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Figure 1: Acoustic characteristic of breast tissues: Attenuation/Velocity
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Ultrasonic Computed ography

@ 3D (world premiere)
a High resolution (tumour <5mm)
a Multi-modal imaging

Pierre-Antoine Comby — Analysis and optimization of ray-based 3D Ultrasound Tomography September 17, 2020 2/29



USCT Project

Groundwork
100 — - Duter Limit
= FE=1470 o £y Z
WS ;'*I.roo)
75

50—

- Parenchymaol
Fat
25— (4

Subcutansous
E Far
o

L350 1,400 1,450 500 1,550 600

Figure 1: Acoustic characteristic of breast tissues: Attenuation/Velocity

Ultrasonic Computed ography

@ 3D (world premiere) ® no uses of X-rays

a High resolution (tumour <5mm) a Cost effective

a Multi-modal imaging
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Figure 2: 2D vs 3D Tomography
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Device Principle

a Acoustics measurements
a Speed of sound
a Attenuation
a Reflectivity

Figure 3: 3D Tomography
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Simulation Framework

a 2D High Res. acquisition simulation
a Groundtruth: 1px = 0.1 mm
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Device Principle

m Acoustics measurements

a Speed of sound
a Attenuation
a Reflectivity

Figure 3: 3D Tomography

Simulation Framework

a 2D High Res. acquisition simulation

a Groundtruth: 1px = 0.1 mm
m Based on segmented coronal MRI image

m Compress Pulse f=2.5MHz
a S f =\, pxsize
a \ f =  SNR and depth of field
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Physics and Modelling

Transmission and Reflection Tomography

Speed of sound tomography

AL 1
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a Transmission tomography

m a priori for Reflexion
tomography

Time-of-Flight Transmission Reflexion
Detection Tomography Tomography

Figure 4: Reconstruction steps for USCT

(a) Wave propagation in USCT.
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(b) A-Scan acquisition at Receiver.

Figure 5: Data acquisition in 2D
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Physics and Modelling ﬂ(“

Base equations
a Wave Equation (Fourier Space, k = w/c(x))

V2P(x,w) + k*P(x,w) =0
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Pierre-Antoine Comby — Analysis and optimization of ray-based 3D Ultrasound Tomography September 17, 2020 6/29



Physics and Modelling A\K“

Base equations
a Wave Equation (Fourier Space, k = w/c(x))

V2P(x,w) + k*P(x,w) =0

m Assuming an infinite frequency: A ray between an emitter and a

receiver verifies the Eikonal Equation
d 1dx 1
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1
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a A ray is the fastest path between an Emitter and a Receiver.
m ray path R and speed of sound unknown.
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Infinite frequency rays

Straight Rays
@ Homogeneous medium
/ m shortest path = fastest path
m Bresenham Line’s Algorithm

a) Straight rays
Bent Rays
m Heterogeneous medium
/ m shortest path # fastest path
a Use Fast Marching Map (FMM)
to compute the path
b) Bent rays

Figure 6: S|mples rays approximations
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Numerical approximations ﬂ(“

a Differential Approach

1 1
5t:/R(s(x)—so)dl:/RC(X)—COd/

m Discrete space, for the k-th ray:

i
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m matrix formalism:
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Matrix construction ﬂ(“

Karlsruhe

by construction, M is sparse.
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Finite frequency tomography AT
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Introduction

Drawbacks of infinite frequency tomography

a Important sparsity
a High sensibility to noise
a Mathematical conception, no physical origins
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Introduction

Drawbacks of infinite frequency tomography

a Important sparsity
a High sensibility to noise
a Mathematical conception, no physical origins

To solve these problems, Introducing the:

Finite Frequency Tomography

m Theory stolen to geophysics and petrol prospectors
a A step towards full-wave approach
a Consider the complete Fresnel Zone for information
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Finite frequency tomography AT
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Defining the Fresnel zone

Fresnel Zone
The Fresnel is the region of space who interact constructively on the
received wave

57(F) = (EF) + (FR) — 7(ER) < -

Where 7(EF), 7(FR), 7(ER), are the time of flight on the according paths.

time to emitter time to receiver total travel time
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Finite frequency tomography

Fat ray Kernel

In the Fresnel Zone we defines a
sensibility Kernel

St = / 5K, (X)3s(x)dx
v
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Finite frequency tomography

Fat ray Kernel

In the Fresnel Zone we defines a
sensibility Kernel

St = / 5K, (X)3s(x)dx
v

w K, g’k sensitivity

a Different weights methods for
fat Ray
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Finite frequency tomography A\K“

Fat ray Kernel

In the Fresnel Zone we defines a
sensibility Kernel

St = / 5K, (X)3s(x)dx o
v

w Ky~ g—’ckl_ sensitivity
a Different weights methods for

fat Ray d

Naive approach: Spread value of Figure 7: Fresnel Zone for Fat Ray
bent ray /straight ray
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Finite frequency tomography ﬂ(“

Fat ray Kernel
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Figure 8: Comparison of Fat ray kernels

a Linear Interpolated Kernel very naive
a Fréchet Kernel (Born/Rytov Approximation)
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Problem parameters ﬂ(“

stitute of Technology.

Matrix Analysis

Transducer limitations

® Opening angle (real ~ 30°)
= Number of ray = (Number of Transducer)?
a Geometrical Artifacts
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Matrix Analysis

Transducer limitations
® Opening angle (real ~ 30°)
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Figure 9: Sparsity of Matrix for different ray methods
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Solver design

Inverse Problem

a ill-posed problem M # N
= ill conditioned &£(M) > 10'° (good value < 10)
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Solver design ﬂ(“

Inverse Problem

a ill-posed problem M # N

= ill conditioned &£(M) > 10'° (good value < 10)
a Mis sparse

a M is big (memory problems)

y = Mx — argmin{f(x, y) + g(x)}
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Inverse Problem

a ill-posed problem M # N

= ill conditioned &£(M) > 10'° (good value < 10)
a Mis sparse

a M is big (memory problems)

y = Mx — argmin{f(x, y) + g(x)}

Solvers:

a SART (well known)
m TVAL3 (complex to tune)
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Region of Interest ﬂ(“

stitute of Technology.

a Focus computation on the center of the aperture
a Faster

a Less background noise

a Memory efficient

Figure 10: Binary segmentation for ROI detection
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Reconstruction Procedure

AT

Karlsruhe Institute of Technology.

BoundingBox crop Image
Roi
— G
k Detection RoiBreast
-~ SensorPos
Apply Filter crop Matrix Rescale
o N Matrix Solver / B Invert
Construction Y = MgSkiq c=+5
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(a) 32 transducers, 90° opening. b) 128 transducers, 30° opening.

c) 128 transducers, 90° opening.

Figure 11: Opening and Number of Rays Influence



Results ﬂ(“
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Figure 12: cross section of SART reconstruction ideal case
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Figure 13: TVAL reconstruction, weak regularization on gradient (8 = 1072, . = 10°).
128 emitters, full opening angle.




Results ﬂ(“

TVAL Regularisation
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Figure 14: cross section of the TVAL reconstruction
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3D reconstruction AT

Karlsruhe Intitute of Technology

3D phantom (64x64x50) reconstruction. 1 emitter for 4 receiver
Fat Ray Linear, SART, No TV, no ROI
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3D reconstruction %(“

3D phantom (64x64x50) reconstruction. 1 emitter for 4 receiver
Fat Ray, SART, Strong TV, ROI
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Conclusion & Future work AT
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a Fat Ray implementation

a ROIl-based computation

a 3D simulation and Regularisation
a SART more robust than TVAL

m C-MEX/GPU Implementation
a Experimental Data
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Thank you for listening

any questions ?



Fat Ray A\KIT

Kernel expression

K3O(y) = S0 I1Xr— Xe| /”*A”
2r [xe = yillly = xl

w—Aw

A(w)w sin(wspd!(y))dw

So | xr — xel| WA ) T
K?P(y)= /= Alw)vwsin (wsedl(y) + = ) dw
) V2w\/||xr—yu||y—xe|| [ o, AV (wsodily) + )

a Heavy computation

a Limits to Fresnel Zone

® No Hypothesis on slowness distribution
a Works also for attenuation
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Solver design AT
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SART vs TVAL3
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SART

x+) = x4 xeMTR(y — Mx(¥))
With C and R diagonal matrices use for the ponderation:

=q

M —1 N
Cj = (Z IMi,jl) =D Myl
i=1 j=1
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Solver design ﬂ(“

SART vs TVAL3

TVALS

Solve with total variation Regularisation:

min || DxX||1 + ||Dyx||1 + || Dzx||1 with y = Mx

2B A 0) =3 (Il — 5 (01x = w) + J110x ~ wi )

i

w—p%glem (1)

~ AT(Mx — b) + gHMx i

v
X-problem
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