

From Offline to Online pMRI reconstruction

Pierre-Antoine Comby

Supervisors: Philippe Ciuciu (PARIETAL @Neurospin) Émilie Chouzenoux (OPIS @Inria)

Outline

- Context & Background
- Online Reconstruction
 - Principles
 - Mathematical framework
 - Implementation trick
- Results
- Conclusion and perspectives

Context: MRI in a nutshell

TR

 \rightarrow Reducing acquisition time is essential

Context: offline vs online reconstruction

- Typical MRI examination consists of several scans
 - planned ahead of the exams
- The reconstruction step is performed when the acquisition(s) are finished. → waiting time for the results.

Already available accelarations:

- Parallel imaging:
 - Acquisition on multiple coils
- Compressed sensing (CS):
 - Undersampling + sparsity prior

Offline multicoil CS reconstruction

Online Reconstruction

- Principles
- Mathematical framework
- Implementation tricks

Online reconstruction

Assumptions:

- The acquisition can be partitioned in several "shots"
- We access the same data as in the offline case

Goals of Online Reconstruction:

- Quality as good as offline reconstruction
- Earlier reconstruction results
- Feedback to clinician during the exam

Mask of sequential sampling in kspace

This Work:

- Theoretical analysis and preliminary convergence results.
- Faster Cartesian reconstruction
- Retrospective analysis on FastMRI dataset (cartesian)
- First non Cartesian online (SPARKLING) tests (WIP)

Online reconstruction principle

8

Online formulation of CS reconstruction

- Single coil Cartesian *example* \rightarrow straightforward extension to multicoil acquisition
- K shot acquired

offline
$$\hat{x} = \arg\min_{x \in \mathbb{C}^{N}} \frac{1}{2} \|\Omega \mathcal{F} x - y\|_{2}^{2} + \underbrace{R(\Psi x)}_{g(x)}$$

 $y = \sum_{k=1}^{K} \delta \Omega_{k} y = \sum_{k=1}^{K} \delta y_{k}$
online $\hat{x} = \arg\min_{x \in \mathbb{C}^{N}} \sum_{k=1}^{K} \frac{1}{2} \|\delta \Omega_{k} \mathcal{F} x - \delta y_{k}\|_{2}^{2} + \underbrace{R(\Psi x)}_{g(x)}$

Theoretical Result

- f and g are proper continous convex functions
- gradient of f is 1-Lipschitz.
- η is the descent step: "learning rate"

Offline Forward Backward

$$\boldsymbol{T} = \operatorname{prox}_{\eta g} \left(Id - \eta \boldsymbol{\nabla} f \right)$$

 $oldsymbol{x}^{(n+1)} = oldsymbol{T}oldsymbol{x}^{(n)}$

- Convergence to a fixed point of TFix $T = \arg \min f + g$
- Acceleration methods
 - FISTA, POGM, Barista, etc
- If g = 0 FB algorithm ⇔ gradient descent.

Online Forward Backward

$$\boldsymbol{T}_{k} = \operatorname{prox}_{\eta g_{k}} \left(Id - \eta \boldsymbol{\nabla} f_{k} \right)$$
$$\boldsymbol{x}^{(n,k+1)} = \boldsymbol{T}_{k} \boldsymbol{x}^{(n,k)}$$

$$oldsymbol{\mathcal{T}} = oldsymbol{T}_K \circ \cdots \circ oldsymbol{T}_1 \ oldsymbol{x}^{(n+1)} = oldsymbol{x}^{(n,K+1)} = oldsymbol{\mathcal{T}} oldsymbol{x}^{(n,1)}$$

- Choice of the T_k:
 - From the available data and mask
 - Condition on convergence to offline:

 $\bigcap_{k=1}^{K} \operatorname{Zer} \left\{ \nabla f_k + \partial g_k \right\} \neq \varnothing \Longrightarrow \operatorname{Fix} \boldsymbol{\mathcal{T}} \subset \operatorname{Fix} \boldsymbol{\mathcal{T}}$

Online type I and type II

• Online Type I:

- Data term:

$$F_k(\boldsymbol{x}) = \frac{1}{2} \sum_{j=1}^k \|\delta \boldsymbol{\Omega}_j \left(\boldsymbol{\mathcal{F}} \boldsymbol{x} - \boldsymbol{y} \right)\|_2^2$$

- Iteration:

 $\hat{\boldsymbol{x}}_k = \operatorname{prox}_{\eta g}(Id - \boldsymbol{\nabla}F_k(\boldsymbol{x}_{k-1}))$

- Observed data is accumulated
- Robust and easy to study
- Incremental Memory cost
 - Max to Offline Reconstruction
- equivalent to Offline

- Online Type II:
 - Data term and regularisation term:

$$f_k(\boldsymbol{x}) = rac{1}{2} \left\| \delta \boldsymbol{\Omega}_k \left(\boldsymbol{\mathcal{F}} \boldsymbol{x} - \boldsymbol{y}
ight)
ight\|_2^2$$

- Forward Backward Iteration:

$$\hat{\boldsymbol{x}}_k = \operatorname{prox}_{\eta g/K}(Id - \boldsymbol{\nabla} f_k(\boldsymbol{x}_{k-1}))$$

- Observed data is **<u>iterated</u>**
- promising but hard to study
- Memory and Time efficient
 - Faster FFT+mask !
- Close to Machine Learning SGD framework

Online type II and Cartesian: Faster FFT + Mask

Online Reconstruction: Summary

$$oldsymbol{x} = rg\min_{oldsymbol{x}\in\mathbb{C}^N}f(oldsymbol{x}) + g(oldsymbol{x}) = rg\min_{oldsymbol{x}\in\mathbb{C}^N}\sum_{k=1}^K f_k(oldsymbol{x}) + g(oldsymbol{x})$$

Туре	Offline	Online I	Online II
Available data	$oldsymbol{y}$	$oldsymbol{y}_k = egin{bmatrix} \delta oldsymbol{y}_1 & \ldots & \delta oldsymbol{y}_k \end{bmatrix}^T$	\deltaoldsymbol{y}_k
Gradient iteration	$oldsymbol{ abla} f(oldsymbol{x}^{(n)})$	$\sum_{\kappa=1}^k oldsymbol{ abla} f_\kappa(oldsymbol{x}^{(n,k)})$	$oldsymbol{ abla} f_k(oldsymbol{x}^{(n,k)})$
Implementation	Expensive, but classic	Increasing Memory Cost	Low Memory, very fast
Theoretical Convergence	~	~	? (within bound)

Results

- Materials & Methods
- Type I reconstruction
- Type II reconstruction
- Realtime example

Materials & Methods

- Fast MRI dataset
 - Cartesian reconstruction, 16 coils
 - 640x320 images noise-free
 - R = 4 (80 column shots)
- Quantitative metrics:
 - PSNR and SSIM
 - Offline cost: $f(\boldsymbol{x}_k) + g(\boldsymbol{x}_k)$
 - Online cost:
 - Type I $\sum_{\kappa=1}^k f_\kappa({m x}_k) + g({m x}_k)$
 - Type II $f_k(oldsymbol{x}_k) + g(oldsymbol{x}_k)$

Reference Image (FLAIR) Noise-free FastMRI dataset

Test Setup:

- CPU : AMD Ryzen 5 PRO 4650U 6 cores/12 threads @2.1-4.0 GHz
- 16 Go RAM DDR4
- No GPU implementation yet

Offline multicoil Reference

Ground Truth

Zero-filled Reconstruction (IFFT) PSNR=32.38, SSIM=0.899

POGM+GroupLASSO

PSNR = 33.63 dB, ssim=0.909

Online reconstruction should be as close as possible to this quality.

Convergence of Online type I: 🗸

17

Pierre-Antoine Comby

Quality of Type I

Comby

Online Type I: Multicoil CS reconstruction

Convergence Online Type II , Forward-Backward: X

type=0, GroupLASSO, fista
 type=0, GroupLASSO, pogm
 type=2, GroupLASSO, vanilla, η=1.0
 type=2, IdentityProx, vanilla, η=1.0

Type II + GroupLASSO does not converge to offline even with multiple cycle over the data.

- Regularisation too strong
- Lack of Memory on previous observed data
- The continous component is forgotten
 - \rightarrow Energy not preserved.

Forward Backward with momentum

Online Type II

reference image

Online FB(η=1) + GroupLASSO

PSNR = 23.35 dB, ssim=0.608

Online Gradient Descent

PSNR = 29.37 dB, ssim=0.890

PSNR = 33.63 dB, ssim=0.909

Online Type II, with momentum

Vanilla FB (η =1) + GroupLASSO

Momentum (η=1/80, β=1.001) + GroupLASSO

PSNR = 26.46 dB, ssim=0.839

PSNR = 33.63 dB, ssim=0.909

"Real-time" reconstruction:

"Real-time" Reconstruction

Conclusions and Perspectives

- Type I: Online Results ≈ Offline Result
- Type II: Time Memory Memor Memory Memo
- Regularisation expensive, sometimes detrimental.

Perspectives:

• Extend Online Algorithm to non-Cartesian acquisition

 \rightarrow Use the NUFFT (via gpuNUFFT/cufiNUFFT)

- Test on higher acceleration factor
- Proof of convergence of type II with less constraints.

Thank you for your attention

Any Questions?

Offline reconstruction

• Solve using Forward-Backward algorithm

$$(\forall n \in \mathbb{N}), \quad \boldsymbol{x}_{(n+1)} = \operatorname{prox}_{\eta g} \left(\boldsymbol{x}_{(n)} - \eta \nabla f(\boldsymbol{x}_{(n)}) \right)$$

- η is the gradient descent step: "learning rate" in ML
- FB algorithm well studied and improved in the literature - FISTA, POGM, BARISTA, *etc*
- Regularisation: GroupLASSO (GL) on wavelets coefficients/coils

$$\operatorname{prox}_{R_{GL}}: \begin{bmatrix} \boldsymbol{\alpha}_1 \\ \vdots \\ \boldsymbol{\alpha}_L \end{bmatrix} \mapsto \begin{bmatrix} \boldsymbol{\alpha}'_1 \\ \vdots \\ \boldsymbol{\alpha}'_L \end{bmatrix} \quad \text{with} \quad \boldsymbol{\alpha}'_{\ell,j} = \begin{cases} 0 & \text{if } \sqrt{\sum_{\ell=1}^L \|\boldsymbol{\alpha}_{\ell,j}\|_2^2} < w_j \\ \alpha_{\ell,j} & \text{else} \end{cases}$$