Formalized algebraic numbers: construction and first-order theory

Cyril Cohen

Inria Saclay - Île-de-France
LIX École Polytechnique
Inria Microsoft Research Joint Centre
cohen@crans.org
November 20, 2012

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

Garfield is a cat
all cats have four legs
Garfield has four legs

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

Garfield is a cat
all cats have four legs
Garfield has four legs

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

Garfield is a cat
for all x which is a cat, x has four legs
Garfield has four legs

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

Garfield is a cat
for all x which is a cat, x has four legs
Garfield has four legs

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

Garfield : cat
for all x : cat, x has four legs
Garfield has four legs

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

Garfield : cat
for all x : cat, x has four legs
Garfield has four legs

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

Garfield : cat
$\forall x$: cat, x has four legs
Garfield has four legs

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

Garfield : cat
$\forall x$: cat, x has four legs
Garfield has four legs

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

> | Garfield : cat |
| :--- |
| $\forall x:$ cat, $P(x)$ |
| $P($ Garfield $)$ |

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

> | Garfield: cat |
| :--- |
| $\forall x:$ cat, $P(x)$ |
| $P($ Garfield $)$ |

Formalization of mathematics

Mathematics is a game: mathematicians must follow "rules" to convince their colleagues.
E.g.

$$
\begin{aligned}
& t: T \\
& \forall x: T, P(x) \\
& \hline P(t)
\end{aligned}
$$

Paper proof

Computer checked proof

Feit-Thompson Theorem

Statement

Finite groups of odd order are solvable

- First proof: Feit and Thompson (1962)

Feit-Thompson Theorem

Statement

Finite groups of odd order are solvable

- First proof: Feit and Thompson (1962)
- Revised:

Bender and Glauberman (1995)
Peterfalvi (2000)

Feit-Thompson Theorem

Statement

Finite groups of odd order are solvable

- First proof: Feit and Thompson (1962)
- Revised:

Bender and Glauberman (1995)
Peterfalvi (2000)

- Computer checked: Mathematical Components (September 2012)

Mathematical Components project files

My contributions to the project

Complex numbers in Feit-Thompson

Theorem

$$
\begin{gathered}
\chi_{g}: \mathbb{C} \\
\left\|\chi_{g}\right\|: \mathbb{R} \\
\left\|\chi_{g}\right\|>\frac{8}{15}>\frac{1}{2}
\end{gathered}
$$

Outline

reals
complex := reals [i]
\Leftrightarrow FTA

Outline

algebraic reals
algebraic complex $:=$ algebraic reals [$i]$
\Leftrightarrow FTA (Gauss, Laplace, Derksen, CC and Coquand)

Outline

algebraic reals
algebraic complex := algebraic reals [i]
\Leftrightarrow FTA (Gauss, Laplace, Derksen, CC and
Coquand)

- Factoring the theory of structures with order and norm
- Construction of real algebraic numbers
- The first-order theory of real and algebraic numbers is decidable (through quantifier elimination).

Outline

algebraic reals
algebraic complex := algebraic reals [i]
\Leftrightarrow FTA (Gauss, Laplace, Derksen, CC and
Coquand)

- Factoring the theory of structures with order and norm
- Construction of real algebraic numbers
- The first-order theory of real and algebraic numbers is decidable (through quantifier elimination).

Interfaces

Why these interfaces ?

Goal:

- Factor and organize the theory of numbers from \mathbb{Z} to algebraic numbers.
- Deal with the partial order complex algebraic numbers.
How?

Why these interfaces?

Goal:

- Factor and organize the theory of numbers from \mathbb{Z} to algebraic numbers.
- Deal with the partial order complex algebraic numbers.
How?
- Reuse the packed class methodolgy (Garillot et al.)
- Based on the norm, not only \leq.
- Instances: integers, rationals, real and algebraic numbers.

Outline

algebraic reals
algebraic complex := algebraic reals [i]
\Leftrightarrow FTA (Gauss, Laplace, Derksen, CC and
Coquand)

- Factoring the theory of structures with order and norm
- Construction of real algebraic numbers
- The first-order theory of real and algebraic numbers is decidable (through quantifier elimination).

What are algebraic numbers?

(Complex) algebraic numbers are

- the complex roots of polynomials with coefficients in \mathbb{Q}.

Real algebraic numbers are:
the real roots of polynomials with coefficients in \mathbb{Q}.
Examples:

What are algebraic numbers?

(Complex) algebraic numbers are

- the complex roots of polynomials with coefficients in \mathbb{Q}.

Real algebraic numbers are:
the real roots of polynomials with coefficients in \mathbb{Q}.
Examples:

What are algebraic numbers?

(Complex) algebraic numbers are

- the complex roots of polynomials with coefficients in \mathbb{Q}.

Real algebraic numbers are:
the real roots of polynomials with coefficients in \mathbb{Q}.
Examples:

- $43, \frac{1}{3}, \sqrt{2}, \sqrt[5]{21}$ are real algebraic numbers

What are algebraic numbers?

(Complex) algebraic numbers are

- the complex roots of polynomials with coefficients in \mathbb{Q}.

Real algebraic numbers are:
the real roots of polynomials with coefficients in \mathbb{Q}.
Examples:

- $43, \frac{1}{3}, \sqrt{2}, \sqrt[5]{21}$ are real algebraic numbers
- $i, \sqrt{2}+i \sqrt{5}$ are algebraic

What are algebraic numbers?

(Complex) algebraic numbers are

- the complex roots of polynomials with coefficients in \mathbb{Q}.

Real algebraic numbers are:
the real roots of polynomials with coefficients in \mathbb{Q}.
Examples:

- 43, $\frac{1}{3}, \sqrt{2}, \sqrt[5]{21}$ are real algebraic numbers
- $i, \sqrt{2}+i \sqrt{5}$ are algebraic
- π and e are not algebraic

Representations of real algebraic numbers

$$
x \in \mathbb{R}, P \in \mathbb{Q}[X]
$$

$$
P \in \mathbb{Q}[X],[a, b]
$$

(ح) operations
(reconstruction of polynomial using resultant)

* countable type

Construction of real algebraic numbers

Goal:

- A countable type,
- Decidability of atoms ($=$ and \leq),
- RCF (intermediate value theorem for polynomials). How?

Construction of real algebraic numbers

Goal:

- A countable type,
- Decidability of atoms ($=$ and \leq),
- RCF (intermediate value theorem for polynomials). How?
- Both representations
- A formalization of Cauchy reals
- A quotient of type

Construction of real algebraic numbers

Goal:

- A countable type,
- Decidability of atoms (= and \leq),
- RCF (intermediate value theorem for polynomials). How?
- Both representations
- A formalization of Cauchy reals
- A quotient of type

References: C.C., ITP 2012

Cauchy reals

Definition

$$
\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}} \quad \text { and } \quad \mu_{x}: \mathbb{Q} \rightarrow \mathbb{N}
$$

such that $\forall \varepsilon>0, \forall i, j \geq \mu_{x}(\varepsilon),\left|x_{i}-x_{j}\right| \leq \varepsilon$

- Formalized just what was needed
- Some $\varepsilon-\delta$ reasoning to formalize

Cauchy reals

Definition

$$
\left(x_{n}\right)_{n \in \mathbb{N}} \in \mathbb{Q}^{\mathbb{N}} \quad \text { and } \quad \mu_{x}: \mathbb{Q} \rightarrow \mathbb{N}
$$

such that $\forall \varepsilon>0, \forall i, j \geq \mu_{x}(\varepsilon),\left|x_{i}-x_{j}\right| \leq \varepsilon$

- Formalized just what was needed
- Some $\varepsilon-N$ reasoning to formalize

Big enough

Example

$$
\text { if } x_{n} \rightarrow a \text { and } y_{n} \rightarrow b \text {, then } x_{n} y_{n} \rightarrow a b
$$

Suppose $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$.
Let ε be a positive rational. Show

$$
\left|x_{n} y_{n}-a b\right| \leq \varepsilon
$$

Big enough

Example

$$
\text { if } x_{n} \rightarrow a \text { and } y_{n} \rightarrow b \text {, then } x_{n} y_{n} \rightarrow a b
$$

Suppose $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$.
Let ε be a positive rational. Show

$$
\left|x_{n} y_{n}-x_{n} b\right|+\left|x_{n} b-a b\right| \leq \varepsilon
$$

Big enough

Example

$$
\text { if } x_{n} \rightarrow a \text { and } y_{n} \rightarrow b \text {, then } x_{n} y_{n} \rightarrow a b
$$

Suppose $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$.
Let ε be a positive rational. Show

$$
\left|x_{n}\right|\left|y_{n}-b\right|+\left|x_{n}-a\right||b| \leq \varepsilon
$$

Big enough

Example

$$
\text { if } x_{n} \rightarrow a \text { and } y_{n} \rightarrow b \text {, then } x_{n} y_{n} \rightarrow a b
$$

Suppose $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$.
Let ε be a positive rational. Show

$$
(1+|a|)\left|y_{n}-b\right|+\left|x_{n}-a\right|(1+|b|) \leq \varepsilon
$$

because

$$
\left|x_{n}-a\right| \leq 1
$$

Big enough

Example

$$
\text { if } x_{n} \rightarrow a \text { and } y_{n} \rightarrow b \text {, then } x_{n} y_{n} \rightarrow a b
$$

Suppose $x_{n} \rightarrow a$ and $y_{n} \rightarrow b$.
Let ε be a positive rational. Show

$$
\left|y_{n}-b\right| \leq \frac{\varepsilon}{2(1+|a|)} \quad \text { and } \quad\left|x_{n}-a\right| \leq \frac{\varepsilon}{2(1+|b|)}
$$

Big enough

Goal:

- Do like in paper proofs. How?

Usage:

Big enough

Goal:

- Do like in paper proofs.

How?

- Infer the n a posteriori.
- Based on Coq existential variables.

Usage:

Big enough

Goal:

- Do like in paper proofs.

How?

- Infer the n a posteriori.
- Based on Coq existential variables.

Usage:

- More than 100 occurences in 3163 lines of code.

Quotient types

$$
\text { Type } / \equiv \longrightarrow \text { Type }
$$

Difficult problem in Constructive TT (Hoffman, Chicli at al., Courtieu).
\Rightarrow We are interested in a particular case.

Particular case for quotienting

Conditions:

- Decidable equivalence.
- Countable type.

Consequence: possibility to select a unique element in each equivalence class.

Theory of quotient types

- Inference.
- Preservation of the ring structure while quotienting by an ideal.

Outline

algebraic reals
algebraic complex $:=$ algebraic reals [i]
\Leftrightarrow FTA (Gauss, Laplace, Derksen, CC and
Coquand)

- Factoring the theory of structures with order and norm
- Construction of real algebraic numbers
- The first-order theory of real and algebraic numbers is decidable (through quantifier elimination).

Definition of Real Closed Field

Field + order + intermediate value property for polynomials

Real algebraic numbers form a real closed field
Real algebraic numbers implement the interface of real closed field

Definition of Real Closed Field

Field + order + intermediate value property for polynomials

Real algebraic numbers form a real closed field
Real algebraic numbers implement the interface of real closed field

The theory of Real Closed Fields

- Rolle, MVT, ...
- Infrastructure for intervals (membership, inclusion, splitting, ...)
- Neighborhoods

Classical reasoning on Real Closed Fields

- Decidability of the atoms ($=$ and \leq)
\Rightarrow Decidability of simple formulas

Classical reasoning on Real Closed Fields

- Decidability of the atoms ($=$ and \leq)
\Rightarrow Decidability of simple formulas
- In the litterature, case reasoning on arbitrary formula. e.g. $\exists x, P(x)=0$.
\Rightarrow Classical reasoning

Classical reasoning on Real Closed Fields

- Decidability of the atoms ($=$ and \leq)
\Rightarrow Decidability of simple formulas
- In the litterature, case reasoning on arbitrary formula. e.g. $\exists x, P(x)=0$.
\Rightarrow Classical reasoning
- Unless we can decide the validity of formulas

Quantifier elimination on real closed fields

Tarski (1948)

The first-order theory of real closed fields enjoys quantifier elimination.

Consequences:

- We can decide whether first-order formulas are valid.
- We can perform case analysis on quantifier formulas.

An example

```
R : rcfType
a : R
b : R
c : R
=ニニニニニニニニニニニニニニニニニニニニニ
exists x, a * x ^ 2 + b * x + c = 0
```


An example

```
R : rcfType
a : R
b : R
c : R
=ニニニニニニニニニニニニニニニニニニニニニ
exists x, a * x ^ 2 + b * x + c = 0
－Prove the conclusion
```


An example

R ：rcfType
a ：R
b ：R
c ：R
＝ニニニニニニニニニニニニニニニニニニニニ
exists $\mathrm{x}, \mathrm{a} * \mathrm{x} \wedge 2+\mathrm{b} * \mathrm{x}+\mathrm{c}=0$
－Prove the conclusion
－Provide the witness for x

An example

R : rcfType
a : R
b : R
c : R
======================
exists $\mathrm{x}, \mathrm{a} * \mathrm{x}$ - $2+\mathrm{b} * \mathrm{x}+\mathrm{c}=0$

- Prove the conclusion
- Eliminate the quantifier

An example (continued)

```
R : rcfType
a : R
b : R
c : R
======================
0 <= b ^ 2 - 4 * a * c
```


On Quantifier Elimination in Coq

Goal:

- Case reasoning on first-order formulas for ACF and RCF.
How?
- Deep embedding of first-order logic for RCF and ACF.
- Implement QE procedures and their formal proof.

References: CC and Mahboubi (Calculemus 2010, LMCS 2012).

Conclusion

New infrastructures in Mathematical Components:

- Interface design (Numerics)
- Tools to mechanize tasks (Big enough, intervals, quotients)

Conclusion

New infrastructures in Mathematical Components:

- Interface design (Numerics)
- Tools to mechanize tasks (Big enough, intervals, quotients)
With good infrastructure, fast formalizations:
- Construction of real algebraic numbers (2 weeks)
- Formalization of FTA (2 days)
- Programming and certification of QE on ACF and RCF

Conclusion

New infrastructures in Mathematical Components:

- Interface design (Numerics)
- Tools to mechanize tasks (Big enough, intervals, quotients)
With good infrastructure, fast formalizations:
- Construction of real algebraic numbers (2 weeks)
- Formalization of FTA (2 days)
- Programming and certification of QE on ACF and RCF
Good integration of the tools and the formalizations in the proof of Feit-Thompson Theorem.

Perspectives

- Generalize big enough numbers.
- Providing efficient implementations. Efficient algorithm are proved using naive ones.
\Rightarrow application to fast real algebraic numbers
- An algebraic hierarchy based on types which admit uniqueness of identity proofs.
- Certifying the Cylindrical Algebraic Decomposition.

The end

Thank you for your attention.

