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USCT Project
Groundwork

Figure 1: Acoustic characteristic of breast tissues: Attenuation/Velocity

Ultrasonic Computed Tomography

3D (world premiere)

High resolution (tumour <5mm)

Multi-modal imaging

no uses of X-rays

Cost effective
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USCT Project
Device Principle

(a) 2D

(b) 3D

Figure 2: 2D vs 3D Tomography
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USCT Project
Device Principle

Figure 3: 3D Tomography

Acoustics measurements
Speed of sound
Attenuation
Reflectivity

Simulation Framework

2D High Res. acquisition simulation

Groundtruth: 1px = 0.1 mm
Based on segmented coronal MRI image

Compress Pulse f=2.5MHz

↗ f =⇒↘ px size
↘ f =⇒↗ SNR and depth of field
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Physics and Modelling
Transmission and Reflection Tomography

Speed of sound tomography

c =
∆L
∆t
−→ t =

∫
1
c

dl

Transmission tomography

a priori for Reflexion
tomography

Time-of-Flight
Detection

Transmission
Tomography

Reflexion
Tomography

Figure 4: Reconstruction steps for USCT

(a) Wave propagation in USCT.

(b) A-Scan acquisition at Receiver.

Figure 5: Data acquisition in 2D
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Physics and Modelling
Base equations

Wave Equation (Fourier Space, k = ω/c(x))

∇2P(x , ω) + k2P(x , ω) = 0

Assuming an infinite frequency: A ray between an emitter and a
receiver verifies the Eikonal Equation

d
dl

=

(
1
c

dx
dl

)
= ∇

(
1
c

)

t =

∫
R

1
c

dl

A ray is the fastest path between an Emitter and a Receiver.

ray path R and speed of sound unknown.
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Physics and Modelling
Infinite frequency rays

c ' c0

c0

(a) Straight rays

c 6= c0

c0

(b) Bent rays

Figure 6: Simples rays approximations

Straight Rays
Homogeneous medium

shortest path = fastest path

Bresenham Line’s Algorithm

Bent Rays
Heterogeneous medium

shortest path 6= fastest path

Use Fast Marching Map (FMM)
to compute the path
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Numerical approximations

Differential Approach

δt =

∫
R

(s(x)− s0) dl =

∫
R

1
c(x)

− 1
c0

dl

Discrete space, for the k -th ray:

δtk =

nk∑
i=1

lkiδsi

matrix formalism:
δt1
δt2
...
δtm


︸ ︷︷ ︸

y

=


l11 l12 · · · l1n

l21 l22 · · · l2n
...

...
. . .

...
lm1 lm2 · · · lmn


︸ ︷︷ ︸

M

·


δs1

δs2
...
δsn


︸ ︷︷ ︸

δs

−→ δy = M I︸︷︷︸
M

(c)
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Matrix construction

nx

ny

· · ·
nxny

...
· · ·

· · ·

= M
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by construction, M is sparse.
(99% of coefficient are zeros in 2D)



Finite frequency tomography
Introduction

Drawbacks of infinite frequency tomography
Important sparsity

High sensibility to noise

Mathematical conception, no physical origins

To solve these problems, Introducing the:

Finite Frequency Tomography
Theory stolen to geophysics and petrol prospectors

A step towards full-wave approach

Consider the complete Fresnel Zone for information
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Finite frequency tomography
Defining the Fresnel zone

Fresnel Zone
The Fresnel is the region of space who interact constructively on the
received wave

δτ(F) = τ(EF) + τ(FR)− τ(ER) ≤ 1
2f

Where τ(EF), τ(FR), τ(ER), are the time of flight on the according paths.

time to emitter time to receiver total travel time

+ =
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Finite frequency tomography
Fat ray Kernel

In the Fresnel Zone we defines a
sensibility Kernel

δtk =

∫
V
δKtk (x)δs(x)dx

Ktk ,i '
∂tk
∂ci

sensitivity

Different weights methods for
fat Ray

Naive approach: Spread value of
bent ray /straight ray

c 6= c0

c0

Figure 7: Fresnel Zone for Fat Ray
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Finite frequency tomography
Fat ray Kernel
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Fresnel Zone

radial distance

3D

2D

Intpn

Figure 8: Comparison of Fat ray kernels

Linear Interpolated Kernel very naive

Fréchet Kernel (Born/Rytov Approximation)
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Problem parameters
Matrix Analysis

Transducer limitations
Opening angle (real ' 30o)

Number of ray = (Number of Transducer)2

Geometrical Artifacts
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Figure 9: Sparsity of Matrix for different ray methods
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Solver design
Inverse Problem

ill-posed problem M 6= N

ill conditioned ξ(M) > 1010 (good value < 10)

M is sparse

M is big (memory problems)

y = Mx −→ arg min
x
{f (x , y) + g(x)}

Solvers:
SART (well known)

TVAL3 (complex to tune)

Pierre-Antoine Comby – Analysis and optimization of ray-based 3D Ultrasound Tomography September 17, 2020 15/29



Solver design
Inverse Problem

ill-posed problem M 6= N

ill conditioned ξ(M) > 1010 (good value < 10)

M is sparse

M is big (memory problems)

y = Mx −→ arg min
x
{f (x , y) + g(x)}

Solvers:
SART (well known)

TVAL3 (complex to tune)

Pierre-Antoine Comby – Analysis and optimization of ray-based 3D Ultrasound Tomography September 17, 2020 15/29



Solver design
Inverse Problem

ill-posed problem M 6= N

ill conditioned ξ(M) > 1010 (good value < 10)

M is sparse

M is big (memory problems)

y = Mx

−→ arg min
x
{f (x , y) + g(x)}

Solvers:
SART (well known)

TVAL3 (complex to tune)

Pierre-Antoine Comby – Analysis and optimization of ray-based 3D Ultrasound Tomography September 17, 2020 15/29



Solver design
Inverse Problem

ill-posed problem M 6= N

ill conditioned ξ(M) > 1010 (good value < 10)

M is sparse

M is big (memory problems)

y = Mx −→ arg min
x
{f (x , y) + g(x)}

Solvers:
SART (well known)

TVAL3 (complex to tune)

Pierre-Antoine Comby – Analysis and optimization of ray-based 3D Ultrasound Tomography September 17, 2020 15/29



Solver design
Inverse Problem

ill-posed problem M 6= N

ill conditioned ξ(M) > 1010 (good value < 10)

M is sparse

M is big (memory problems)

y = Mx −→ arg min
x
{f (x , y) + g(x)}

Solvers:
SART (well known)

TVAL3 (complex to tune)

Pierre-Antoine Comby – Analysis and optimization of ray-based 3D Ultrasound Tomography September 17, 2020 15/29



Region of Interest

Our interest
Focus computation on the center of the aperture

Faster

Less background noise

Memory efficient

−→ −→

Figure 10: Binary segmentation for ROI detection
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Reconstruction Procedure

ck
Roi

Detection

Apply Filter

Matrix
Construction

crop Matrix
Solver

y = Mk sk+1

Rescale

crop Image

Invert
c = 1

s−s0

RoiBreast

BoundingBox

In
it

SensorPos
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(a) 32 transducers, 90◦ opening. (b) 128 transducers, 30◦ opening.

(c) 128 transducers, 90◦ opening.

Figure 11: Opening and Number of Rays Influence



Results
SART
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Figure 12: cross section of SART reconstruction ideal case
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Figure 13: TVAL reconstruction, weak regularization on gradient (β = 10−2, µ = 103).
128 emitters, full opening angle.



Results
TVAL Regularisation
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Figure 14: cross section of the TVAL reconstruction
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3D reconstruction

3D phantom (64x64x50) reconstruction. 1 emitter for 4 receiver

Fat Ray Linear, SART, No TV, no ROI
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3D reconstruction

3D phantom (64x64x50) reconstruction. 1 emitter for 4 receiver

Fat Ray, SART, Strong TV, ROI
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Conclusion & Future work

Achievements
Fat Ray implementation

ROI-based computation

3D simulation and Regularisation

SART more robust than TVAL

Future work ?
C-MEX / GPU Implementation

Experimental Data
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Thank you for listening
any questions ?



Fat Ray
Kernel expression

K 3D
t (y) =

s0

2π
‖x r − xe‖

‖x r − y‖‖y − xe‖

∫ ω+∆ω

ω−∆ω
A(ω)ω sin(ωs0δl(y))dω

K 2D
t (y) =

√
s0

2π

√
‖x r − xe‖

‖x r − y‖‖y − xe‖

∫ ω+∆ω

ω−∆ω
A(ω)

√
ω sin

(
ωs0δl(y) +

π

4

)
dω

Heavy computation

Limits to Fresnel Zone

No Hypothesis on slowness distribution

Works also for attenuation
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Solver design
SART vs TVAL3

SART

x(k+1) = x(k) + λCMT R(y −Mx(k))

With C and R diagonal matrices use for the ponderation:

cjj =

(
M∑

i=1

|Mi,j |

)−1

rjj =

 N∑
j=1

|Mi,j |

−1

Pierre-Antoine Comby – Analysis and optimization of ray-based 3D Ultrasound Tomography September 17, 2020 27/29



Solver design
SART vs TVAL3

TVAL3
Solve with total variation Regularisation:

min ‖Dxx‖1 + ‖Dyx‖1 + ‖Dzx‖1 with y = Mx

L (β, µ,λ,ν) =
∑

i

(
‖w i‖ − νT

i (Dix − w i) +
β

2
‖Dix − w i‖2

2

)
︸ ︷︷ ︸

w-problem

− λT (Mx − b) +
µ

2
‖Mx − b‖2

2︸ ︷︷ ︸
x-problem

(1)
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