
Refinements for free!

Refinements for free!1

Cyril Cohen, Maxime Dénès and Anders Mörtberg

University of Gothenburg and Inria Sophia-Antipolis

November 27, 2013

1This work has been funded by the FORMATH project, nr. 243847, of the FET program
within the 7th Framework program of the European Commission.
Cyril Cohen, Maxime Dénès and Anders Mörtberg 1

Refinements for free! | Introduction

Motivation

Verifying computer algebra algorithms

What for?

Computer algebra algorithms can help automate proofs
Formal proofs bridge the gap between paper correctness proofs and
real-life implementations
Proof assistants can provide independent verification of results
obtained by computer algebra programs (e.g. ζ(3) is irrational,
computation of homology groups)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 2

Refinements for free! | Introduction

Motivation

Verifying computer algebra algorithms

What for?

Computer algebra algorithms can help automate proofs
Formal proofs bridge the gap between paper correctness proofs and
real-life implementations
Proof assistants can provide independent verification of results
obtained by computer algebra programs (e.g. ζ(3) is irrational,
computation of homology groups)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 2

Refinements for free! | Introduction

Motivation

Verifying computer algebra algorithms

What for?

Computer algebra algorithms can help automate proofs

Formal proofs bridge the gap between paper correctness proofs and
real-life implementations
Proof assistants can provide independent verification of results
obtained by computer algebra programs (e.g. ζ(3) is irrational,
computation of homology groups)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 2

Refinements for free! | Introduction

Motivation

Verifying computer algebra algorithms

What for?

Computer algebra algorithms can help automate proofs
Formal proofs bridge the gap between paper correctness proofs and
real-life implementations

Proof assistants can provide independent verification of results
obtained by computer algebra programs (e.g. ζ(3) is irrational,
computation of homology groups)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 2

Refinements for free! | Introduction

Motivation

Verifying computer algebra algorithms

What for?

Computer algebra algorithms can help automate proofs
Formal proofs bridge the gap between paper correctness proofs and
real-life implementations
Proof assistants can provide independent verification of results
obtained by computer algebra programs (e.g. ζ(3) is irrational,
computation of homology groups)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 2

Refinements for free! | Introduction

Context

Traditional approaches to program verification:

Bottom-up verification (e.g. annotations)
Program synthesis from specifications (e.g. Coq’s extractor)
Top-down step-wise refinements from specification to programs

Specificity of computer algebra programs:
Computer algebra algorithms can have complex specifications
E�iciency matters!

Problem: these aspects are o�en in tension
We suggest a methodology based on refinements to achieve separation of
concerns

Cyril Cohen, Maxime Dénès and Anders Mörtberg 3

Refinements for free! | Introduction

Context

Traditional approaches to program verification:
Bottom-up verification (e.g. annotations)

Program synthesis from specifications (e.g. Coq’s extractor)
Top-down step-wise refinements from specification to programs

Specificity of computer algebra programs:
Computer algebra algorithms can have complex specifications
E�iciency matters!

Problem: these aspects are o�en in tension
We suggest a methodology based on refinements to achieve separation of
concerns

Cyril Cohen, Maxime Dénès and Anders Mörtberg 3

Refinements for free! | Introduction

Context

Traditional approaches to program verification:
Bottom-up verification (e.g. annotations)
Program synthesis from specifications (e.g. Coq’s extractor)

Top-down step-wise refinements from specification to programs

Specificity of computer algebra programs:
Computer algebra algorithms can have complex specifications
E�iciency matters!

Problem: these aspects are o�en in tension
We suggest a methodology based on refinements to achieve separation of
concerns

Cyril Cohen, Maxime Dénès and Anders Mörtberg 3

Refinements for free! | Introduction

Context

Traditional approaches to program verification:
Bottom-up verification (e.g. annotations)
Program synthesis from specifications (e.g. Coq’s extractor)
Top-down step-wise refinements from specification to programs

Specificity of computer algebra programs:
Computer algebra algorithms can have complex specifications
E�iciency matters!

Problem: these aspects are o�en in tension
We suggest a methodology based on refinements to achieve separation of
concerns

Cyril Cohen, Maxime Dénès and Anders Mörtberg 3

Refinements for free! | Introduction

Context

Traditional approaches to program verification:
Bottom-up verification (e.g. annotations)
Program synthesis from specifications (e.g. Coq’s extractor)
Top-down step-wise refinements from specification to programs

Specificity of computer algebra programs:
Computer algebra algorithms can have complex specifications
E�iciency matters!

Problem: these aspects are o�en in tension
We suggest a methodology based on refinements to achieve separation of
concerns

Cyril Cohen, Maxime Dénès and Anders Mörtberg 3

Refinements for free! | Introduction

Context

Traditional approaches to program verification:
Bottom-up verification (e.g. annotations)
Program synthesis from specifications (e.g. Coq’s extractor)
Top-down step-wise refinements from specification to programs

Specificity of computer algebra programs:
Computer algebra algorithms can have complex specifications
E�iciency matters!

Problem: these aspects are o�en in tension
We suggest a methodology based on refinements to achieve separation of
concerns

Cyril Cohen, Maxime Dénès and Anders Mörtberg 3

Refinements for free! | Introduction

Separation of concerns

We know that a program must be correct and we can study it from
that viewpoint only; we also know that it should be e�icient and we
can study its e�iciency on another day, so to speak. [. . .] But noth-
ing is gained – on the contrary! – by tackling these various aspects
simultaneously. It is what I sometimes have called "the separation
of concerns"

Dijkstra, Edsger W.
"On the role of scientific thought" (1982)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 4

Refinements for free! | Introduction

Program and data refinements
We distinguish two kinds of refinements:

Program refinement: improving the algorithmics
Data refinement: switching to more e�icient data representation

Specification

Refined algorithm

Concrete implementation

Program refinement

Data refinement

Cyril Cohen, Maxime Dénès and Anders Mörtberg 5

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:

nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 6

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:

nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 6

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs

N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 6

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 6

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 6

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 6

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:

nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 7

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:

nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 7

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs

N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 7

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 7

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 7

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 7

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:

nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 8

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:

nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 8

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs

N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 8

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 8

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 8

Refinements for free! | Basic framework

Isomorphic structures

First example: natural numbers

In the standard library of Coq: nat (unary) and N (binary) along with two
isomorphisms N.of_nat : nat -> N and N.to_nat : N -> nat

Here already two aspects in tension:
nat has a convenient induction scheme for proofs
N gives an exponentially more compact representation of numbers

In the standard library, proofs are factored using an abstract axiomatization
(module signature) instanciated to these two implementations.

Pb: this goes against the "small scale reflection" approach (following
SSREFLECT)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 8

Refinements for free! | Basic framework

Partial operators

Second example: polynomials in SSREFLECT

Variable R : ringType.
Record polynomial :=
Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.

For computations, we drop the proof component and see polynomials as
lists (sequences).

Our proof-oriented type polynomial is isomorphic to a subset of (seq R).

Operators over (seq R) are partially specified as refinements of their
counterparts from (polynomial R).

Cyril Cohen, Maxime Dénès and Anders Mörtberg 9

Refinements for free! | Basic framework

Partial operators

Second example: polynomials in SSREFLECT

Variable R : ringType.
Record polynomial :=
Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.

For computations, we drop the proof component and see polynomials as
lists (sequences).

Our proof-oriented type polynomial is isomorphic to a subset of (seq R).

Operators over (seq R) are partially specified as refinements of their
counterparts from (polynomial R).

Cyril Cohen, Maxime Dénès and Anders Mörtberg 9

Refinements for free! | Basic framework

Partial operators

Second example: polynomials in SSREFLECT

Variable R : ringType.
Record polynomial :=
Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.

For computations, we drop the proof component and see polynomials as
lists (sequences).

Our proof-oriented type polynomial is isomorphic to a subset of (seq R).

Operators over (seq R) are partially specified as refinements of their
counterparts from (polynomial R).

Cyril Cohen, Maxime Dénès and Anders Mörtberg 9

Refinements for free! | Basic framework

Partial operators

Second example: polynomials in SSREFLECT

Variable R : ringType.
Record polynomial :=
Polynomial {polyseq :> seq R; _ : last 1 polyseq != 0}.

For computations, we drop the proof component and see polynomials as
lists (sequences).

Our proof-oriented type polynomial is isomorphic to a subset of (seq R).

Operators over (seq R) are partially specified as refinements of their
counterparts from (polynomial R).

Cyril Cohen, Maxime Dénès and Anders Mörtberg 9

Refinements for free! | Basic framework

Quotient

Third example: rational numbers

Record rat : Set := Rat {
valq : (int * int) ;
_ : (0 < valq.2) && coprime ‘|valq.1| ‘|valq.2|

}.

The proof-oriented rat enforces that fractions are reduced

Allows to use Leibniz equality in proofs
This invariant is costly to maintain during computations

We would like to relax the constraint and express that rat is isomorphic to
a quotient of a subset of pairs of integers.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 10

Refinements for free! | Basic framework

Quotient

Third example: rational numbers

Record rat : Set := Rat {
valq : (int * int) ;
_ : (0 < valq.2) && coprime ‘|valq.1| ‘|valq.2|

}.

The proof-oriented rat enforces that fractions are reduced

Allows to use Leibniz equality in proofs
This invariant is costly to maintain during computations

We would like to relax the constraint and express that rat is isomorphic to
a quotient of a subset of pairs of integers.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 10

Refinements for free! | Basic framework

Quotient

Third example: rational numbers

Record rat : Set := Rat {
valq : (int * int) ;
_ : (0 < valq.2) && coprime ‘|valq.1| ‘|valq.2|

}.

The proof-oriented rat enforces that fractions are reduced
Allows to use Leibniz equality in proofs

This invariant is costly to maintain during computations

We would like to relax the constraint and express that rat is isomorphic to
a quotient of a subset of pairs of integers.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 10

Refinements for free! | Basic framework

Quotient

Third example: rational numbers

Record rat : Set := Rat {
valq : (int * int) ;
_ : (0 < valq.2) && coprime ‘|valq.1| ‘|valq.2|

}.

The proof-oriented rat enforces that fractions are reduced
Allows to use Leibniz equality in proofs
This invariant is costly to maintain during computations

We would like to relax the constraint and express that rat is isomorphic to
a quotient of a subset of pairs of integers.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 10

Refinements for free! | Basic framework

Quotient

Third example: rational numbers

Record rat : Set := Rat {
valq : (int * int) ;
_ : (0 < valq.2) && coprime ‘|valq.1| ‘|valq.2|

}.

The proof-oriented rat enforces that fractions are reduced
Allows to use Leibniz equality in proofs
This invariant is costly to maintain during computations

We would like to relax the constraint and express that rat is isomorphic to
a quotient of a subset of pairs of integers.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 10

Refinements for free! | Basic framework

Representation of refinements

Proof-oriented type A
Valid elements

Computation-oriented type C
implem

spec

Cyril Cohen, Maxime Dénès and Anders Mörtberg 11

Refinements for free! | Basic framework

Representation of refinements

Proof-oriented type A
Valid elements

Computation-oriented type C
implem

spec

Cyril Cohen, Maxime Dénès and Anders Mörtberg 11

Refinements for free! | A generic approach to refinements

The old strategy

Assuming we have a theory on a type A:

1 write e�icient algorithms for A,
2 prove that A and C are isomorphic,
3 duplicate the algorithms for C,
4 prove extensional equality of algorithms.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 12

Refinements for free! | A generic approach to refinements

The new strategy

Assuming we have a theory on a type A:

1 write e�icient algorithms in a generic form,
2 instantiate in A and prove them,
3 instantiate in C and get correction by parametricity.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 13

Refinements for free! | A generic approach to refinements

New features

Generic programming: only one description of the algorithm, then
specialized for proofs or computations.

Compositionality: refining (polynomial A) to (seq C).
Automating correctness proofs when changing representations.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 14

Refinements for free! | A generic approach to refinements

New features

Generic programming: only one description of the algorithm, then
specialized for proofs or computations.
Compositionality: refining (polynomial A) to (seq C).

Automating correctness proofs when changing representations.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 14

Refinements for free! | A generic approach to refinements

New features

Generic programming: only one description of the algorithm, then
specialized for proofs or computations.
Compositionality: refining (polynomial A) to (seq C).
Automating correctness proofs when changing representations.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 14

Refinements for free! | A generic approach to refinements

Generic programming: addition over rationals

Generic datatype

Definition Q Z := (Z * Z).

Generic operations

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

To prove correctness of addQ, operators (+ : add Z) and (* : mul Z)
are instanciated to proof-oriented definitions.
When computing, these operators are instanciated to more e�icient ones.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 15

Refinements for free! | A generic approach to refinements

Proof-oriented correction

The type int is the proof-oriented version of integers.
The type rat is the proof-oriented version of rationals.

Correctness of addQ int

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Definition Rrat : rat -> Q int -> Prop := ofun_hrel
Qint_to_rat.

Lemma Rrat_addQ :
forall (x : rat) (u : Q int), Rrat x u ->
forall (y : rat) (v : Q int), Rrat y v ->
Rrat (addq x y) (addQ u v).

Cyril Cohen, Maxime Dénès and Anders Mörtberg 16

Refinements for free! | A generic approach to refinements

Compositionality

Composing relations

Definition comp_hrel
(R : A -> B -> Prop) (R’ : B -> C -> Prop) : A -> C ->

Prop :=
fun a c => exists b, R a b /\ R’ b c.

Notation "X \o Y" := (comp_hrel X Y).

Example for rat

Definition Rrat : rat -> Q int -> Prop := ofun_hrel
Qint_to_rat.

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RratA : rat -> Q Z -> Prop :=
(Rrat \o (Rint * Rint))%rel.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 17

Refinements for free! | A generic approach to refinements

Compositionality

Correctness of addQ

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RratA := (Rrat \o (Rint * Rint))%rel.

Lemma RratA_addQ ‘{add Z, mul Z} : [...] ->
forall (x : rat) (u : Q Z), RratA x u ->
forall (y : rat) (v : Q Z), RratA y v ->
RratA (addq x y) (addQ u v).

This will be provable as soon as the addition andmultiplication over Z
refines the ones over int.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 18

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RratA := (Rrat \o (Rint * Rint))%rel.

Lemma RratA_addQ ‘{add Z, mul Z} : [...] ->
forall (x : rat) (u : Q Z), RratA x u ->
forall (y : rat) (v : Q Z), RratA y v ->
RratA (addq x y) (addQ u v).

Rrat_addQ is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 19

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RratA := (Rrat \o (Rint * Rint))%rel.

Lemma RratA_addQ ‘{add Z, mul Z} : [...] ->
(RratA ==> RratA ==> RratA) addq (addQ (+) (*))

Rrat_addQ is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 19

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Definition addQ Z ‘{add Z} ‘{mul Z} : add (Q Z) :=
fun x y => (x.1 * y.2 + y.1 * x.2, x.2 * y.2).

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RratA := (Rrat \o (Rint * Rint))%rel.

Lemma RratA_addQ ‘{add Z, mul Z} :
(Rint ==> Rint ==> Rint) addz (+) ->
(Rint ==> Rint ==> Rint) mulz (*) ->
(RratA ==> RratA ==> RratA) addq (addQ (+) (*))

Rrat_addQ is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 19

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RratA := (Rrat \o (Rint * Rint))%rel.

Lemma Rrat_addQ : (Rrat ==> Rrat ==> Rrat) addq (addQ
addz mulz)

Lemma param_addQ ‘{add Z, mul Z} :
(Rint ==> Rint ==> Rint) addz (+) ->
(Rint ==> Rint ==> Rint) mulz (*) ->
(Rint * Rint ==> Rint * Rint ==> Rint * Rint)
(addQ addz mulz) (addQ (+) (*))

Rrat_addQ is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 19

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RratA := (Rrat \o (Rint * Rint))%rel.

Lemma Rrat_addQ : (Rrat ==> Rrat ==> Rrat) addq (addQ
addz mulz)

Lemma param_addQ ‘{add Z, mul Z} :
(Rint ==> Rint ==> Rint) addz (+) ->
(Rint ==> Rint ==> Rint) mulz (*) ->
(Rint * Rint ==> Rint * Rint ==> Rint * Rint)
(addQ addz mulz) (addQ (+) (*))

Rrat_addQ is not for free,

but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 19

Refinements for free! | A generic approach to refinements

Automation

Correctness of addQ

Variables (Z : Type) (Rint : int -> Z -> Prop).
Definition RratA := (Rrat \o (Rint * Rint))%rel.

Lemma Rrat_addQ : (Rrat ==> Rrat ==> Rrat) addq (addQ
addz mulz)

Lemma param_addQ ‘{add Z, mul Z} :
(Rint ==> Rint ==> Rint) addz (+) ->
(Rint ==> Rint ==> Rint) mulz (*) ->
(Rint * Rint ==> Rint * Rint ==> Rint * Rint)
(addQ addz mulz) (addQ (+) (*))

Rrat_addQ is not for free,
but param_addQ should be!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 19

Refinements for free! | A generic approach to refinements

Parametricity for addQ

Z : Type
Rint : int -> Z -> Prop
addZ : add Z
mulZ : mul Z
_ : (Rint ==> Rint ==> Rint) addz (+)
_ : (Rint ==> Rint ==> Rint) mulz (*)

==
(RratA ==> RratA ==> RratA) addq (@addQ Z (+) (*))

Cyril Cohen, Maxime Dénès and Anders Mörtberg 20

Refinements for free! | A generic approach to refinements

Parametricity for addQ

Z : Type
Rint : int -> Z -> Prop
addZ : add Z
mulZ : mul Z
_ : (Rint ==> Rint ==> Rint) addz (+)
_ : (Rint ==> Rint ==> Rint) mulz (*)

==
(Rrat ==> Rrat ==> Rrat)
addq (@addQ int addz mulz)

==
(Rint * Rint ==> Rint * Rint ==> Rint * Rint)
(@addQ int addz mulz) (@addQ Z (+) (*))

Cyril Cohen, Maxime Dénès and Anders Mörtberg 20

Refinements for free! | A generic approach to refinements

Parametricity for addQ

Z : Type
Rint : int -> Z -> Prop
addZ : add Z
mulZ : mul Z
_ : (Rint ==> Rint ==> Rint) addz (+)
_ : (Rint ==> Rint ==> Rint) mulz (*)

==
(Rint * Rint ==> Rint * Rint ==> Rint * Rint)
(@addQ int addz mulz) (@addQ Z (+) (*))

Cyril Cohen, Maxime Dénès and Anders Mörtberg 20

Refinements for free! | A generic approach to refinements

Parametricity for addQ

Z : Type
Rint : int -> Z -> Prop
addZ : add Z
_ : (Rint ==> Rint ==> Rint) mulz (*)

==
((Rint ==> Rint ==> Rint) ==>

Rint * Rint ==> Rint * Rint ==> Rint * Rint)
(@addQ int addz) (@addQ Z (+))

Cyril Cohen, Maxime Dénès and Anders Mörtberg 20

Refinements for free! | A generic approach to refinements

Parametricity for addQ

Z : Type
Rint : int -> Z -> Prop

==
((Rint ==> Rint ==> Rint) ==>

(Rint ==> Rint ==> Rint) ==>
Rint * Rint ==> Rint * Rint ==> Rint * Rint)

(@addQ int) (@addQ Z)

Cyril Cohen, Maxime Dénès and Anders Mörtberg 20

Refinements for free! | Conclusion

Conclusion and future work

The approach we described:
Reconciles convenient proofs with e�icient computations
Provides a mechanism to smoothly switch from one world to the other
Avoids duplication of code

We
applied it to algorithms we had previously verified: Karatsuba’s
polynomial multiplication, Strassen’s matrix product,
are still porting others from the old framework: Sasaki-Murao
algorithm, Smith normal form.

Future work:
have a better way to get parametricity than typeclasses,
try on algorithms outside algebra,
scale up to dependant types.

Cyril Cohen, Maxime Dénès and Anders Mörtberg 21

Refinements for free! | Conclusion

Thanks!

Cyril Cohen, Maxime Dénès and Anders Mörtberg 22

	Introduction
	Basic framework
	A generic approach to refinements
	Conclusion

