CS 101 Introduction to Computing

Semester – 2014-15 / II Semester
Units – 2 – 0 – 2 – 3
Pre-requisite – None
Instructors – Sanjay Dhande, Arya Bhattacharyya, Lilian Besson, Vipin K
Tutors – Arya, Lilian, Vipin, Vivek, Kondiah
Pioneers of Computer Science
Contributions of Pioneers - I

- A general purpose, programmable machine can be built – a computer
- Any information which can be represented logically by symbols can be processed using programmable machines
- A sequence of instructions can be developed to solve a problem
- Whether a machine can think? – A I
Contributions of Pioneers - II

- Turing Machine – Logical Computing Machine is a theoretical model of a consistent framework for a finite state machine
- Hilbert, Goedel, and Von Neumann complimented the foundation laid out by Turing
- Cryptographical algorithms were useful in illustrating the concepts
Pioneers of Computers
Contributions of Pioneers - III

- Claude Shannon developed the Boolean operations and their equivalent electromechanical circuits
- Von Neumann laid the foundation of design of the first major computer
- John Atanasoff built a major computer using vacuum tubes and other electrical devices
Pioneers of Computer Programming
 Contributions of Pioneers - IV

• Grace Hopper did the programming of Mark I computer at Harvard
• Jean Jennings Bartik developed the concept of subroutines
• Betty Snyder Holberton developed the concept of flowcharts and diagrams for writing the programs
Pioneers of Computer Hardware
Contributions of Pioneers - V

• William Shockley won the Nobel Prize for inventing the transistors
• Doug Engelbert invented the mouse which has been a key input device besides the keyboard
• Alan Kay built the first table-top computer at Xerox Park using the modern printed circuit boards and microchips
Pioneers of Personal Computers
Contributions of Pioneers - V

• Steven Jobs invented the human machine interface with menus and icons
• Steve Wazniak developed the man – machine hardware interface such as pen and associated software
• Bill Gates developed the Windows software for PCs
Tipping Points of CS

- Bits and Atoms – Discrete Nature
- Information – Music, Graphics, Alphabets, Numerals, Symbols
- Concept of Algorithm
- Machine execution of algorithm
- Data Structures
- Data packets – Transmission, Distribution and Assembly
- Central, Distributed, Mobile Computing
Strategies of Problem-solving

- Divide and Conquer Approach
- Iterative Methods
- Recursive Technique
- Hill Climbing Methods
- Parallel Algorithms
- Methods of Induction
- Logical Reasoning Technique
• Divide the search domain and see if be resolved
• Example: Bisection method; also called as Binary Search
• In binary search, the numbers are in an ordered fashion
Iterative Methods

- Iterative methods generate a sequence of solutions which are gradually improving
- An iterative method should have a terminating criteria
- Rate of convergence is important
- Some iterative methods are using for finding the root of an equation
- Iterative methods are also used for solving a set of linear equations
Recursive Techniques

• A problem can be solved by breaking it down to a sub-problem
• This process goes on till a termination situation arises
• For the terminal situation, an explicit answer is available
• Factorial of n is an example
Hill Climbing Methods

- Also known as steepest gradient methods
- Locally find the best possible direction of search and the maximum distance along that direction
- These methods are used for finding the local optimal solution
Parallel Algorithms

- Large problems are divided into number of smaller problems; each small problem is solved in parallel
- Many problems of HPC are dealt with in parallel fashion
- Example: Find all the prime numbers between 1 and 100000 can be dealt with in parallel fashion
Mathematical induction is a method of mathematical proof. The first step is to prove for the base case. The second step is invoke the induction that implying that the statement is true for the next case.

Example: Sum of natural numbers from 0 to n.

Structural induction can be extended to other math models.
Logical Reasoning Techniques

- Induction and abduction are the forms of logical reasoning. It has three elements: Deductive reasoning, Inductive reasoning and abductive reasoning.
- When it rains, things outside get wet.
- Mathematical logic and Philosophical logic
Thank You!

Visit us at www.mahindraecolecentrale.edu.in

Disclaimer

Mhindra, Ecole Centrale, herein referred to as MEC provide a wide array of presentations and reports, with the contributions of various professionals. These presentations and reports are for informational purposes and private circulation only and do not constitute an offer to buy or sell any securities mentioned therein. They do not purport to be a complete description of the markets conditions or developments referred to in the material. While utmost care has been taken in preparing the above, we claim no responsibility for their accuracy. We shall not be liable for any direct or indirect losses arising from the use thereof and the viewers are requested to use the information contained herein at their own risk. These presentations and reports should not be reproduced, re-circulated, published in any media, website or otherwise, in any form or manner, in part or as a whole, without the express consent in writing of MEC or its subsidiaries. Any unauthorized use, disclosure or public dissemination of information contained herein is prohibited. Unless specifically noted, MEC is not responsible for the content of these presentations and/or the opinions of the presenters. Individual situations and local practices and standards may vary, so viewers and others utilizing information contained within a presentation are free to adopt differing standards and approaches as they see fit. You may not repackage or sell the presentation. Products and names mentioned in materials or presentations are the property of their respective owners and the mention of them does not constitute an endorsement by MEC. Information contained in a presentation hosted or promoted by MEC is provided “as is” without warranty of any kind, either expressed or implied, including any warranty of merchantability or fitness for a particular purpose. MEC assumes no liability or responsibility for the contents of a presentation or the opinions expressed by the presenters. All expressions of opinion are subject to change without notice.