Construction of Real Algebraic Numbers in Coq

Cyril Cohen

INRIA Saclay — Île-de-France LIX École Polytechnique INRIA Microsoft Research Joint Centre cohen@crans.org

August 13, 2012

Why algebraic numbers?

- ullet Field strictly between ${\mathbb Q}$ and ${\mathbb R}$
- Instance of real closed field (RCF), countable and with decidable comparison
- Useful in the formalization of the odd order theorem (Mathematical Components project)
- Interesting object in real algebraic geometry and computer algebra

Usual definition of algebraic reals

Algebraic numbers are roots of non null polynomials with coefficients in $\mathbb Q$

Classically:

$$\{x \in \mathbb{R} \mid \exists P \in \mathbb{Q}[X] - \{0\}, P(x) = 0\}$$

Wishlist

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties
 Ordered field
- The intermediate value property for polynomials

"Top-down" approach

- We start from real numbers.
- We restrict them to roots of polynomials with coefficients in

Cauchy reals

Representation of a Cauchy real \bar{x}

- A sequence $(x_n)_{n\in\mathbb{N}}$
- A convergence modulus $m_x : \mathbb{Q} \to \mathbb{N}$ such that : $\forall \varepsilon \ i \ j, \ m_x(\varepsilon) < i, j \to |x_i - x_j| < \varepsilon$

The theory of Cauchy reals

• A definition of \equiv (non decidable)

$$\bar{x} \equiv \bar{y} \iff |x_n - y_n| \xrightarrow[n\infty]{} 0$$

- Cauchy reals form a setoid
- Arithmetic operations are morphisms
- Properties of ordered fields hold

Apartness versus Equality

- The primitive notion is apartness: $\bar{x} \neq \bar{y}$
- $x \equiv y$ is defined by $\neg \bar{x} \neq \bar{y}$
- It is not true that $\neg \bar{x} \equiv \bar{y} \Rightarrow \bar{x} \neq \bar{y}$

Apartness is more informative than equality.

Sum of two Cauchy reals

The sum of \bar{x} and \bar{y} is given by:

- the sequence $(x_i + y_i)_i$
- the convergence modulus

$$\varepsilon \mapsto \max\left(m_{x}\left(\frac{\varepsilon}{2}\right), m_{y}\left(\frac{\varepsilon}{2}\right)\right)$$

Reciprocal of a Cauchy real

To produce the reciprocal of \bar{x} , we need to bound

$$\left|\frac{1}{x_n}-\frac{1}{x_m}\right|$$

with some Cauchy modulus.

$$\left|\frac{1}{x_n} - \frac{1}{x_m}\right| = \left|\frac{x_m - x_n}{x_n x_m}\right|$$

- \Rightarrow It suffices to bound x_n below.
- \Rightarrow It suffices to have a proof of $\bar{x} \neq 0$

inv_creal :

forall $x : creal \rightarrow (x != 0) \rightarrow creal$

"Top-down" representation

We define the type <u>algoreal</u> of algebraic Cauchy reals:

- A Cauchy real \bar{x}
- A monic polynomial $P \in \mathbb{Q}[X]$ such that $P(\bar{x}) \equiv 0$

Properties of algebraic Cauchy reals

- Comparison becomes decidable (thanks to the polynomial)
- We translate all the operations from Cauchy reals
- → We need to rebuild a new polynomial for each operation (thanks to the computation of a resultant).

Computation of the subtraction

Let $x = (\bar{x}, P)$ and $y = (\bar{y}, Q)$ two algebraic Cauchy reals.

The subtraction x - y is given by $(\bar{x} - \bar{y}, R)$ with

$$R(Y) = \operatorname{Res}_X (P(X + Y), Q(X))$$

Comparison

```
Lemma \underline{\text{neq\_ltVgt}} (x y : creal) : x != y -> \{x < y\} + \{y < x\}.
```

Equality test

$$x \equiv y$$
 is equivalent to $x - y \equiv 0$
 \Rightarrow We study $(\bar{x}, P) \equiv 0$

Equality test to 0

We study $(\bar{x}, P) \equiv 0$ by induction on the degree of P.

- either $X \not|P$ then $P(\bar{x}) \neq 0$ and $\bar{x} \neq 0$
- or there exists Q such that P=QX and $Q(\bar{x})\equiv 0$ or $X(\bar{x})\equiv 0$
 - in the first case, we recur using Q
 - ullet in the second case, we have exactly $ar x\equiv 0$

Key lemma

Ideas:

- reduce to P and Q coprime
- there exists polynomials U and V, such that UP + VQ = 1.
- for big enough values of n, $U(x_n)P(x_n) + V(x_n)Q(x_n) > \frac{1}{2}$

Reciprocal of an algebraic Cauchy real

Reciprocal is now a total unary operator algoreal. (No apartness proof is required anymore)

```
Definition inv_algcreal
  (x : algcreal) : algcreal :=
match eq_algcreal_dec x (cst_algcreal 0)
  with
  l left x_eq0 => cst_algcreal 0
  | right x_neq0 => @AlgCReal
    (@inv_creal _ x_neq0) _
    (@monic_annul_creal )
    (@root_inv_algcreal _ x_neq0)
end.
```

Wishlist

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties
 Ordered field
- The intermediate value property for polynomials

Wishlist

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties
 Ordered field
- The intermediate value property for polynomials

"Bottom-up" approach

We represent an algebraic thanks to:

- A polynomial from $\mathbb{Q}[X] \{0\}$
- A root selection method (interval, approximation, ...)

Choice of a selection method

We define the type <u>algdom</u> of the algebraic real domain.

- A monic polynomial $P \in \mathbb{Q}[X]$
- An interval [c r, c + r] such that P changes sign and is monotone

Choice of a selection method

We define the type <u>algdom</u> of the algebraic real domain.

- A monic polynomial $P \in \mathbb{Q}[X]$
- An interval [c r, c + r] such that P changes sign

and built such that P is monotone

Encoding algebraic Cauchy reals

We built an encoding and a decoding function:

- to_algdom: algcreal -> algdom
- to_algcreal: algdom -> algcreal

Which mean they satisfy:

```
forall x, to_algcreal (to_algdom x) == x
```

Decoding

The decoding function proceeds by dichotomy:

Given (P, [c-r, c+r]) we construct the algebraic Cauchy real (\bar{x}, P) , where x_n are rationals recursively defined as:

- $x_0 = c$
- $x_{n+1} = x_n r2^{-(n+1)}$ if *P* changes sign on $[x_n r2^{-n}, x_n]$
- $x_{n+1} = x_n + r2^{-(n+1)}$ otherwise

Encoding

Given (\bar{x}, P) we construct a pair (P, [a, b]) such that:

- P is square free
- P is monotone on [a, b]

Transfer of the comparison and operators

We trivial deduce operations of algdom from those of algcreal:

```
eq_algdom x y := (eq_algcreal
          (to_algcreal x)(to_algcreal y))
add_algdom x y := to_algdom (add_algcreal
          (to_algcreal x)(to_algcreal y))
```

Wishlist

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties
 Ordered field
- The intermediate value property for polynomials

Wishlist

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties
 Ordered field
- The intermediate value property for polynomials

Quotient of algdom

eq_algdom (again noted ==) is an decidable equivalence relation on a countable type.

Quotient of algdom

- eq_algdom (again noted ==) is an decidable equivalence relation on a countable type.
- ⇒ We can take the effective quotient of algdom by this equivalence.

Quotient of algdom

- eq_algdom (again noted ==) is an decidable equivalence relation on a countable type.
- ⇒ We can take the effective quotient of algdom by this equivalence.
- ⇒ This gives the type <u>realalg</u> of exact real algebraic numbers.

About the choice

If T is countable and P: T -> Prop is decidable, there existe a unique-choice function:

```
xchoose : (exists x : T, P x) -> T
```

"Inlined" construction of realalg

```
Choice of a canonical element:
((P y) := (fun x => y == x))
Lemma exists_eq (y : algdom) :
    exists x : algdom, y == x.
Definition canon (y : algdom) =
    xchoose (exists_eq y).
Definition of algebraics
Definition realalg :=
```

 ${x : algdom | canon x == x}.$

Structure of realalg

- We transfer the comparison and the arithmetic operations from algdom to realalg
 - We already know that they are morphisms for the algdom setoid
 - Transfering the equality decision procedure gives a relation that reflects Leibniz equality
- We transfer the properties of operations (deduced from algcreal)

Structure of realalg

- We transfer the comparison and the arithmetic operations from algdom to realalg
 - We already know that they are morphisms for the algdom setoid
 - Transfering the equality decision procedure gives a relation that reflects Leibniz equality
- We transfer the properties of operations (deduced from algcreal)
- ⇒ realalg has a real closed field structure with decidable comparison

Wishlist

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties
 Ordered field
- The intermediate value property for polynomials

Wishlist

- A Comparison algorithm (equality + order)
- The equality decision procedure reflects Leibniz equality
- The type (or the setoid) is countable
- Arithmetic operations + their properties
 Ordered field
- The intermediate value property for polynomials

Practical use

- Not appropriate for efficient computation (naive algorithms on naive structures)
- Aims at performing constructive proofs:
 - by providing an implementation to the Real Closed Field structure
 - for proof requiring only reals that are algebraic
 - to help the formalization of an efficient representation

Conclusion

Three representations

- A representation to write algorithms: algcreal
- A intermediate encoding : algdom
- A "proof-mode" representation : realalg

Future work:

- Complex algebraics (extension by *i*)
- An efficient implementation: a <u>realalg_eff</u> structure which reflects realalg, and the associated operations

The End

Thanks for your attention

Questions?