CS 101 Introduction to Computing

Semester – 2014 -15 / II Semester
Units – 2 – 0 – 2 – 3
Pre-requisite – None
Instructors – Sanjay Dhande, Arya Bhattacharyya, Lilian Besson, Vipin K
Tutors – Arya, Lilian, Vipin, Vivek, Kondiah
Computer Graphics & Animation

Systems

- Vector Graphics & Raster Graphics
- Color Graphics, B & W Graphics
- Graphics Programming
- Graphics Engine
- Geometric modeling in graphics
Motion Control & Robotics

- Stepper Motors and Drives
- NC, CNC Drives
- NC, CNC Programming
- Pick, Place operations
- Machine Tools, AGVs, Robots
- Drive controllers
- FANUC controller
- NUMERIQUE controllers
Homework Problems

• Consider a 2-D Cartesian coordinate work space of (-100, 100) to (100, 100)
• Input a point P (x, y) and check if it is IN, ON or OUT of WS
• Input two points P and Q and check if a point A is on RIGHT, LEFT or ON the line PQ
• Circle problem, Triangle problem
• Given K, calculate the sum of the first K odd integers
Consider a 2-D Cartesian coordinate work space (WS) of (x_min, x_max) to (y_min, y_max)

- Input a point P (x, y) and check if it is IN, or OUT of WS
- (x_min < x) and (x_max > x)
- (y_min < y) and (y_max > y)
- Use logical operations for checking
- Write a pseudo-code
Consider a 2-D Cartesian coordinate work space (WS) of \((x_{\text{min}}, x_{\text{max}})\) to \((y_{\text{min}}, y_{\text{max}})\)

- Input point \(P (x_1, y_1)\) and \(Q (x_2, y_2)\). Check if \(P\) and \(Q\) are in WS
- Input \(A (x, y)\)
- Considering a line from \(P\) to \(Q\), check if \(A\) is on RIGHT or LEFT or ON the line \(PQ\)
- Write a pseudo-code
Consider a 2-D Cartesian coordinate work space (WS) of (x_min, x_max) to (y_min, y_max)

• Input point O (x_c, y_c) and r –radius of a circle with O as the center.
• Input a point A (x, y)
• Check if A is INSIDE the circle or OUTSIDE the circle or ON the circle
• Write a pseudo-code
Consider a 2-D Cartesian coordinate work space (WS) of \((x_{\text{min}}, x_{\text{max}})\) to \((y_{\text{min}}, y_{\text{max}})\)

- Input three vertex points of a triangle \(A(-x, -y), B(x, -y)\) and \(C(0, y)\).
- Input a point \(P(x_1, y_1)\).
- Check if \(P\) is INSIDE the triangle or OUTSIDE the triangle or ON the periphery of the triangle.
- Write a pseudo-code.
Homework Problem # 5

• Input an integer K
• Enumerate and print the first K odd integers.
• For example, if K = 5, the answer will be 1, 3, 5, 7, 9
• Write a pseudo-code
Concepts of Structured Programming

- All algorithms will have one entry and one exit point
- All steps can be grouped in the form of constructs in an algorithm
- There are some basic constructs
- Any group or block of instructions will consist of only these constructs
- Repetitive instructions can be designed as subroutines
Construct – Sequence of Statements

- begin
 S1;
 S2;
 ...
 Sn
- end
- Left side is always a variable in S
- Right hand side will be an expression in S
Construct – Conditional statement

- Begin
 - if B then S1
 - else S2
- End
- B is a condition outcome of which is TRUE or FALSE
- S1 is executed if B is TRUE
- S2 is executed if B is FALSE
While B do
begin
 S
end

B is a condition outcome of which is TRUE or FALSE

S is executed if B is true and the loop is repeated

If B is FALSE, the execution comes out
Construct – Input / Read statement

- While B do
 begin
 S
 end
- B is a condition outcome of which is TRUE or FALSE
- S is executed if B is true and the loop is repeated
- If B is FALSE, the execution comes out
While B do
begin
S
end

• B is a condition outcome of which is TRUE or FALSE
• S is executed if B is true and the loop is repeated
• If B is FALSE, the execution comes out
Structured programming is a programming paradigm aimed at improving the clarity, quality, and development time of a computer program by making extensive use of subroutines, block structures and basic constructs.
Thank You!

Visit us at www.mahindraecolecentrale.edu.in

Disclaimer

Mhindra, Ecole Centrale, herein referred to as MEC provide a wide array of presentations and reports, with the contributions of various professionals. These presentations and reports are for informational purposes and private circulation only and do not constitute an offer to buy or sell any securities mentioned therein. They do not purport to be a complete description of the markets conditions or developments referred to in the material. While utmost care has been taken in preparing the above, we claim no responsibility for their accuracy. We shall not be liable for any direct or indirect losses arising from the use thereof and the viewers are requested to use the information contained herein at their own risk. These presentations and reports should not be reproduced, re-circulated, published in any media, website or otherwise, in any form or manner, in part or as a whole, without the express consent in writing of MEC or its subsidiaries. Any unauthorized use, disclosure or public dissemination of information contained herein is prohibited. Unless specifically noted, MEC is not responsible for the content of these presentations and/or the opinions of the presenters. Individual situations and local practices and standards may vary, so viewers and others utilizing information contained within a presentation are free to adopt differing standards and approaches as they see fit. You may not repackage or sell the presentation. Products and names mentioned in materials or presentations are the property of their respective owners and the mention of them does not constitute an endorsement by MEC. Information contained in a presentation hosted or promoted by MEC is provided “as is” without warranty of any kind, either expressed or implied, including any warranty of merchantability or fitness for a particular purpose. MEC assumes no liability or responsibility for the contents of a presentation or the opinions expressed by the presenters. All expressions of opinion are subject to change without notice.