A construction of the discrete field of real algebraic numbers in Coq

Cyril Cohen

INRIA Saclay – Île-de-France LIX École Polytechnique INRIA Microsoft Research Joint Centre cohen@crans.org

March 28, 2012

Cyril Cohen A construction of the discrete field of real algebraic numbers in C

Why algebraic numbers ?

- \bullet Field strictly between $\mathbb Q$ and $\mathbb R$
- Instance of real closed field, countable and with decidable comparison
- Useful in the formalization of the odd order theorem (Mathematical Components project)
- Interesting object in real algebraic geometry and computer algebra

Usual definition of algebraic reals

Algebraic numbers are roots of non null polynomials with coefficients in $\mathbb Q$

Classically:

 $\{x \in \mathbb{R} \mid \exists P \in \mathbb{Q}[X] - \{0\}, P(x) = 0\}$

Cyril Cohen A construction of the discrete field of real algebraic numbers in C

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties Ordered field
- The intermediate value property for polynomials

- We start from real numbers
- \bullet We restrict them to roots of polynomials with coefficients in $\mathbb Q$

Representation of a Cauchy real \bar{x}

- A sequence $(x_n)_{n \in \mathbb{N}}$
- A convergence modulus m_x : Q → N such that : ∀ε i j, m_x(ε) < i, j → |x_i − x_j| < ε

• A definition of \equiv (non decidable)

$$\bar{x} \equiv \bar{y} \iff |x_n - y_n| \xrightarrow[n\infty]{} 0$$

- Cauchy reals form a setoid
- Arithmetic operations are morphisms
- Properties of ordered fields hold

• The primitive notion is apartness: $\bar{x} \neq \bar{y}$

•
$$x \equiv y$$
 is defined by $\neg \bar{x} \neq \bar{y}$

• It is not true that $\neg \bar{x} \equiv \bar{y} \Rightarrow \bar{x} \neq \bar{y}$

Apartness is more informative than equality.

The sum of \bar{x} and \bar{y} is given by:

- the sequence $(x_i + y_i)_i$
- the convergence modulus $\varepsilon \mapsto \max\left(m_x\left(\frac{\varepsilon}{2}\right), m_y\left(\frac{\varepsilon}{2}\right)\right)$

Reciprocal of a Cauchy real

To produce the reciprocal of \bar{x} , we need to bound

$$\left|\frac{1}{x_n}-\frac{1}{x_m}\right|$$

with some Cauchy modulus.

$$\left|\frac{1}{x_n} - \frac{1}{x_m}\right| = \left|\frac{x_m - x_n}{x_n x_m}\right|$$

 $\Rightarrow \text{ It suffices to bound } x_n \text{ below.}$ $\Rightarrow \text{ It suffices to have a proof of } \bar{x} \neq 0$ $\underbrace{\text{inv_creal}}_{\text{forall } x} : \text{ creal } -> (x != 0) -> \text{ creal}$ We define the type <u>algcreal</u> of algebraic Cauchy reals:

- A Cauchy real \bar{x}
- A monic polynomial $P \in \mathbb{Q}[X]$ such that $P(\bar{x}) \equiv 0$

Properties of algebraic Cauchy reals

- Comparison becomes decidable (thanks to the polynomial)
- We translate all the operations from Cauchy reals
- $\rightarrow\,$ We need to rebuild a new polynomial for each operation (thanks to the computation of a resultant).

Computation of the subtraction

Let
$$x = (\bar{x}, P)$$
 and $y = (\bar{y}, Q)$ two algebraic
Cauchy reals.
The subtraction $x - y$ is given by $(\bar{x} - \bar{y}, R)$ with

$$R(Y) = \operatorname{Res}_X \left(P(X+Y), Q(X) \right)$$

★ ∃ → ★ ∃

Lemma <u>neq_ltVgt</u> (x y : creal) : x != y -> $\{x < y\} + \{y < x\}.$

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ∽ � � �

$$x \equiv y$$
 is equivalent to $x - y \equiv 0$
 \Rightarrow We study $(\bar{x}, P) \equiv 0$

▲御▶ ▲ 臣▶ ▲ 臣▶

э

We study $(\bar{x}, P) \equiv 0$ by induction on the degree of *P*.

- either X $\not\mid P$ then $P(\bar{x})
 eq 0$ and $\bar{x}
 eq 0$
- or there exists Q such that P = QX and $Q(\bar{x}) \equiv 0$ or $X(\bar{x}) \equiv 0$
 - in the first case, we recur using Q
 - $\, \bullet \,$ in the second case, we have exactly $\bar{x} \equiv 0$

Key lemma

Lemma poly_mul_creal_eq0 P Q x : P.[x] * Q.[x] == 0 -> {P.[x] == 0} + {Q.[x] == 0}.

Ideas :

- reduce to P and Q coprime
- there exists polynomials U and V, such that UP + VQ = 1.
- for big enough values of n, $U(x_n)P(x_n) + V(x_n)Q(x_n) > \frac{1}{2}$

Reciprocal of an algebraic Cauchy real

Reciprocal is now a total unary operator algcreal. (No apartness proof is required anymore)

Definition <u>inv_algcreal</u>

(x : algcreal) : algcreal :=
match eq_algcreal_dec x (cst_algcreal 0)
with

end.

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties Ordered field
- The intermediate value property for polynomials

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties Ordered field
- The intermediate value property for polynomials

We represent an algebraic thanks to:

- A polynomial from $\mathbb{Q}[X] \{0\}$
- A root selection method (interval, approximation, ...)

We define the type <u>algdom</u> of the algebraic real domain.

- A monic polynomial $P \in \mathbb{Q}[X]$
- An interval [c r, c + r] such that

P changes sign and is monotone

We define the type <u>algdom</u> of the algebraic real domain.

- A monic polynomial $P \in \mathbb{Q}[X]$
- An interval [c r, c + r] such that

P changes sign

and built such that P is monotone

Encoding algebraic Cauchy reals

We built an encoding and a decoding function:

- <u>to_algdom</u>: algcreal -> algdom
- to_algcreal: algdom -> algcreal

Which mean they satisfy:

forall x, to_algcreal (to_algdom x) == x

The decoding function proceeds by dichotomy:

Given (P, [c - r, c + r]) we construct the algebraic Cauchy real (\bar{x}, P) , where x_n are rationals recursively defined as:

Given (\bar{x}, P) we construct a pair (P, [a, b]) such that:

- *P* is square free
- P is monotone on [a, b]

We trivial deduce operations of algdom from those of algcreal:

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties Ordered field
- The intermediate value property for polynomials

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties Ordered field
- The intermediate value property for polynomials

eq_algdom (again noted ==) is an decidable equivalence relation on a countable type.

- eq_algdom (again noted ==) is an decidable equivalence relation on a countable type.
- \Rightarrow We can take the effective quotient of algdom by this equivalence.

- eq_algdom (again noted ==) is an decidable equivalence relation on a countable type.
- \Rightarrow We can take the effective quotient of algdom by this equivalence.
- ⇒ This gives the type <u>realalg</u> of exact real algebraic numbers.

If T is countable and P : T \rightarrow Prop is decidable, there existe a unique-choice function:

xchoose : (exists x : T, P x) -> T

"Inlined" construction of realalg

Choice of a canonical element : ((P y):= (fun x => y == x)) Lemma exists_eq (y : algdom) : exists x : algdom, y == x Definition canon (y : algdom) = xchoose (exists_eq y)

Definition of algebraics

Definition realalg :=

 ${x : algdom | canon x == x}$

Structure of realalg

- We transfer the comparison and the arithmetic operations from algdom to realalg
 - We already know that they are morphisms for the algdom setoid
 - Transfering the equality decision procedure gives a relation that reflects Leibniz equality
- We transfer the properties of operations (deduced from algcreal)

Structure of realalg

- We transfer the comparison and the arithmetic operations from algdom to realalg
 - We already know that they are morphisms for the algdom setoid
 - Transfering the equality decision procedure gives a relation that reflects Leibniz equality
- We transfer the properties of operations (deduced from algcreal)
- ⇒ realalg has a real closed field structure with decidable comparison

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties Ordered field
- The intermediate value property for polynomials

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties Ordered field
- The intermediate value property for polynomials

- Not appropriate for efficient computation (naive algorithms on naive structures)
- Aims at performing constructive proofs:
 - by providing an implementation to the real closed field structure
 - for proof requiring only reals that are algebraic
 - to help the formalization of an efficient representation

Conclusion

Three representations

- A representation to write algorithms : algcreal
- A intermediate encoding : algdom
- A "proof-mode" representation : realalg

Future work :

- Complex algebraics (extension by *i*)
- An efficient implementation: a <u>realalg_eff</u> structure which reflects realalg, and the associated operations

Thanks for your attention

Questions ?

伺 ト イヨト イヨト