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Examples of quotient

Z = N ∗ N/equivZ
equivZ x y := (x.1 + y.2 = y.1 + x.2)

Q = Z ∗ Z∗/equivQ
equivQ x y := (x.1 * y.2 = y.1 * x.2)

F = D ∗ D∗/equivF
equivF m n := (x.1 * y.2 = y.1 * x.2)

Setoid/ ≡

Original motivation for this work:

algebraic numbers for Feit Thompson.
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Why forming a quotient type?

Context: Intensional Type Theory (here Coq)

Main goal: get Leibniz equality in Type Theory.

Because it is substitutive in any context:

eq_rect :

forall (A : Type) (x : A) (P : A -> Type),

P x -> forall y : A, x = y -> P y.
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What is this work about?

It is not about

category theory,

adding quotient types to the meta theory of Coq,

giving a general axiomatization of quotients.

It is about a framework usable in practice for our
applications (mainly discrete algebra), without
modifying Coq.
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An abstraction layer

Operations and properties on the Quotient.

addZC : forall x y z : Z,

x +Z (y +Z z) = (x +Z y) +Z z

↑
addNNC : forall m n p : N ∗ N,
equivZ (m +N*N (n +N*N p)) ((m +N*N n) +N*N p)

(where equivZ x y := (x.1 + y.2 = y.1 + x.2))

Low level operations and properties.
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Equality modulo

Notation "x = y %[mod Q]" := \pi_Q x = \pi_Q y.

where \pi_Q is the canonical surjection in the quotient
type Q.
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Quotient primitives

x1
x2

xn

y1

ym

Base Type T

x

y

Quotient Q

canonical surjection to x

canonical surjection to y

representative of x

representative of y

Figure : Quotients without equivalence relation
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Quotient interface

Record quot_class_of (T Q : Type) := QuotClass{

repr : Q -> T;

pi : T -> Q;

reprK : forall x : Q, pi (repr x) = x

}.

Record quotType (T : Type) := QuotType {

quot_sort :> Type;

quot_class : quot_class_of T quot_sort

}

An instance of the quotient interface is called a quotient
structure. (Altenkirch et al.: definable quotient)
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Quotient theory vs. Quotient construction

Outline:
1 Quotient theory

(embedding, lifting and automated translation)
2 Quotient construction

(on choice types, on discrete algebraic structures)
3 Applications
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Morphism lifting

Possible definition:

x +Z y := \pi (repr x +N*N repr y)

x <=Z y := (repr x <=N*N repr y)

Possible specification:

forall m n, \pi (m +N*N n) = \pi m +Z \pi n

forall m n, (\pi m <=Z \pi n) = (m <=N*N n)

(morphism properties)

forall m n, (m = n %[mod Z]) = (equivZ m n)
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Translation from Q to T

1 elimintation principle:

quotW : (forall a : T, P (\pi a)) ->

forall x : Q, P x.

2 pushing \pi outwards,

\pi m + (\pi n + \pi p) =

(\pi m + \pi n) + \pi p

↓

\pi (m + (n + p)) = \pi ((m + n) + p).

Cyril Cohen (University of Gothenburg) Pragmatic Quotient Types in Coq July 24, 2013 12 / 31



Translation from Q to T

1 elimintation principle:

quotW : (forall a : T, P (\pi a)) ->

forall x : Q, P x.

2 pushing \pi outwards,

\pi m + (\pi n + \pi p) =

(\pi m + \pi n) + \pi p

↓

m + (n + p) = (m + n) + p %[mod Z].

Cyril Cohen (University of Gothenburg) Pragmatic Quotient Types in Coq July 24, 2013 12 / 31



Automated translation

Record equal_to Q u := EqualTo

{equal_val : Q; _ : u = equal_val}.

(equal_to u) is the type of all elements of Q that are
equal to (u : Q).
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Morphism specification

Lemma eq_to_addZ (m n : N * N)

(x : equal_to (\pi m))

(y : equal_to (\pi n)) :

equal_to (\pi (m +N*N n)) :=

EqualTo (x +Z y)

(_ : \pi (m +N*N n) = x +Z y).
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Term inference

Example of term translation using

Lemma equalE (Q : Type) (u : Q)

(m : equal_to u) : equal_val m = u.

on \pi m + (\pi n + \pi p).

Unification problem

\pi m + (\pi n + \pi p) ≡ equal_val ?(equal_to ?)

Solution

\pi m + (\pi n + \pi p) ≡
equal_val eq_to_addZ (equal_to (\pi (m + (n + p))))
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Unification flow

\pi m + (\pi n + \pi p) ≡ equal_val ?(equal_to ?)
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Unification flow
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Unification flow

\pi m + (\pi n + \pi p) ≡
equal_val eq_to_addZ (equal_to (\pi (?m + ?n)))

\pi m ≡ equal_val ?x(equal_to ?)

\pi n + \pi p ≡ equal_val ?y(equal_to ?)
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Unification flow

\pi m + (\pi n + \pi p) ≡
equal_val eq_to_addZ (equal_to (\pi (m + ?n)))

\pi m ≡ equal_val eq_to_pi(equal_to (\pi m))

\pi n + \pi p ≡ equal_val ?y(equal_to ?)
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When not use quotients?

Quotient are not a replacement for setoids.

Example: associate polynomials.

Definition eqp p q := (p %| q) && (q %| p).

Notation "p %= q" := (eqp p q).

Compatible with division (_ %| _) and (_ %= _),

compatible with multiplication,

not compatible with addition.
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In an ideal system

An impredicative definition.

Definition is_class (C : T -> Prop) : Prop :=

exists x, forall y, C y <-> R x y.

Definition Q : Type := {C : pred T | is_class C}

One element by equivalence class?

First projection: functional extensionality.

Second projection: proof irrelevance (for Prop).
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Back to Coq ≤ 8.4, without axioms

Particular case:

a decidable equivalence equiv : T -> T -> bool

and

either

a countable type,

a choice type

a type encodable to a choice type.

This suffices to select a unique element in each
equivalence class.
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Applications

Fraction field: (D ∗ D∗)/(λx , y . x1y2 ≡ y1x2),

Real algebraic numbers:∑
x :R

∑
P:Q[X ]

(P(x) ≡R 0)

 / ≡R .

Multivariate polynomials

Elliptic curves (Bartzia and Strub)

Field extensions (O’Connor)

Countable algebraic closure (Gonthier)
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Related work

In intensional type theory:

Hoffman (PhD Thesis),

Chicli et al. (mathematical quotients in TT),

Courtieu (normalized types),

Voevodsky’s UF and HoTT (cf HoTT book),

Altenkirch et al. (definable quotients).

Elsewhere (Isabelle/HOL, . . .)
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Conclusion

A framework to both use and construct quotients.

Deals with quotients in discrete algebra.

Successfully used in the Mathematial Components
project.

Future work:

Generalize to encompass quotients without repr.

Elimination of quotient and \pi in one go?
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Thank you for your attention.
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HIT Quotients

From the HoTT book (homotopytypetheory.org/book/):
the higher inductive type A/R generated by

A function q : A→ A/R ;

For each a, b : A such that R(a, b), an equality
q(a) = q(b); and

The 0-truncation constructor: for all x , y : A/R and
r , s : x = y , we have r = s.
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Choice types

If a type T has a choice structure, there exists an operator

xchoose : forall P : T -> bool,

(exists y : T, P y) -> T.

which given a proof of exists y, P y

returns an element z, such that z is the same if xchoose
is given a proof of exists y, Q y when P and Q are
logically equivalent.
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Xchoosing a canonical representative

Lemma equiv_exists (x : T) :

exists y, (equiv x) y.

(equiv x) is the equivalence class of x.

Definition canon (x : T) :=

xchoose (equiv_exists x).

Choice of a unique element in (equiv x).
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Construction of the quotient

Record equiv_quot := EquivQuot {

erepr : T;

erepr_canon : canon erepr == erepr

}.

Cyril Cohen (University of Gothenburg) Pragmatic Quotient Types in Coq July 24, 2013 30 / 31



Choice types (sordid details)

Georges Gonthier’s definition:

Record Choice.mixin_of T := Choice.Mixin {

find : pred T -> nat -> option T;

_ : forall P n x,

find P n = Some x -> P x;

_ : forall P : pred T,

(exists x, P x) -> exists n, find P n;

_ : forall P Q : pred T,

P =1 Q -> find P =1 find Q

}.
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