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The framework

Games with mixed strategies

Concurrent non-zero sum games allow

To modelize heterogeneous systems

Several events to occur simultaneously

Agents’ goals not to be necessarily antagonistic

whereas mixed strategies enable

Synthesizing strategies for controllers

with memory

Breaking the symmetry (by randomization)

Equilibrium more likely to occur
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The framework

Formal model

Definition (Arena)

A =
〈
States,Agt,Act,Tab, (Allowi )i∈Agt

〉
with

|States|, |Agt|, |Act| < +∞
Tab : States×ActAgt −→ States

∀i ∈ Agt Allowi : States −→ 2Act\{∅}

s1 s2

w1 w2

ab, ba

aa, bb

ab, ba

aa, bb

−− −−
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The framework

Definition (Game)

G = 〈A, s, φ〉

where

A is an arena

s ∈ States is an initial state

φ : Statesω −→ RAgt a utility function

s1 s2

w1 w2

ab, ba

aa, bb

ab, ba

aa, bb

−− −−

φ(r) =


(1, 0) if r ∈ States∗wω

1

(0, 1) if r ∈ States∗wω
2

(0, 0) otherwise
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The framework

Family of utility functions
Safety condition
Reachability
Limit average
Terminal reachability

Definition (Final states)

Let F denote the set of states that have no successor except themselves. φ
is a terminal reachability utility function if
∀r φ(r) 6= 0⇔ ∃h ∈ States∗ ∃f ∈ F : r = h · f ω ∧ φ(r) = φ(f ω)

s1 s2

1, 0 0, 1

ab, ba

aa, bb

ab, ba

aa, bb
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The framework

Definition (Strategies)

A strategy for player i in arena A is given by σi such that for all
h ∈ States+,

σi (h) ∈ Dist(Allowi (last(h)))

We call strategy profile the data of strategies for all players, and any finite
non-empty sequence of states is a history.

Definition (Expectation)

We consider a game G and a strategy profile σ. X0 = s,
Xn+1 = Tab(Xn,An) with An ∼

∏
i σi (X0 . . .Xn).

Let r = limX0 . . .Xn ∈ Statesω.
Under some mesurability assumptions, the expectation of φ(r) exists.
If P(r ∈ hStatesω) > 0, we write Eσ(φ | h) the conditionnal expectation.
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The framework

Nash Equilibrium

Definition

Let σ a strategy profile and h an history, then (σ, h) is a Nash Equilibrium
(NE) if for all agent i and any other strategy for i (deviation) σ′i ,

Eσ[i/σ′
i ] (φi | h) ≤ Eσ (φi | h)

We can show that we can restrict to deterministic deviation only (for
terminal reachability objectives).

s1 s2

1, 0 0, 1

ab, ba

aa, bb

ab, ba

aa, bb

The uniform strategy for both players is a NE (payoff (2/3, 1/3)).
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Existence of equilibria

1 Concurrent framework

2 Existence of equilibria

3 Linear and robust equilibria
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Existence of equilibria

Does a mixed Nash Equilibrium always exist?

1,−1 −1, 1

hs,rw rs

hw

2, 0 0, 2

1, 1

hs,rw rs

hw

Figure: Hide-or-Run game

Value problem in a zero-sum game is not a special case of Nash
Equilibrium problem with positive terminal rewards

Theorem

The existence problem is undecidable for 3-player concurrent games with
non-negative terminal rewards and a constrain. Also holds on arbitrary
terminal rewards without constrains.
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Existence of equilibria

Existence of equilibria

Theorem (Nash 1950)

Every one-stage game has a Nash Equilibrium in mixed strategies.

Theorem (Secchi and Sudderth 2001)

NE always exists for safety qualitative objectives. Strategies have finite
memory.

Theorem (Chatterjee et al. 2004)

For ε > 0, ε-Nash Equilibriumalways exists with terminal reward, and
strategies are stationary.
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Existence of equilibria

Termination problem

General scheme.

Let M be the set of stationary strategy profiles.
Consider the best response function: BR : M→ 2M mapping a to a set of
strategy profiles improving the payoff of each player and show it is
continuous, then apply Kakutani fix-point theorem to show
∃σ σ ∈ BR(σ).

Continuity of BR is based on termination assumptions.

One-stage termination

Assume no final safety collaboration, bound probability to make
someone loose

Consider a discounted version
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Existence of equilibria

Limit behaviour

s1 s2

1
3 , 1 1, 1

3

a−
b−

−a

−b

NE strategies (probability of
playing b):
{(x , 0), (0, x) | 1 ≥ x > 0}
NE payoffs: {(1, 0), (0, 1)}
BR function graph not
continuous in (0, 0)
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Linear and robust equilibria

1 Concurrent framework

2 Existence of equilibria

3 Linear and robust equilibria
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Linear and robust equilibria

Assumptions
From now, we consider stationary memoryless strategies (set M)

Definition (Cycling Arena)

Let A be an arena. Assume there exists an state s ∈ States and a mixed
strategy profile σ such that no player can enforce reaching a final state:

∀i ∈ Agt ∀σ′i ∈Mi Pσ[i/σi ]
s
(States∗Fω | s) = 0

Such a state is called cycling.

Note that such a definition implies a Nash Equilibrium with payoff 0 for all
players.

Lemma (Remark)

One can effectively transform every game G into a non-cycling game G′,
such that every Nash Equilibrium in G′ can be converted into a Nash
Equilibriumin G.
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Linear and robust equilibria

Strong components

Definition (Strong Component)

Let A be an arena and C ⊆ States.
C is called a strong component if there exists σ ∈M such that every state
of C is reachable from another with strategy profile σ:

∀s, s ′ ∈ C Pσ(States∗s ′ | s) > 0

Such σ will be said to stabilize C . We denote with SC the set of strong
components.

Note that it is equivalent to say that the previous probability is equal to 1.
We can also remark that every strong component intersecting F is reduced
to a singleton.
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Linear and robust equilibria

Strong component escaping

From now on, we consider non-cycling games.

Definition (Exiting actions)

Let C ∈ SC. a ∈ Act is an exiting action from C for state s ∈ C and
player i if:

Pσ[i/(s 7→a)]s (s · (States\C ) | s) > 0

for some stationary σ stabilizing C
We define

Exit(C ) = {(a, i , s) | a is an exiting action from C state s ∈ C for player i}

Lemma

For any C ∈ SC, Exit(C ) 6= ∅.
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Linear and robust equilibria

Reduced State space

Definition

For any C ∈ SC strong component and ε > 0, we define

∆ε(C ) =

σ ∈M

∣∣∣∣∣∣
∑

(a,i ,s)∈Exit(C)

σi (a | s) ≥ ε


We also denote ∆ε =

⋂
S∈max SC ∆ε(C ).

Lemma

For ε ≤ 1
|Act| , ∆ε 6= ∅. It is also convex.
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Linear and robust equilibria

Limit behaviour

s1 s2

1
3 , 1 1, 1

3

a−
b−

−a

−b

σ1(b | s1) + σ2(b | s2) ≥ ε
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1
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3
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Linear and robust equilibria

Bounding probability of termination

Lemma

If σ ∈ ∆ε, then Prσ(States∗F | s) = 1

Theorem

For ε > 0, there exists p > 0 and k ∈ N such that for any σ ∈ ∆ε,

∀s ∈ States Pσ(Statesk · F | s) ≥ p

That is to say, after k iterations, there is a bounded probability that a final
state is reached.
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Linear and robust equilibria

Existence theorem

Definition (Best response function)

Let BRε : ∆ε → 2∆ε with

BRε(σ) =
{
σ′ ∈ ∆ε

∣∣∣ ∀i ∈ Agt ∀s ∈ States, σ′
i ∈ argmaxσ′Eσ[i/σ′

i ](φi | s)
}

Theorem

For 0 < ε ≤ 1
|Act| , BRε has a fixed point.

Proof sketch.

∆ε is a non-empty compact convex subset of RN where
N = Agt× States. Moreover BRε(σ) is a non-empty convex set and the
graph of BRε is continuous.
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Linear and robust equilibria

ε-robust equilibria

Definition (robust equilibria)

Let σ ∈M, σ is a ε-robust Nash Equilibrium if for any player i ,

∀σ′i ∃σ′′i d(σ′i , σ
′′
i ) ≤ ε Eσ[i/σ′

i ] (φi | h) ≤ Eσ (φi | h)

with d(σ, σ′) the maximal distance between distributions.

1 σ ∈ ∆αε(σ) is a ε-robust NE

2 This is not a NE (but the converse is false)

3 This is not a ε-NE

4 This is stationary (stationary NE may not exist for 3 players.)

5 No computation method yet
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Linear and robust equilibria

Overview

Getting closer to exact NE existence problem (2 players)

Using of linear constrains to enforce a non-linear property

New notion of equilibria, not equivalent to previous ones

Non-constructive proof (ongoing work)
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Linear and robust equilibria

Thank you for your attention

Questions ?
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