
o E is defined by (X1, d1) — (Xz, do) if there exists x1 € X1, x2 € Xz
such that

Xi\{x1, 2} = Xo\{x1, %}

X1 MXQ\/(X1@>X2/\d1=d2)

Lemma

Every "concrete” run of P corresponds to a symbolic run. S(-) can be
seen as an abstraction.




(QULBDEEILIE TR VL IR N3  Symbolic graph
Example
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(Non-)Deterministic Model Checking Reconstructing the symbols

Reconstructing the run

Lemma

If (X,d) =L (Y, €) in Ggymp, then there exists a concrete run v —* +'
with

° 5(7) =X
° S(Y)=Y
o yl=1[<L
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(QCIS DTGB IEVIENE M-  Reconstructing the symbols

Reconstructing the run

Lemma

If (X,d) =L (Y, €) in Ggymp, then there exists a concrete run v —* +'
with

° 5(7) =X
° S(Y)=Y
o yl=1[<L

Sketch.

Every red transition in the symbolic graph implies a copy of the current
involved state. 0

v
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Reducing a symbolic path
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Reducing a symbolic path

a1 g2
Xl) dl

q1

)Xk,dk
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Reducing a symbolic path

a1 q2 g2 p)
Xl) dl

q1 q1

)Xk,dk

DA
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Reducing a symbolic path

W 2 2 @
Xl)dl
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q1

)Xk,dk
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Reducing a symbolic path

q2 g2 p)
Xl ) dl

q1

)Xk,dk

DA
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Reducing a symbolic path

g2
Xl) dl

o w

q1

)Xk,dk

DA
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(R O 2
Reducing a symbolic path

az q1
X1, d1 X, di

Without loss of generality

For each g € Q, there is at most two transitions making g appearing or
disappearing (one each).
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Fixed support behaviour
Xladl

> Xk, dk

Y

DA
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Fixed support behaviour
Xladl

X, di
Xi,

DA
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Fixed support behaviour
Xladl

W W,| W wW w
y 5 5 > X, di
\/_/
Xil Xi2 Xi3

DA
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Fixed support behaviour
X17d1

N ke S G X, di
\/-/
Xiy Xi, Xiy
Key ldea
Only the last write transition is required. J

D¢
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Fixed support behaviour
X17d1

X, di

Xi,
Key ldea

Only the last write transition is required.

D¢
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(OB DSELIETM VL ENGIINIEE  Reconstructing the symbols

Fixed support behaviour

X, di

X17 dl

Key Idea
Only the last write transition is required.

Theorem
Every path in Gy has less than 4|Q| + 1 transitions.

13/39



I
What the symbolic graph taught us

Theorem

If v —* ~/ there exists 1 —* 1/ with same set of states/register values
such that |n| < 4|Q| + 1.

14 /39



(Non-)Deterministic Model Checking @S MELL

Leader case

In case of a leader, we have to keep track of the exact control state of the
leader process.

e Symbolic states : (X, qJ, d)
e Still 2|Q| + 1 fixed support blocks

@ Each block can be reduced to last write and at most | Q| transitions
of the leader

e Final bound of the form 2|Q| + (2|Q| + 1)|Q)|.
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(Non-)Deterministic Model Checking @S MELL

Leader case

In case of a leader, we have to keep track of the exact control state of the
leader process.

e Symbolic states : (X, qJ, d)
e Still 2|Q| + 1 fixed support blocks

@ Each block can be reduced to last write and at most | Q| transitions
of the leader

e Final bound of the form 2|Q| + (2|Q| + 1)|Q)|.

Theorem
The reachability problem is NP-complete.

Sketch.

@ Guess the polynomial path.
@ Reduction from 3—SAT.

15/39



(Non-)Deterministic Model Checking @S MELL

Language formalism

Definition

L(P) = L(Ap) N | L(A) § | 071 L(A)

k>1
Where

@ L(P) is the language of all possible infinite runs.
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(Non-)Deterministic Model Checking [@TeFEL]}

Language formalism

Definition

L(P) = L(Ap) N | L(A) § | 071 L(A)

k>1
Where
e L(P) is the language of all possible infinite runs.
@ The automata recognize languages over Xp = {w(d), r(d) | d € D}.
@ () is the shuffle operations over languages.

@ Ap is an automaton recognizing correct sequences of read and write
operations.

@ A, is the automaton of the leader.

@ A is the automaton of the protocol.
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(Non-)Deterministic Model Checking [@TeFEL]}

Language formalism

Definition

L(P) = L(Ap) N | L(A) § | 071 L(A)

k>1
Where
e L(P) is the language of all possible infinite runs.
@ The automata recognize languages over Xp = {w(d), r(d) | d € D}.
@ () is the shuffle operations over languages.

@ Ap is an automaton recognizing correct sequences of read and write
operations.

@ A, is the automaton of the leader.

@ A is the automaton of the protocol.

Given a Bchi automaton Ay, decide whether L(P) N L(A,) = 0.

16 /39



Probabilistic case

e Probabilistic case
@ Probabilistic semantics
@ Cut-off property
@ Existence of a cut-off
@ Complexity aspects
@ A linear example
@ PSPACE hardness
@ Upper Bound

17/39



Probabilistic semantics
Markov Chain

Definition (Law of motion)

We consider (I', —) as a Markov Chain.

1
P N
=)= Bosty)
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Probabilistic semantics
Markov Chain

Definition (Law of motion)
We consider (I', —) as a Markov Chain.

1
P N
=)= Bosty)

Let (qo,db) € Q x D, a parameter n.
For X C T, we denote P"(X) the probability to eventually reach some
v € X from (qg, do).
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Probabilistic semantics
Markov Chain

Definition (Law of motion)
We consider (I', —) as a Markov Chain.

1
P N
=)= Bosty)

Let (qo,db) € Q x D, a parameter n.
For X C T, we denote P"(X) the probability to eventually reach some
v € X from (qg, do).

Qualitative goal

Let gr € Q.
Estimate P"(7 gr)

18 /39



e Probabilistic semantics

Example
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Probabilistic case Probabilistic semantics

Remarks

Lemma (Qualitative assumption)

The properties P"(1 q¢) > 0 and P"(1 qr) = 1 does not depend on the
actual probabilities.
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Probabilistic semantics
Remarks

Lemma (Qualitative assumption)

The properties P"(1 q¢) > 0 and P"(1 qr) = 1 does not depend on the
actual probabilities.

We have already solved the case P"(1 gf) > 0 : it corresponds to finding a
path to 1 gr.
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Probabilistic semantics
Remarks

Lemma (Qualitative assumption)

The properties P"(1 q¢) > 0 and P"(1 qr) = 1 does not depend on the
actual probabilities.

We have already solved the case P"(1 gr) > 0 : it corresponds to finding a
path to 1 gr.

Lemma (Discretization)

P"(1 qr) = 0 & Post*((qg, do)) N Pre*(T qr) = 0
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Probabilistic semantics
Remarks

Lemma (Qualitative assumption)

The properties P"(1 q¢) > 0 and P"(1 qr) = 1 does not depend on the
actual probabilities.

We have already solved the case P"(1 gr) > 0 : it corresponds to finding a
path to 1 gr.

Lemma (Discretization)

P"(1 qr) = 0 & Post*((qg, do)) N Pre*(T qr) = 0

B"(1 g) = 1 & Post*((gf, do)) < Pre*( gr)

20/39



Probabilistic semantics
Remarks

Lemma (Qualitative assumption)

The properties P"(1 q¢) > 0 and P"(1 qr) = 1 does not depend on the
actual probabilities.

We have already solved the case P"(1 gr) > 0 : it corresponds to finding a
path to 1 gr.

Lemma (Discretization)

P"(1 qr) = 0 & Post*((qg, do)) N Pre*(T qr) = 0

P"(1 gr) = 1 ¢ Post*((q§, do)) < Pre(t qr)

We focus now on the almost-sure (Pr"(1 gf) = 1 problem).

Both the scheduler and processes are H@hLdétehmitisii stochastic

No atomicity
No monotonicity a priori

oo o] o i e Dotn: N oAk 20/39
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SICLEIEAINEEMN  Cut-off property

What we are looking for

Some limit behaviour, if possible
Definition (Cut-off)

Le N a parameter. If Vn > N P"(1 gr) =1 or Vn > N P"(1 gr) < 1, then
N is a cut-off.
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SICLEIEAINEEMN  Cut-off property

What we are looking for

Some limit behaviour, if possible
Definition (Cut-off)

Le N a parameter. If Vn > N P"(1 gr) =1 or Vn > N P"(1 gr) < 1, then
N is a cut-off.

@ First case is said positive, second case negative

@ Non-atomicity is crucial

21/39



ICLEL SN Existence of a cut-off

Upward closed sets and well-quasi-orders

Definition (Well-quasi-ordering (wqo))

A quasi-ordering < on a set X such that any infinite sequence of elements
X0, X1 ... from X contains an increasing pair x; =< x; with i < j.

22/39



ICLELIENEES  Existence of a cut-off

Upward closed sets and well-quasi-orders

Definition (Well-quasi-ordering (wqo))

A quasi-ordering = on a set X such that any infinite sequence of elements
X0, X1 ... from X contains an increasing pair x; =< x; with i < j.

Lemma (Upward-closed set)

Let Y C X, such thatVy <+ v€ Y =+ €Y, then Y is generated by
min(Y):

Y =t min(Y) = {y' | 3y € min(Y) v < 7'}
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ICLELIENEES  Existence of a cut-off

Upward closed sets and well-quasi-orders

Definition (Well-quasi-ordering (wqo))

A quasi-ordering < on a set X such that any infinite sequence of elements
X0, X1 ... from X contains an increasing pair x; =< x; with i < j.

Lemma (Upward-closed set)

Let Y C X, such thatVy <+ v€ Y =+ €Y, then Y is generated by
min(Y):

Y =t min(Y) = {y' | 3y € min(Y) v < 7'}

= is wgo so min(Y) is finite.
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ICLELIENEES  Existence of a cut-off

Upward closed sets and well-quasi-orders

Definition (Well-quasi-ordering (wqo))

A quasi-ordering < on a set X such that any infinite sequence of elements
X0, X1 ... from X contains an increasing pair x; =< x; with i < j.

Lemma (Upward-closed set)

Let Y C X, such thatVy <+ v€ Y =+ €Y, then Y is generated by
min(Y):

Y =t min(Y) = {y' | 3y € min(Y) v < 7'}

= is wgo so min(Y) is finite.

Main idea: express Pre*(1 gr) and Post*((q&, do)) as upward-sets to
"discretize” the problem.

22 /39




el
The right partial order

Definition

v=v e v(y)=v(Y)AVYqg v(q) <+(q)

= is a well quasi-order.

e Pre*(1 gr) is upward-closed
e Post*((qf, do)) is ...

23/39



el
The right partial order

Definition

v=v e v(y)=v(Y)AVYqg v(q) <+(q)

= is a well quasi-order.

e Pre*(1 gr) is upward-closed
e Post*((qf, do)) is ...

Lemma (Mimicking process)

Let (g, do) —* v and q such that y(q) > 0. Then, (qé‘“, do) =* v +q. J
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el
The right partial order

Definition

7= e v(y)=v()AVav(q) £ ¥(q) AS(y) =5(7)

= is a well quasi-order.

e Pre*(1 gr) is upward-closed
e Post*(1(qg, do)) is ... upward-closed

Lemma (Mimicking process)

Let (g, do) —* v and q such that y(q) > 0. Then, (qé‘“, do) =* v+ q. J

23/39



Existence of a cut-off
Cut-off

We write

Post™(1 (qo, db)) = Uf-‘zl Ty Pre*(1 gr) = Uj‘(:l T
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Existence of a cut-off
Cut-off

We write

Post™(1 (qo, db)) = Uf-‘zl Ty Pre*(1 gr) = Uj‘(:l T

Post” (1 (gpeb)) € Pre*(t qr)
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Existence of a cut-off
Cut-off

We write

Post™(1 (qo, db)) = Uf-‘zl Ty Pre*(1 gr) = Uj‘(:l T

Post” (1 (gpeb)) € Pre*(t qr)
<~

Vi djn =i
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Existence of a cut-off
Cut-off

We write

Post™(1 (qo, db)) = Uf-‘zl Ty Pre*(1 gr) = Uj‘(:l T

Post™(1 (gydo)) € Pre* (1 gr)
&
Vidjnj 2
&

n is a positive cut-off
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Existence of a cut-off
Cut-off

We write

Post* (1 (qo, do)) = UKy T i Pre*(1 gr) = Ul y 11y

Post™(1 (gpdo)) € Pre” (1 gr)
<~
Vidjn =i
<~

n is a positive cut-off

What about the negative cut-off case ?

24/39



el
Negative case
Post*(1 (g0, do)) = Uiy i

o If there exists 7; such that Vj S(v;) # S(n;),
then ...

25/

39



ICLEL SN Existence of a cut-off

Negative case

Post*(1 (qo, do)) = UKy i

o If there exists 7; such that Vj S(v;) # S(n;),
then ... Vj n; Z i, so n is negative cut-off
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ICLEL SN Existence of a cut-off

Negative case

Post*(1 (qo, do)) = UKy i

o If there exists 7; such that Vj S(v;) # S(n;),
then ... Vj n; Z i, so n is negative cut-off
Corresponds to the symbolic graph analysis.
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ICLEL SN Existence of a cut-off

Negative case

Post*(1 (qo, do)) = UKy i

o If there exists 7; such that Vj S(v;) # S(n;),
then ... Vj n; Z i, so n is negative cut-off
Corresponds to the symbolic graph analysis.

@ The converse is false

25/

39



ICLELIENEES  Existence of a cut-off

Negative case

Post*(1 (go. do)) = Uiy i

o If there exists 7; such that Vj S(v;) # S(n;),
then ... Vj n; Z i, so n is negative cut-off
Corresponds to the symbolic graph analysis.

@ The converse is false

How does
min Post* (1 (qo0, do)) = {Y1,n-- - Ykp.n}

varies w.r.t n ?

25 /39



Probabilistic case

Post*(1 (qo, do)) M

V72

73 Yk
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Probabilistic case
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Probabilistic case

Post*(1 (qo, do)) M
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Probabilistic case

Post*(1 (qo, do)) M

V72

V3 Yk
n+1 Y1

V2

DA
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Probabilistic case

Post*(1 (qo, do)) M

V72

V3 Yk
n+1 Y1

V2
|y2] < n+1

DA
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Probabilistic case

Post*(1 (qo, do)) M V2 ok

n+1 Y1

o = = = =z 9ace
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ICLEL SN Existence of a cut-off

Post*(1 (qo, do)) M

Y3 Tk
AR
7N

Y2+ qv
n+1 7 !
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ICLEL SN Existence of a cut-off

Post™(1 (qo, do))

n+1
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V2 73 s Yk
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ICLEL SN Existence of a cut-off

Post™(1 (qo, do))

n+1

n+2

§a!

a!

72 73
/1N
VBTN
SN
// // ll \\
v N
Y2taqr
Lo 3
NA \ Y2 + q4
T+q Y
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Yk

Vk!
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ICLEL SN Existence of a cut-off

Post*(1 (qo, do)) M

2 3o Yk
Y2t+qr N
n+1 71 K oo Y3 WK
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ICLEL SN Existence of a cut-off

Post*(1 (qo, do)) M

V2 Y3 Yk
Y2t+qr N
n+1 M [ 3 Vit
N VY2t qa
2+ g ¥
Y2 + a3 \
\
n+2 0C BT R AR - S €

Yk
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ICLEL SN Existence of a cut-off

Variation of the basis

© Start with X7 = {’)/1 .. .’}/k} = min POSt*(T (qo, do))

27/39



ICLEL SN Existence of a cut-off

Variation of the basis

© Start with X7 = {’)/1 .. .’}/k} = min POSt*(T (qo, do))
@ Compute

{v]veXn |yl >ntw{vy+qg|v€EXn|y=nqgeSH)}
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ICLEL SN Existence of a cut-off

Variation of the basis

© Start with X7 = {'Yl .. .’}/k} = min POSt*(T (qo, do))
@ Compute

ylveXn, v >ntw{v+qg|yveXa ¥ =nqgeSH)} = Yo

© Take X141 = min Y1
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ICLEL SN Existence of a cut-off

Variation of the basis

© Start with X7 = {'Yl .. .’}/k} = min POSt*(T (qo, do))
@ Compute

ylveXn, v >ntw{v+qg|yveXa ¥ =nqgeSH)} = Yo

© Take X141 = min Y1

Goal J

Keep track of a "problematic” generator v € Xy as k — oo.

27/39



ICLEL SN Existence of a cut-off

Definition
Assume

Pre*(1 qr) = Ul 11
and let v € Post™(1 (qo, do)). We define:

A(’Y):ﬁ{QES('y)‘szonjﬁ,y_i_qk}

j=1

28/39



ICLEL SN Existence of a cut-off

Definition
Assume
* Kk .
Pre*(1 gr) = Uiy T

and let v € Post™(1 (qo, do)). We define:

A(’Y):ﬁ{QES('y)‘szonjﬁ,y_i_qk}

j=1

Theorem (Negative cut-off)
If A(y) # 0. Then N = || is a negative cut-off.

28/39



ICLEL SN Existence of a cut-off

Positive cut-off

Lemma (Positive cut-off)
Assume A(~y) = 0. Then there exists N(v) > |vy| such that

(T ) N Post™ (%ZN”), do) C Pre*(1 gr)

29/39



ICLEL SN Existence of a cut-off

Positive cut-off

Lemma (Positive cut-off)

Assume A(~y) = 0. Then there exists N(v) > |vy| such that

(T ) N Post™ (qOZN(”), do) C Pre*(1 gr)

Moreover, N(7) is polynomial in the size of -y and the ;.

29/39




ICLELIENEES  Existence of a cut-off

Positive cut-off

Lemma (Positive cut-off)

Assume A(~y) = 0. Then there exists N(v) > |vy| such that
(t9) N Post” ("7, do ) € Pre*(t ay)

Moreover, N(7) is polynomial in the size of -y and the ;.

Proof.

For any g € S(7), there exists j such that g & {q | Vk > 0 m;, Z v+ q*}
so there exists kg such that n;, < v+ qka.

Define N(v) = |v| + qus(’}’) kq- .

v

29 /39



ICLELIENEES  Existence of a cut-off

Existential solution

Theorem

Given a protocol P there always exists either a positive cut-off either a
negative cut-off N.

The probability to reach 1 qr is eventually 1 or eventually strictly less than
1.

@ Non-constructive proof
@ We never computed the ~; and 7,

o If computed, we can give a polynomial bound of N in their size

@ Deciding the positive or negative case ?
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ICLELIENEES  Existence of a cut-off

Existential solution

Theorem
Given a protocol P there always exists either a positive cut-off either a
negative cut-off N.

The probability to reach 1 qr is eventually 1 or eventually strictly less than
1.

Non-constructive proof

We never computed the ~; and 7;

o
o
o If computed, we can give a polynomial bound of N in their size
@ Deciding the positive or negative case ?

o

Simulate the Markov chain with N initial processes ?
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el
Negative cut-off: the easy case
Remark

If Post*(({qo}, do)) € Pre*(1 gf) in Ggymp, then P7(1 gf) < 1 for n large
enough (negative cut-off).
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ICLELIENEES  Existence of a cut-off

Negative cut-off: the easy case
Remark

If Post*(({qo}, do)) € Pre*(1 gf) in Ggymp, then P7(1 gf) < 1 for n large
enough (negative cut-off).

The converse is not true

Example

r(0) w(1) o w(1)
W(O)@ >/<%</\Kq_2\ ><(1€D
r(0) "/ r(1) " r(2)

n r(0 n— w(0 n— *
(68.0) “2 (g8 a1, 0) YD (g0 1q1.1) A1 r
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Probabilistic case



(HCLELEAREET A linear example

Linear example

Example

Cut-off value ?
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Example

Cut-off value ? The cut-off is positive and equals n.
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(HCLELEAREET A linear example

Linear example

Example

Cut-off value ? The cut-off is positive and equals n.
Invariant:

J
Vi<m > y(ak) =+ Lye)=ji
k=0
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PSPACE hardness
PSPACE-hardness

Decision Problem
o INPUT: a protocol P
@ OUTPUT: whether the cut-off is positive or negative
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PSPACE hardness
PSPACE-hardness

Decision Problem
o INPUT: a protocol P
@ OUTPUT: whether the cut-off is positive or negative

@ So far, all examples have linear size cut-off
o Verifying if the cut-off is positive can be done by building the Markov
Chain

Theorem
The cut-off decision problem is PSPACE-hard. J
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(HELELIENEES  PSPACE hardness

Sketch.
We reduce the halting of a linear bounded Turing machine M.
@ A given tape position i containing letter x is coded by a fixed state

@ The current head position is coded in the register
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(HELELIENEES  PSPACE hardness

Sketch.

We reduce the halting of a linear bounded Turing machine M.
@ A given tape position i containing letter x is coded by a fixed state
@ The current head position is coded in the register

If the number of states is too big, we cannot ensure proper encoding

Key idea: we code improper encoding/non-termination by P(1 gf) =1

The previous module ensures 1 gr if too many processes encoded the
machine

We assume the machine starts from first tape position and accepts
only on last tape position.

We build P protocol such that

P="(1 qr) =1 <= M does not terminate
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(HELELIENEES  PSPACE hardness

R(#) @S(D\{#}:)J’_rg

P

} initialization phase

simulation phase

for transitions

(q.0) = (q',0",+1)
(a”,0") = (4,0, ~1)

R(qnait,n) , .
R(f;),i€[0;n] rn R(-j)oj#n
W(f) R(#)
W) C so Wh) s1 @ s Snh Sn+10) } counting phase
~_ 7 ~ o7 Ny ~_ 7
R(f) R(A) R(f) R(fa-1)  R(fa)
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(HELELIENEES  PSPACE hardness

Consequences

@ Negative cut-off can be exponential.

@ No clue about positive cut-off.
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Probabilistic case Upper Bound

Upper bound 7

o Existence theorem gives a cut-off polynomial in the size of the basis
of Post™(1 (qo, do)) and Pre*(1 gr).

@ Rackoff's theorem: Pre*(1 gr) can be bounded by M
doubly-exponential in |P|.

@ No bound on the Post*.
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U]
Upper bound 7

o Existence theorem gives a cut-off polynomial in the size of the basis

of Post™(1 (qo, do)) and Pre*(1 gr).

@ Rackoff's theorem: Pre*(1 gr) can be bounded by M
doubly-exponential in |P|.

@ No bound on the Post™.

@ ldea: refine the symbolic graph to keep track of up to M processes in
each state.

@ Such graph is still doubly-exponential in |P]
@ Guessing a path can be done in EXPSPACE.
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Summary and Perspectives

@ Simple model but still non-trivial model

@ Non-atomicity ensures regularity hence decidability.
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Summary and Perspectives

Simple model but still non-trivial model

Non-atomicity ensures regularity hence decidability.

Other properties (is T qr = {(gF,d) | k,d} an harder property ?)
More registers, leader process.

o
o
@ Hardness result with atomic operations ?
o Strategies

o

Reasonable Polynomial upper-bound ?
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Thank you for your attention

DA
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