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Why formalise real algebraic numbers ?

Subset of real numbers with decidable equality

Countable

Instance of real closed field

Useful in the formalisation of Feit-Thompson
theorem (Mathematical Components project)
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What are real algebraic numbers ?

Real algebraic numbers are real roots of polynomials
with coefficients in Q.
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What do we want to know about it ?

Comparison (equality, ordering)

Arithmetic operations and their properties
(ordered field)

Intermediate value theorem for polynomials
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“Top-down”approach

start with a notion of real numbers

restrict it to roots of polynomials with
coefficients in Q
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Cauchy reals

Representation :

a sequence (xn)n∈N
a convergence modulus m : Q→ N
such that : ∀ε i j , m(ε) < i , j → |xi − xj | < ε
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the theory of Cauchy reals

Definition of the equality ≡ (not decidable)

x̄ ≡ ȳ ⇐⇒ |xn − yn| −−→
n∞

0

Setoid property of Cauchy reals

Definition and morphism property of arithmetic
operations

Property of operations (basically field
properties)

Cyril Cohen Construction of real algebraic numbers in Coq



“Top-down” representation of algebraics

The type algcreal of algebraic Cauchy reals is
given by:

a Cauchy real x̄

a polynomial P ∈ Q[X ] such that P(x̄) ≡ 0
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Properties of algebraic Cauchy reals

Comparison is now decidable (thanks to the
additional information given by the polynomial)

We can define all the operations using the ones
on Cauchy reals (and constructing the
appropriate polynomials)
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Issues with this representation

The setoid of algebraic Cauchy reals represents the
set of real algebraic numbers.
But:

No (direct) evidence that the underlining “set”
is countable

No evidence that we can get a datatype which
elements represent distinct algebraic numbers.
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“Bottom-up” representation

A pair of:

a polynomial of Q[X ]

some way to select a precise root (interval,
approximation, ...)
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Our selection method

The type algdom representing the “algebraic
numbers domain” is definied by a pair:

polynomial P ∈ Q[X ]

interval [c − r , c + r ] such that P is monotone
and change sign
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Equivalence of representations

We build :

to_algcreal: algdom -> algcreal

to_algdom: algcreal -> algdom

Such that
forall x, to_algcreal (to_algdom x) == x
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Porting operations to the“algebraic
numbers domain”

Operations on algdom are derived from algcreal:

eq_algdom x y := (eq_algcreal

(to_algcreal x)(to_algcreal y))

add_algdom x y := to_algdom (add_algcreal

(to_algcreal x)(to_algcreal y))
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Quotient of algdom

eq_algdom is a decidable equivalence on a
countable type

⇒ We can take the effective quotient type of
algdom by this equivalence.

⇒ This defines the type realalg of exact
algebraic numbers
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Structure of realalg

Transfer operations from algdom to realalg

Transfer their properies (derived from
algcreal)

⇒ realalg has a structure of real closed field
with decidable comparison

Cyril Cohen Construction of real algebraic numbers in Coq



Structure of realalg

Transfer operations from algdom to realalg

Transfer their properies (derived from
algcreal)

⇒ realalg has a structure of real closed field
with decidable comparison

Cyril Cohen Construction of real algebraic numbers in Coq



Practical use

This structure is not designed for efficient
computation.
Its aim is to make constructive proofs:

- to implement the real closed field interface
- to help certifying an efficient implementation
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Conclusion

We used:

One representation for computation: algcreal

One representation to hold data: algdom

Future work:

Complex algebraic numbers (extension with i)
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