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Purpose of this formalization

Formalize real polynomial analysis in the SSReflect extension of
the Coq proof assistant.
SSReflect provides a lot of tools and uses a lot of specific
programming techniques in the domain of finite groups and
combinatorics.
Reuse theses techniques to handle more � continuous � theories.
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Real Closed Fields

Algebraic structure of reals : Real Closed Fields (RCF)
Field + Ordered + Intermediate value theorem for polynomials
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Decidable Equality

In SSReflect, structures have decidable equality.
We can define this (implicit) coercion in Coq

Coercion is_true (b : bool) : Prop := (b = true).

SSReflect

uses intensively this coercion

has facilities to go from one point of view to the other
(bool-Prop reflection).

We then see boolean equality as propositional equality, for free.
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What do we need ?

⇒ Make case analysis on x ≤ y

⇒ Combine statements (using transitivity with both ≤ <,
compatibility with operations, etc ..)

⇒ Speak about signs and absolute value

⇒ Use max and min
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Taking advantage of the boolean predicate

Making le a boolean predicate.

Like before, consider this boolean predicate as proposition
through the coercion is_true

⇒ Use equalities to rewrite expressions with order

(x+z <= y+z)= (x <= y)

(sign x == 1)= (0 < x)

. . .

⇒ Use if x <= y then ... else ... in programs
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Tools

Multiple lemmas about transitivity and compatibility between
le, lt and field operations

⇒ Need for good naming conventions.
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Strict comparison

We’ll define the strict order lt from the large one le by :

Definition lt x y := ~~ (le y x).

and prove its properties.
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Ordered ring mixin

Record mixin_of (R : ringType) := Mixin {

le : rel R;

_ : antisymmetric le;

_ : transitive le;

_ : total le;

_ : forall z x y, le x y -> le (x + z) (y + z);

_ : forall x y, le 0 x -> le 0 y -> le 0 (x * y)

}.
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Integration in existing SSReflect algebraic hierarchy

Field

IntegralDomain

ComUnitRing

ComRingUnitRing

Ring
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Integration in existing SSReflect algebraic hierarchy

Field

IntegralDomain

ComUnitRing

ComRingUnitRing

Ring

Ordered
IntegralDomain

OrderedField

Cyril Cohen Formalized foundations of polynomial real analysis



Rolle Theorem for polynomials

A first hint that RCF is a good abstraction of reals :
We are able to prove :

Lemma rolle : forall (a b : R) (p : {poly R}),

a < b -> p.[a] = 0 -> p.[b] = 0 ->

exists c, a < c < b /\ p^‘().[c] == 0.
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Sketch of the constructive proof

Lemma rolle_weak : forall (a b : R) (p : {poly R}),

a < b -> p.[a] = 0 -> p.[b] = 0 ->

exists c , a < c < b

/\ (p^‘().[c] = 0 \/ p.[c] = 0).

And conclude rolle from it by iterating rolle_weak. It
terminates because P has less than deg(P) roots.
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What else can we do with IVT ?

Particularly useful examples

Rolle Theorem

Mean Value Theorem

Write a function that computes the real roots of any
polynomial

Prove that given a polynomial P, and a root x of P, one can
find a neighborhood of x on which P has no root except x .

. . .
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Isolation of roots
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Towards quantifier elimination

First step of Quantifier Elimination in RCF.
Which entails decidability of the theory of RCF.

Let’s pick one concept from it : Cauchy Index (proof almost done).
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Definition of the Cauchy Index

CInd(
P

Q
, ]a, b[) =

number of positive jumps− number of negative jumps
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Useful property of Cauchy Index

Property
If P(a),P(b),Q(a),Q(b) 6= 0 then,

CInd

(
P

Q
, ]a, b[

)
+ CInd

(
Q

P
, ]a, b[

)
=

{
sign (PQ(b)) if PQ(a)PQ(b) < 0

0 else
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Idea of the proof : combinatorics
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Jumps in the list of signs of PQ. [-1;1;-1;-1;1;-1;1]
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Trick of the proof

The sum of jumps of a list l = x0, . . . , xn ∈ {−1, 1}∗ verifies a
useful property : it’s the jump between x0 and xn.
i.e. {

sign(xn) if x0xn < 0

0 else
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Idea of the proof : combinatorics
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Jump between the first sign -1 and the last one 1, i.e.{

sign (PQ(b)) if PQ(a)PQ(b) < 0

0 else
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Conclusion

A library which provides usable tools.
It is used in works in progress on

Quantifier elimination in RCF

Formalisation of Bernstein Polynomials
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What next ?

Instantiate the Real Closed Fields Structure

Prove some reflexive tactics using it

... to provide a little more automation

Generalize notion of continuity in this context

Extend to further real analysis
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The End

Thank you for your attention. Any questions ?
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