# "Multi-players Bandit Algorithms for Internet of Things Networks"

- By Lilian Besson
- ▶ PhD defense at CentraleSupélec (Rennes)
- Wednesday 20th of November, 2019
- Supervisors:
  - Prof. Christophe Moy at SCEE team, IETR & CentraleSupélec
  - Dr. Émilie Kaufmann at SequeL team, CNRS & Inria, in Lille







# Introduction:

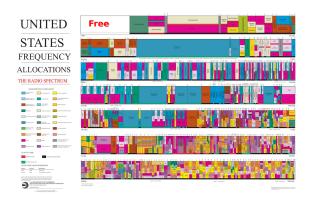
# SPECTRUM ISSUES IN WIRELESS NETWORKS

Ref: Chapter 1 of my thesis.



#### Wireless networks

- All spectrum is allocated to different applications
- But all zones are not always used everywhere
- What if we could dynamically use the (most) empty channels?





# Target of this study

#### Wireless networks. . .

We focus on **Internet of Things** networks (IoT) in unlicensed bands.

- → many wireless devices a wireless network served from one access point the base station is not affecting devices to radio resources...

# Target of this study

#### Wireless networks...

We focus on **Internet of Things** networks (IoT) in unlicensed bands.

- → networks with decentralized access...
  - → many wireless devices a wireless network served from one access point the base station is not affecting devices to radio resources...

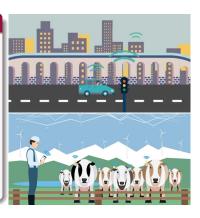




# The "Internet of Things"

#### Main constraints

- decentralized: devices initiate transmission
- can be in unlicensed radio bands
- massive number of devices
- long range
- ultra-low power devices
- low duty cycle
- low data rate



Images from http://IBM.com/blogs/internet-of-things/what-is-the-iot and http://www.globalsign.com/en/blog/ connected-cows-and-crop-control-to-drones-the-internet-of-things-is-rapidly-improving-agriculture/



# Main questions

➤ Can the IoT devices potimize their access to the radio resources in a simple, efficient, automatic and decentralized way?

In a given location, and a given time, for a given radio standard...



# Main questions

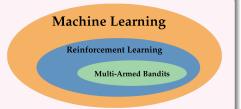
- Can the IoT devices optimize their access to the radio resources in a simple, efficient, automatic and decentralized way?
  In a given location, and a given time, for a given radio standard...
- Goal: increase the battery life of IoT devices
- ► Fight the spectrum scarcity issue by using the spectrum more efficiently than a static or uniformly random allocation

# Main questions

- Can the IoT devices optimize their access to the radio resources in a simple, efficient, automatic and decentralized way?
  In a given location, and a given time, for a given radio standard...
- ► Goal: increase the battery life of IoT devices 🕯
- ► Fight the spectrum scarcity issue by using the spectrum more efficiently than a static or uniformly random allocation

#### Main solutions!

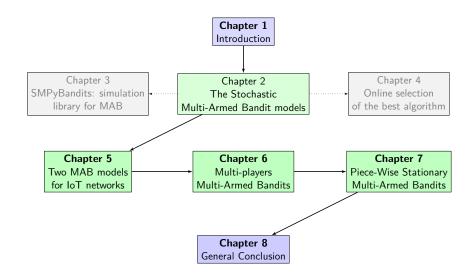
- Yes we can!
- ▶ By letting the radio devices become "intelligent"
- ► With MAB algorithms!





# OUTLINE OF THIS PRESENTATION

# Contributions of my thesis highlighted today



# Outline of this presentation

- ▶ Introduction. Spectrum issues in wireless networks
- ▶ Part I. Selfish MAB learning in a new model of IoT network
- ▶ Part II. Two tractable problems extending the classical bandit
  - multi-player bandits in stationary settings
  - single-player bandits in piece-wise stationary settings
- ► Conclusion and perspectives



# Part I.

# Selfish MAB Learning in IoT Networks

Ref: Chapter 5 of my thesis, and [Bonnefoi, Besson et al, 17].

#### We want

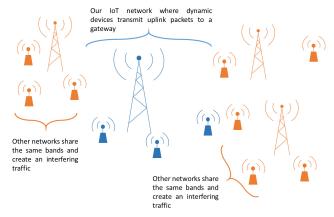
We control a *lot* of IoT devices

- We want to insert them in an already crowded wireless network
- Within a protocol slotted in time and frequency
- ► Each device \( / \) has a low duty cycle ex: few messages per day

#### We want

We control a *lot* of IoT devices

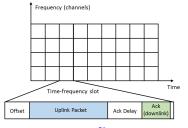
- ▶ We want to insert them in an already crowded wireless network
- Within a protocol slotted in time and frequency
- ► Each device / / has a low duty cycle ex: few messages per day





#### A new model for IoT networks

lackbox Discrete time  $t\in\mathbb{N}^*$  and K radio channels (e.g., 10) (known)



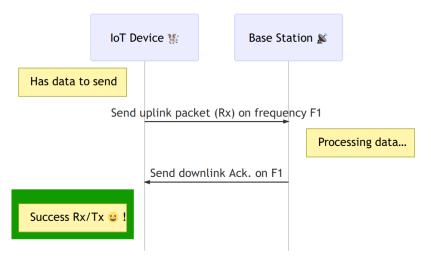
Chosen protocol: uplink messages / followed by acknowledgements \( [Bonnefoi, Besson et al, 17], Sec. 5.2

[Bonneror, Besson et al, 17], Sec.3..

- ▶ *D* dynamic devices Trying to access the network *independently*
- $S = S_1 + \cdots + S_K$  **static** devices occupying the network:  $S_1, \ldots, S_K$  in each channel  $\{1, \ldots, K\}$  (unknown)



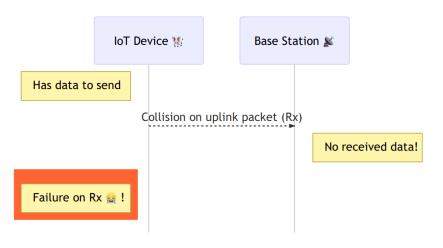
### Protocol: decentralized access with Ack. mode



1st case: Successful transmission if no collision on uplink messages  $\nearrow$ !



#### Protocol: decentralized access with Ack. mode



 $2^{nd}$  case: Failed transmission if collision on uplink messages  $\nearrow ...$ 



#### Emission model for IoT devices with *low duty cycle*

► Each device has the same low emission probability: each step, each device sends a packet with probability p



#### Emission model for IoT devices with low duty cycle

► Each device has the same low emission probability: each step, each device sends a packet with probability p

#### Background stationary ambiant traffic

- **Each** static device  $^{\circ}$  uses only one channel  $(S_k$  devices in channel k)
- ► Their repartition is fixed in time
- ⇒ This surrounding traffic is disturbing the dynamic devices



#### Emission model for IoT devices with *low duty cycle*

► Each device has the same *low* emission probability: each step, each device sends a packet with probability *p* 

#### Background stationary ambiant traffic

- **Each** static device  $^{\circ}$  uses only one channel  $(S_k$  devices in channel k)
- ► Their repartition is fixed in time
- ⇒ This surrounding traffic is disturbing the dynamic devices

#### Dynamic radio reconfiguration

- ▶ Dynamic device decide the channel to use to send their packets
- ► They all have memory and computational capacity to implement small decision algorithms



#### **Problem**

#### Goal

- minimize packet loss ratio (max = number of received Ack)
- ▶ in a finite-space discrete-time Decision Making Problem

#### Baseline (naive solution)

Purely random (uniform) spectrum access for the  $\it D$  dynamic devices  $\it I$  .

#### A possible solution

Embed a **decentralized Multi-Armed Bandit** algorithm, running **independently on each dynamic device** .



If an oracle can affect  $D_k$  dynamic devices to channel k, the successful transmission probability of the entire network is

$$\mathbb{P}(\text{success}|\text{sent}) = \sum_{k=1}^{K} \underbrace{(1-p)^{D_k-1}}_{D_k-1 \text{ others}} \times \underbrace{(1-p)^{S_k}}_{\text{No static device}} \times \underbrace{D_k/D}_{\text{Sent in channel }k}$$

If an oracle can affect  $D_k$  dynamic devices to channel  $k \triangleq k$ , the successful transmission probability of the entire network is

$$\mathbb{P}(\text{success}|\text{sent}) = \sum_{k=1}^{K} \underbrace{(1-p)^{D_k-1}}_{D_k-1 \text{ others}} \times \underbrace{(1-p)^{S_k}}_{\text{No static device}} \times \underbrace{D_k/D}_{\text{Sent in channel } k}$$

▶ The oracle has to solve this **optimization problem**:

$$\begin{cases} \mathop{\arg\max}_{D_1,\dots,D_K} & \sum\limits_{k=1}^K D_k (1-p)^{S_k+D_k-1} \\ \text{such that} & \sum\limits_{k=1}^K D_k = D \text{ and } D_k \geq 0, \ \ \forall 1 \leq k \leq K. \end{cases}$$

Contribution: a (numerical) solver for this quasi-convex optimization problem, with *Lagrange multipliers*.



# 1) Oracle centralized strategy

 $\implies$  This *oracle* strategy has very good performance, as it maximizes the transmission rate of all the D dynamic devices

#### But unrealistic

#### But not achievable in practice!

- because there is no centralized supervision!
- ightharpoonup and  $(S_1, \ldots, S_K)$  are unknown!

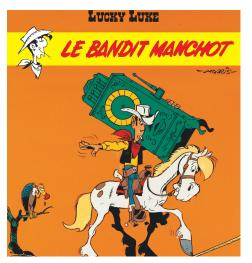
We propose a realistic decentralized approach, with bandits!





# Hum, what is a (one-armed) bandit?

It's an old name for a casino machine 🖳 !



© Dargaud 1981, Lucky Luke tome 18,.



### Stochastic Multi-Armed Bandit formulation

A player tries to collect rewards when playing a K-armed  $\blacksquare$  bandit game.

At each round  $t \in \{1, \ldots, T\}$ 

- ▶ player chooses an  $arm extbf{ extit{ iny }} A(t) \in \{1, \dots, K\}$
- the arm generates an i.i.d. reward  $r_{A(t)}(t) \sim \nu_{A(t)}$ Ex: from a Bernoulli distribution  $\nu_k = \mathcal{B}(\mu_k)$
- ▶ player observes the reward  $r_{A(t)}(t)$

#### Stochastic Multi-Armed Bandit formulation

A player tries to collect rewards when playing a K-armed  $\blacksquare$  bandit game.

At each round  $t \in \{1, \dots, T\}$ 

- ▶ player chooses an  $arm ext{ } ex$
- the arm generates an i.i.d. reward  $r_{A(t)}(t) \sim \nu_{A(t)}$ Ex: from a Bernoulli distribution  $\nu_k = \mathcal{B}(\mu_k)$
- ▶ player observes the reward  $r_{A(t)}(t)$

#### Goal (Reinforcement Learning)

Maximize the sum reward or its expectation

$$\max_{A} \sum_{t=1}^{T} r_{A(t)} \quad \text{or} \quad \max_{A} \mathbb{E} \left[ \sum_{t=1}^{T} r_{A(t)} \right].$$

[Bubeck, 12], [Lattimore & Szepesvári, 19], [Slivkins, 19]



# 2) Pseudo *MAB* formulation of our IoT problem

A dynamic device tries to collect rewards when transmitting:

- it transmits following a random Bernoulli process (ie. probability p of transmitting at each round t)
- ▶ it chooses a channel  $A(\tau) \in \{1, ..., K\}$ 
  - if Ack (no collision)  $\implies$  reward  $r_{A(\tau)} = 1$
  - ▶ if collision (no Ack)  $\implies$  reward  $r_{A(\tau)} = 0$

```
(= arm 🗐)
```

(successful transm.!) (failed transmission!)



# 2) Pseudo *MAB* formulation of our IoT problem

A dynamic device tries to collect rewards when transmitting:

- it transmits following a random Bernoulli process
   (ie. probability p of transmitting at each round t)
- ▶ it chooses a channel  $A(\tau) \in \{1, ..., K\}$ 
  - ▶ if Ack (no collision)  $\implies$  reward  $r_{A(\tau)} = 1$
  - if collision (no Ack)  $\implies$  reward  $r_{A(\tau)} = 0$

```
(= arm ♣)
```

(successful transm.!)
(failed transmission!)

**Goal:** Maximize transmission rate  $\equiv$  maximize cumulated rewards

#### It is not a stochastic Multi-Armed Bandit problem

It looks like a MAB but the environment is not stochastic or stationary



A dynamic device keeps au number of sent packets

• For the first K activations  $(\tau = 1, ..., K)$ , try each channel *once*.

A dynamic device keeps  $\tau$  number of sent packets

- For the first K activations  $(\tau = 1, ..., K)$ , try each channel *once*.
- Then for the next steps t:
  - With probability p, the device is active  $(\tau := \tau + 1)$

- ▶ Choose channel  $A(\tau) = \arg \max UCB_k(\tau)$ ,
- ▶ Observe reward  $r_{A(\tau)}(\tau)$  from arm  $A(\tau)$ 
  - ▶ Update  $N_k(\tau+1)$  nb selections of channel k
  - Update  $X_k(\tau)$  nb of successful transmissions
- Wait for next message... (mean waiting time  $\simeq 1/p$ )



Confidence Bonus

- For any dynamic device  $\hat{\ }$ , for any round t:
  - ▶ With probability p, the device is active  $(\tau := \tau + 1)$
  - ► Play UCB algorithm. . . [Auer et al, 02]
  - $lackbox{\hspace{0.5cm}$\hspace{0.6cm}$\hspace{0.5cm}$\hspace{0.6cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}$\hspace{0.5cm}}$

#### Problem 1: multiple dynamic devices

► The collisions between dynamic devices are **not stochastic!** 

#### Problem 2: random activation times $\tau$ ?

- Devices transmits only with probability p at each time t (following its Bernoulli activation pattern)
- ▶ The times  $\tau$  are **not** the global time indexes t (synchronized clock) !
- ⇒ These two problems make the model hard to analyze!



# **Experimental setting: simulation parameters**

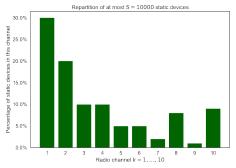
- ightharpoonup K = 10 channels  $lap{1}{3}$ ,
- $\triangleright$  S + D = 10000 devices in total,

# **Experimental setting: simulation parameters**

- ightharpoonup K = 10 channels  $lap{1}{2}$ ,
- $\triangleright$  S + D = 10000 devices in total,
- $ightharpoonup p = 10^{-3}$  probability of emission,
- ▶ Horizon  $T = 10^5$  total time slots (avg.  $\simeq 100$  messages / device),

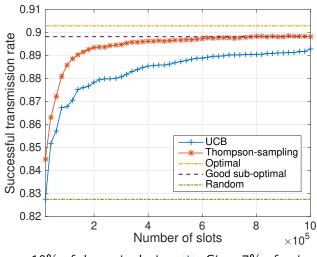
# **Experimental setting: simulation parameters**

- ightharpoonup K = 10 channels  $lap{1}{2}$ ,
- $\triangleright$  S + D = 10000 devices in total,
- $ightharpoonup p = 10^{-3}$  probability of emission,
- ▶ Horizon  $T=10^5$  total time slots (avg.  $\simeq 100$  messages / device),
- ▶ We change the proportion of dynamic devices  $D \cdot A / (S \cdot A + D \cdot A)$ ,
- ▶ For one example of repartition of  $(S_1, ..., S_K)$  static devices  $^{\bigcirc}$ .





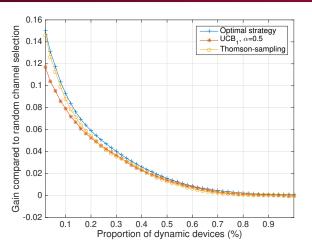
## One result for 10% of dynamic devices



10% of dynamic devices . Gives 7% of gain. [Bonnefoi, Besson et al, 17], Sec.5.2



## Growing proportion of dynamic devices D/(S+D)



- ► The MAB selfish learning is *almost optimal*, for any proportion of dynamic devices , *after a short learning time*.
- ▶ In this example, it gives up-to 16% gain over the naive approach!

We developed a realistic demonstration using USRP boards and GNU Radio, as a proof-of-concept in a "toy" IoT network.



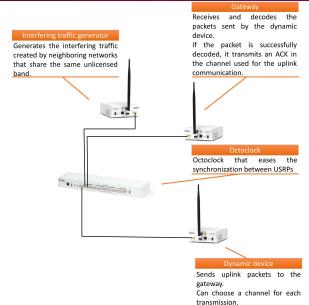
Multi-Armed bandit Learning in lot Networks (MALIN) - Demo at ICT 2018

[Bonnefoi et al, ICT 18], [Besson et al, WCNC 19], Ch.5.3 and video published on YouTu.be/HospLNQhcMk



#### Using USRP board to simulate IoT devices

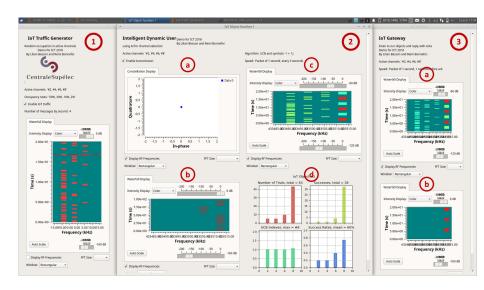






#### **GNU** Radio for the UI of the demo

**(**3/3**)** 





## From practice to theory

It works very well empirically! But random activation times and collisions due to multiple devices make the model hard to analyze...

- ► <u>Hyp 1:</u> in avg.  $p \times D$  dynamic devices are using K channels  $\Longrightarrow$  so  $p \leq \frac{K}{D}$  or  $D \leq \frac{K}{D}$  gives best performance
- ▶ Hyp 2: we assumed a stationary background traffic 🖺 . . .

## From practice to theory

It works very well empirically! But random activation times and collisions due to multiple devices make the model hard to analyze...

- ► <u>Hyp 1:</u> in avg.  $p \times D$  dynamic devices  $\stackrel{\checkmark}{=}$  are using K channels  $\stackrel{\textcircled{\blacksquare}}{=}$  so  $p \leq \frac{K}{D}$  or  $D \leq \frac{K}{D}$  gives best performance
- ▶ Hyp 2: we assumed a stationary background traffic 🖺 . . .

**Goal**: obtain theoretical result for our proposed model of IoT networks, and guarantees about the observed behavior of *Selfish MAB learning*.

## From practice to theory

It works very well empirically! But random activation times and collisions due to multiple devices make the model hard to analyze...

- ► <u>Hyp 1:</u> in avg.  $p \times D$  dynamic devices are using K channels  $\Longrightarrow$  so  $p \leq \frac{K}{D}$  or  $D \leq \frac{K}{D}$  gives best performance
- ▶ Hyp 2: we assumed a stationary background traffic 🖺 . . .

**Goal**: obtain theoretical result for our proposed model of IoT networks, and guarantees about the observed behavior of *Selfish MAB learning*.

#### We can study theoretically two more specific models

- ▶ Model 1: multi-player bandits: devices are always activated ie. p = 1 in their random activation process  $\implies D = M \le \frac{K}{p} = K$
- ▶ Model 2: non-stationary bandits (for one device 1)



## Part II.

# THEORETICAL ANALYSIS OF TWO RELAXED MODELS

Ref: Chapters 6 and 7 of my thesis and [Besson & Kaufmann, 18] and [Besson et al, 19].



## Theoretical analysis of two relaxed models

#### Multi-player bandits

Ref: Chapter 6 of my thesis, and [Besson & Kaufmann, 18].

Piece-wise stationary bandits



## Multi-players bandits: setup

 $M \ge 2$  players playing the same K-armed bandit  $(2 \le M \le K)$  they are all activated at each time step, ie. p = 1

At round  $t \in \{1, \ldots, T\}$ :

- and the reward is computed as

$$r_{m,t} = \begin{cases} s_{A_t^m,t} & \text{if no other player chose the same arm} \\ 0 & \text{else (= COLLISION)} \end{cases}$$

## Multi-players bandits: setup

 $M \ge 2$  players playing the same K-armed bandit  $(2 \le M \le K)$  they are all activated at each time step, ie. p = 1

At round  $t \in \{1, \ldots, T\}$ :

- ▶ player m selects arm  $A_t^m$   $\stackrel{\text{left}}{=}$  ; then this arm generates  $s_{A_t^m,t} \in \{0,1\}$
- and the reward is computed as

$$r_{m,t} = \begin{cases} s_{A_t^m,t} & \text{if no other player chose the same arm} \\ 0 & \text{else (= COLLISION)} \end{cases}$$

#### Goal

- ► maximize centralized (sum) rewards  $\sum_{m=1}^{M} \sum_{t=1}^{T} r_{m,t}$
- ... without (explicit) communication between players
- trade-off: exploration / exploitation / and collisions!

#### Multi-Players bandits for Cognitive Radios

Different observation models: players observe  $s_{A_t^m,t}$  and/or  $r_{m,t}$ 

```
\# 1: "Listen before talk" [Liu & Zhao, 10], [Jouini et al. 10], [Anandkumar et al. 11]
```

- Good model for Opportunistic Spectrum Access (OSA)
- ► First do sensing, attempt of transmission if no Primary User (PU), possible collisions with other Secondary Users (SU).
- ► Feedback model:
  - ightharpoonup observe first  $s_{A_t^m,t}$ ,
  - ▶ if  $s_{A_t^m,t} = 1$ , transmit and then observe the joint  $r_{m,t}$ ,
  - else don't transmit and don't observe a reward.



## M-P bandits for Cognitive Radios: proposed models

# 2: "Talk and maybe collide"

- [Besson & Kaufmann, 18]
- Good model for Internet of Things (IoT)
- Do not do any sensing, just transmit, and wait for an acknowledgment before any next message.
- ► Feedback model:
  - **b** observe only the joint information  $r_{m,t}$ ,
  - ▶ no collision if  $r_{m,t} \neq 0$ ,
  - but cannot distinguish between collision or zero reward if  $r_{m,t} = 0$ .

## M-P bandits for Cognitive Radios: proposed models

# 2: "Talk and maybe collide"

- [Besson & Kaufmann, 18]
- ► Good model for Internet of Things (IoT)
- ▶ Do not do any sensing, just transmit, and wait for an acknowledgment before any next message.
- ► Feedback model:
  - **b** observe only the joint information  $r_{m,t}$ ,
  - ▶ no collision if  $r_{m,t} \neq 0$ ,
  - **b** but cannot distinguish between collision or zero reward if  $r_{m,t} = 0$ .

#### # 3: "Observe collision then talk?"

[Besson & Kaufmann, 18], [Boursier et al, 19]

- A third "hybrid" model studied by several recent papers, following our work
- Feedback model:
  - first check if collision,
  - ▶ then if not collision, receive joint reward  $r_{m,t}$ .



## Regret for multi-player bandits (M players on K arms)

<u>Hypothesis:</u> arms sorted by decreasing mean:  $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_K$ 

$$R_{\mu}(\mathcal{A}, T) := \underbrace{\left(\sum_{k=1}^{M} \mu_{k}\right) T}_{\text{oracle total reward}} - \mathbb{E}_{\mu}^{\mathcal{A}} \left[\sum_{t=1}^{T} \sum_{m=1}^{M} r_{m,t}\right]$$

#### Regret decomposition

[Besson & Kaufmann, 18]

$$R_{\mu}(\mathcal{A}, T) = \sum_{k=M+1}^{K} (\mu_{M} - \mu_{k}) \mathbb{E}[N_{k}(T)]$$

$$+ \sum_{k=1}^{M} (\mu_{k} - \mu_{M}) (T - \mathbb{E}[N_{k}(T)]) + \sum_{k=1}^{K} \mu_{k} \mathbb{E}[\mathcal{C}_{k}(T)].$$

- $\triangleright$   $N_k(T)$  total number of selections of arm k
- $\triangleright$   $C_k(T)$  total number of collisions experienced on arm k



## Regret for multi-player bandits (M players on K arms)

#### Regret decomposition

[Besson & Kaufmann, 18]

$$R_{\mu}(\mathcal{A}, T) \leq \operatorname{cst} \sum_{k=M+1}^{K} \mathbb{E}\left[N_{k}(T)\right] + \operatorname{cst'} \sum_{k=1}^{M} \mathbb{E}\left[\mathcal{C}_{k}(T)\right].$$

A good algorithm has to control both

- the number of selections of sub-optimal arms
  - $\hookrightarrow$  with a good classical bandit policy: like kl-UCB
- ▶ the number of collisions on optimal arms
  - $\hookrightarrow$  with a good orthogonalization procedure

#### The MC-Top-M algorithm (for the OSA case)

At round t, player m uses his past sensing information to:

- lacktriangle compute an Upper Confidence Bound for each mean  $\mu_k$ ,  $\mathrm{UCB}_k^m(t)$
- ▶ use the UCBs to estimate the *M* best arms

$$\hat{M}^m(t) := \{ \text{arms with } M \text{ largest UCB}_k^m(t) \}$$

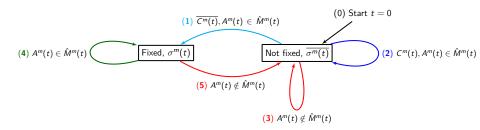
Two simple ideas: inspired by Musical Chair [Rosenski et al. 16]

- lacktriangle always pick an arm estimated as "good"  $A^m(t) \in \hat{M}^m(t-1)$
- try not to switch arm too often

$$\sigma^m(t) := \{ player m \text{ is "fixed" at the end of round } t \}$$

Other UCB-based algorithms: TDFS [Lui and Zhao, 10], Rho-Rand [Anandkumar et al., 11], Selfish [Bonnefoi, Besson et al., 17]

## The MC-Top-M algorithm (for the OSA case)



#### Sketch of the proof to bound number of collisions

- ▶ any sequence of transitions (2) has constant length
- $\triangleright$   $\mathcal{O}(\log T)$  number of transitions (3) and (5), by kl-UCB
- $\implies$  player m is fixed, for almost all rounds  $(\mathcal{O}(T \log T) \text{ times})$ 
  - ▶ nb of collisions  $\leq M \times$  nb of collisions of non fixed players
- $\implies$  nb of collisions =  $\mathcal{O}(\log T)$  &  $\mathcal{O}(\log(T))$  sub-optimal selections (4)

#### Theoretical results for MC-Top-M

MC-Top-M with kl-based confidence intervals

[Cappé et al. 13]

$$\mathrm{UCB}_k^m(t) = \max\left\{q: N_k^m(t)\mathrm{kl}\left(\hat{\mu}_k^m(t), q\right) \leq \ln(t)\right\},\,$$

where 
$$kl(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y)) = x \ln\left(\frac{x}{y}\right) + (1 - x) \ln\left(\frac{1 - x}{1 - y}\right)$$
.

#### Control of the sub-optimal selections

(state-of-the-art)

For all sub-optimal arms  $k \in \{M+1, \ldots, K\}$ ,

$$\mathbb{E}[N_k^m(T)] \leq \frac{\ln(T)}{\mathrm{kl}(\mu_k, \mu_M)} + C_{\mu} \sqrt{\ln(T)}.$$

#### Control of the collisions

(new result)

$$\mathbb{E}\left[\sum_{k=1}^K \frac{\mathcal{C}_k(T)}{\mathcal{C}_k(T)}\right] \leq M^2 \left(\sum_{a,b: \mu_1 \leq \mu_b} \frac{2M+1}{\mathrm{kl}(\mu_a,\mu_b)}\right) \ln(T) + \mathcal{O}(\ln T).$$

#### Theoretical results for MC-Top-M

MC-Top-M with kl-based confidence intervals

[Cappé et al. 13]

$$UCB_k^m(t) = \max \left\{ q : N_k^m(t) \operatorname{kl} \left( \hat{\mu}_k^m(t), q \right) \le \ln(t) \right\},\,$$

where 
$$kl(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y)) = x \ln\left(\frac{x}{y}\right) + (1 - x) \ln\left(\frac{1 - x}{1 - y}\right)$$
.

#### Control of the sub-optimal selections

(state-of-the-art)

For all sub-optimal arms  $k \in \{M+1,\ldots,K\}$ ,

$$\mathbb{E}[N_k^m(T)] \leq \frac{\ln(T)}{\mathrm{kl}(\mu_k, \mu_M)} + C_{\mu} \sqrt{\ln(T)}.$$

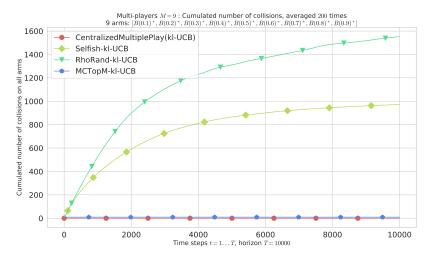
logarithmic regret 
$$\implies R_{\mu}(\mathcal{A}, T) = \mathcal{O}((\mathbf{MC_{M,\mu}} + \mathbf{M^{2}C_{6}})\log(T))$$

#### Control of the collisions

(new result)

$$\mathbb{E}\left[\sum_{k=1}^{K} \frac{\mathcal{C}_{k}(T)}{\operatorname{cl}_{k}(T)}\right] \leq M^{2}\left(\sum_{a,b:\mu_{a}<\mu_{b}} \frac{2M+1}{\operatorname{kl}(\mu_{a},\mu_{b})}\right) \ln(T) + \mathcal{O}(\ln T).$$

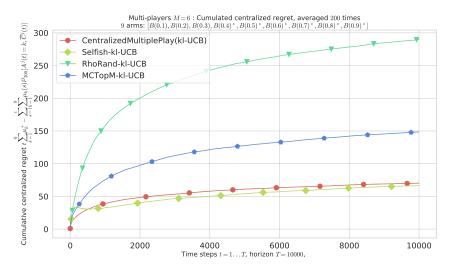
## Results on a multi-player MAB problem (1/2)



For M = K, our strategy MC-Top-M ( $\bigcirc$ ) achieves **constant** nb of collisions!  $\Longrightarrow$  Our new orthogonalization procedure is very efficient!



## Results on a multi-player MAB problem (2/2)



For M=6 devices, our strategy MC-Top-M ( $\bigcirc$ ) largely outperforms  $\rho^{\rm rand}$  and other previous state-of-the-art policies (not included).

CentraleSupélec

#### State-of-the-art multi-player algorithms

| Algorithm          | Ref. | Regret bound                                 | * is worst | <b>Speed ∅</b> is worst | Parameters         |
|--------------------|------|----------------------------------------------|------------|-------------------------|--------------------|
| Centralized multi- | [1]  | $C_{M,\mu}\log(T)$                           | ****       | 00                      | just M but         |
| play kl-UCB        | [+]  | $CM_{,\mu} \log(7)$                          |            |                         | in another model   |
| $ ho^{rand}$ UCB   | [2]  | $M^3\mathbf{C}_2\log(T)$                     | **         | 00                      | just M             |
| MEGA               | [3]  | $C_3 T^{3/4}$                                | *          | 00                      | 4 params,          |
| MEGN               | [2]  | C3 ,                                         | ^          |                         | impossible to tune |
| Musical Chair      | [4]  | $\binom{2M}{M}$ C <sub>4</sub> log( $T$ )    | **         | <i>©</i>                | 1 parameter $T_0$  |
| Widsical Citali    | [-]  | ( M ) C4 log( r )                            | ^^         |                         | hard to tune       |
| Selfish UCB        | [5]  | T in some case                               | * / ****   | 000                     | none!              |
| MCTopM kIUCB       | [6]  | $(MC_{M,\mu} + M^2C_6)\log(T)$               | ****       | 00                      | just M             |
| Sic-MMAB           | [7]  | $(C_{M,\mu} + MK) \log(T)$                   | ****       | <i></i>                 | none! but          |
| DIC-MIMAD          | [/]  | $(\mathbf{M}, \mu \mid \mathcal{M}) \log(T)$ | ^^^^       |                         | in another model   |
| DPE                | [8]  | $C_{M,\mu}\log(\mathcal{T})$                 | ??         | <i>©</i>                | none! but          |
|                    |      |                                              |            |                         | in another model   |
|                    |      |                                              |            |                         |                    |

Performance | Speed

Optimal **regret bound** is multiple-play bound  $\mathcal{R}(A, T) \leq C_{M,\mu} \log(T) + o(\log(T))$ , with

$$\mathbf{C}_{\mathbf{M},\mu} = \sum_{k:\mu_k < \mu_{k,i}^*} \sum_{j=1}^M \frac{\mu_{M}^*}{\mathrm{kl}(\mu_k,\mu_j^*)}$$
, and  $\mathbf{C}_i \gg \mathbf{C}_{\mathbf{M},\mu}$  are much larger constants.

Papers: [1] Anantharam et al, 87 [2] Anandkumar et al, 11 [3] Avner et al, 15 [4] Rosenski et al, 15

[5] Bonnefoi et al 17 [6] Besson & Kaufmann, 18 [7] Boursier et al, 19 [8] Proutière et al, 19



## Theoretical analysis of two relaxed models

Multi-player bandits

Piece-wise stationary bandits

Ref: Chapter 7 of my thesis, and [Besson et al, 19].



## Piece-wise stationary bandits

#### Stationary MAB problems

Arm  $k \triangleq \text{samples rewards from the same distribution for any round}$ 

$$\forall t, r_k(t) \stackrel{\mathsf{iid}}{\sim} \frac{\mathsf{v}_k}{\mathsf{v}_k} = \mathcal{B}(\underline{\mu}_k).$$

#### Piece-wise stationary bandits

#### Stationary MAB problems

Arm  $k \equiv$  samples rewards from the same distribution for any round

$$\forall t, r_k(t) \stackrel{\mathsf{iid}}{\sim} \frac{\mathbf{v}_k}{\mathbf{v}_k} = \mathcal{B}(\underline{\mu}_k).$$

#### Non stationary MAB problems?

(possibly) different distributions for any round !

$$\forall t, r_k(t) \stackrel{\text{iid}}{\sim} \nu_k(t) = \mathcal{B}(\mu_k(t)).$$

⇒ harder problem! And impossible with no extra hypothesis

#### Piece-wise stationary bandits

#### Stationary MAB problems

Arm  $k \equiv$  samples rewards from the same distribution for any round

$$\forall t, r_k(t) \stackrel{\text{iid}}{\sim} \frac{v_k}{v_k} = \mathcal{B}(\mu_k).$$

#### Non stationary MAB problems?

(possibly) different distributions for any round!

$$\forall t, r_k(t) \stackrel{\text{iid}}{\sim} \nu_k(t) = \mathcal{B}(\mu_k(t)).$$

⇒ harder problem! And impossible with no extra hypothesis

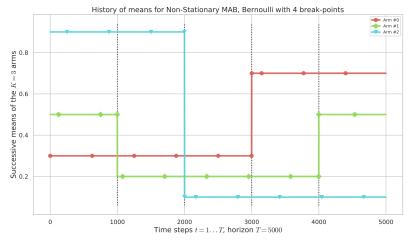
#### Piece-wise stationary problems!

The literature usually focuses on the easier case, when there are at most  $\Upsilon_T = o(\sqrt{T})$  intervals, on which the means are all stationary.



## **Example of a piece-wise stationary MAB problem**

We plots the means  $\mu_1(t)$ ,  $\mu_2(t)$ ,  $\mu_3(t)$  of K=3 arms . There are  $\Upsilon_T=4$  break-points and 5 sequences in  $\{1,\ldots,T=5000\}$ 





## Regret for piece-wise stationary bandits

The "oracle" plays the (unknown) best arm  $k^*(t) = \operatorname{argmax} \mu_k(t)$  (which changes between the  $\Upsilon_T \geq 1$  stationary sequences)

$$\mathcal{R}(\mathcal{A}, T) = \mathbb{E}\left[\sum_{t=1}^{T} r_{k^*(t)}(t)\right] - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right]$$
$$= \underbrace{\left(\sum_{t=1}^{T} \max_{k} \mu_k(t)\right)}_{\text{oracle total reward}} - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right].$$

## Regret for piece-wise stationary bandits

The "oracle" plays the (unknown) best arm  $k^*(t) = \operatorname{argmax} \mu_k(t)$  (which changes between the  $\Upsilon_T \geq 1$  stationary sequences)

$$\mathcal{R}(\mathcal{A}, T) = \mathbb{E}\left[\sum_{t=1}^{T} r_{k^*(t)}(t)\right] - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right]$$
$$= \underbrace{\left(\sum_{t=1}^{T} \max_{k} \mu_k(t)\right)}_{\text{oracle total reward}} - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right].$$

#### Typical regimes for piece-wise stationary bandits

- ▶ The (minimax) worst-case lower-bound is  $\mathcal{R}(A, T) \ge \Omega(\sqrt{KT\Upsilon_T})$
- ▶ State-of-the-art algorithms  $\mathcal{A}$  obtain  $\mathcal{R}(\mathcal{A}, T) \leq \mathcal{O}(K\sqrt{T\Upsilon_T \log(T)})$



#### Three components of our algorithm

[Besson et al, 19]

Our algorithm is inspired by CUSUM-UCB [Liu et al, 18] and M-UCB [Cao et al, 19], and new analysis of the GLR test [Maillard, 19]

▶ A classical bandit index policy: kI-UCB which gets restarted after a change-point is detected

#### Three components of our algorithm

[Besson et al, 19]

- ▶ A classical bandit index policy: kI-UCB which gets restarted after a change-point is detected
- A change-point detection algorithm: the Generalized Likelihood Ratio Test for sub-Bernoulli observations (BGLR), we can bound



#### Three components of our algorithm

[Besson et al, 19]

- ▶ A classical bandit index policy: kI-UCB which gets restarted after a change-point is detected
- A change-point detection algorithm: the Generalized Likelihood Ratio Test for sub-Bernoulli observations (BGLR), we can bound
  - its false alarm probability (if enough samples between two restarts)



#### Three components of our algorithm

[Besson et al, 19]

- ► A classical bandit index policy: **kl-UCB** which gets *restarted* after a change-point is detected
- A change-point detection algorithm: the Generalized Likelihood Ratio Test for sub-Bernoulli observations (BGLR), we can bound
  - its false alarm probability (if enough samples between two restarts)
  - its detection delay (for "easy enough" problems)



#### Three components of our algorithm

[Besson et al, 19]

- ▶ A classical bandit index policy: kl-UCB which gets restarted after a change-point is detected
- A change-point detection algorithm: the **Generalized Likelihood**Ratio Test for sub-Bernoulli observations (BGLR), we can bound
  - its false alarm probability (if enough samples between two restarts)
  - its detection delay (for "easy enough" problems)
- ▶ Forced exploration of parameter  $\alpha \in (0,1)$  (tuned with  $\Upsilon_T$ )



## Our new algorithm: kl-UCB index + BGLR detector

#### Three components of our algorithm

[Besson et al, 19]

Our algorithm is inspired by CUSUM-UCB [Liu et al, 18] and M-UCB [Cao et al, 19], and new analysis of the GLR test [Maillard, 19]

- ▶ A classical bandit index policy: kl-UCB which gets restarted after a change-point is detected
- A change-point detection algorithm: the Generalized Likelihood Ratio Test for sub-Bernoulli observations (BGLR), we can bound
  - its false alarm probability (if enough samples between two restarts)
  - its detection delay (for "easy enough" problems)
- ▶ Forced exploration of parameter  $\alpha \in (0,1)$  (tuned with  $\Upsilon_T$ )



## Our new algorithm: kl-UCB index + BGLR detector

### Three components of our algorithm

[Besson et al, 19]

Our algorithm is inspired by CUSUM-UCB [Liu et al, 18] and M-UCB [Cao et al, 19], and new analysis of the GLR test [Maillard, 19]

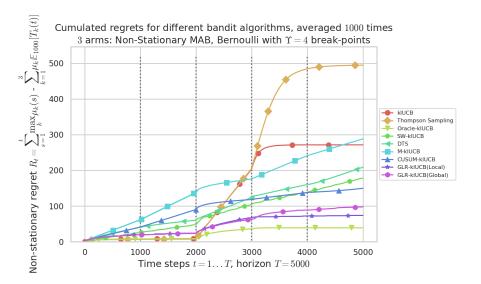
- ► A classical bandit index policy: **kl-UCB** which gets *restarted* after a change-point is detected
- ► A change-point detection algorithm: the **Generalized Likelihood Ratio Test** for sub-Bernoulli observations (BGLR), we can bound
  - its false alarm probability (if enough samples between two restarts)
  - its detection delay (for "easy enough" problems)
- ▶ Forced exploration of parameter  $\alpha \in (0,1)$  (tuned with  $\Upsilon_T$ )

#### Regret bound (if T and $\Upsilon_T$ are both known)

Our algorithm obtains  $\mathcal{R}(\mathcal{A}, \mathcal{T}) \leq \mathcal{O}\left(\frac{K}{\Delta_{\text{change}}^2} \sqrt{T \Upsilon_{\mathcal{T}} \log(\mathcal{T})}\right)$ 



## Results on a piece-wise stationary MAB problem



 $\hookrightarrow$  kl-UCB + BGLR ( $\star$ ) achieves the best performance (among non-oracle)!

## State-of-the-art piece-wise stationary algorithms

| Algorithm           | Ref. | Regret bound                                         | Performance  * is worst | Speed      | Parameters                                                  |
|---------------------|------|------------------------------------------------------|-------------------------|------------|-------------------------------------------------------------|
| Naive UCB           | [1]  | T in worst case                                      | *                       | 00000      | none!                                                       |
| Oracle-Restart UCB  | [1]  | $\mathbf{C}\Upsilon_{\mathcal{T}}\log(\mathcal{T})$  | ****                    | 00000      | the break-points<br>(unrealistic oracle!)                   |
| Discounted UCB      | [2]  | $\mathbf{C}_2\sqrt{T\Upsilon_T}\log(T)$              | *                       | 0000       | $T$ and $\Upsilon_T$                                        |
| Sliding-Window UCB  | [2]  | $\mathbf{C}_{2}^{\prime}\sqrt{T\Upsilon_{T}\log(T)}$ | *                       | 0000       | $T$ and $\Upsilon_T$                                        |
| Exp3.S              | [3]  | $C\sqrt{T} T \log(T)$                                | *                       | 00000      | $\Upsilon_T$                                                |
| Discounted TS       | [4]  | not yet proven                                       | **                      | 0000       | how to tune $\gamma$ ?                                      |
| CUSUM-UCB           | [5]  | $C_5\sqrt{T\Upsilon_T\log(\frac{T}{\Upsilon_T})}$    | ***                     | 00         | $T$ , $\Upsilon_T$ and $\delta_{min}$                       |
| M-UCB               | [6]  | $C_6\sqrt{T\Upsilon_T\log(T)}$                       | **                      | <i>@@@</i> | $\mathcal{T}$ , $\Upsilon_{\mathcal{T}}$ and $\delta_{min}$ |
| BGLR + kl-UCB       | [7]  | $C\sqrt{T} T \log(T)$                                | ****                    | 0          | $T$ and $\Upsilon_T$                                        |
| AdSwitch            | [8]  | $C_8\sqrt{T\Upsilon_T\log(T)}$                       | **                      | <i></i>    | just T                                                      |
| $Ada	ext{-}ILTCB^+$ | [9]  | $\mathbf{C}_{9}\sqrt{T\Upsilon_{T}\log(T)}$          | ??                      | <i>(</i>   | just T                                                      |

Optimal minimax regret bound is  $\mathcal{R}(\mathcal{A}, \mathcal{T}) = \mathcal{O}(\sqrt{KT\Upsilon_{\mathcal{T}}})$ , and  $\mathbf{C} = \mathbf{C}_{\Upsilon_{\mathcal{T}}, \mu} = \mathcal{O}(\frac{K}{\Delta_{\mathrm{change}}^2})$ .

 $C_i \gg C_{\Upsilon_{\tau,\mu}}$  are much larger constants, and  $\delta_{\min} < \Delta_{\text{change}}$  lower-bounds the problem difficulty.

Papers: [1] Auer et al. 02 [2] Garivier et al. 09 [3] Auer et al. 02 [5] Raj et al. 17

[5] Liu et al. 18 [6] Cao et al. 19 [7] Besson et al. 19 [8] Auer et al. 19 [9] Chen et al. 19



# SUMMARY

Part I:

Part II:



Contributions (1/3)

#### Part I:

- ➤ A simple model of IoT network, where autonomous IoT devices can embed decentralized learning ("selfish MAB learning"),
- numerical simulations proving the quality of our solution,
- a realistic implementation on radio hardware.

#### Part II:



Contributions (1/3)

#### Part I:

- ➤ A simple model of IoT network, where autonomous IoT devices can embed decentralized learning ("selfish MAB learning"),
- numerical simulations proving the quality of our solution,
- a realistic implementation on radio hardware.

#### Part II:

- New algorithms and regret bounds, in two simplified models:
  - ▶ for multi-player bandits, with  $M \le K$  players,
  - for piece-wise stationary bandits, with  $\Upsilon_T = o(T)$  break-points,
- our proposed algorithms achieve state-of-the-art performance
  - on both numerical.
  - and theoretical results.



Perspectives (2/3)

▶ Unify the *multi-player* and *non-stationary* bandit models

 $\hookrightarrow$  in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!



- ▶ Unify the *multi-player* and *non-stationary* bandit models
  - $\hookrightarrow$  in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
  - $\hookrightarrow$  started in summer 2019 with an intern working with Christophe Moy



- ▶ Unify the *multi-player* and *non-stationary* bandit models
  - $\hookrightarrow$  in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
  - $\hookrightarrow$  started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:



- ▶ Unify the *multi-player* and *non-stationary* bandit models
  - $\hookrightarrow$  in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
  - $\hookrightarrow$  started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:
  - propose a more realistic model for IoT networks (exogenous activation, non stationary traffic, etc)



- ▶ Unify the *multi-player* and *non-stationary* bandit models
  - $\hookrightarrow$  in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
  - $\hookrightarrow$  started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:
  - propose a more realistic model for IoT networks (exogenous activation, non stationary traffic, etc)
  - propose an efficient decentralized low-cost algorithm



- ▶ Unify the *multi-player* and *non-stationary* bandit models
  - $\hookrightarrow$  in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- More validation of our contributions in real-world IoT environments
  - $\hookrightarrow$  started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:
  - propose a more realistic model for IoT networks (exogenous activation, non stationary traffic, etc)
  - propose an efficient decentralized low-cost algorithm
  - that works empirically and has strong theoretical guarantees!



- ▶ Unify the *multi-player* and *non-stationary* bandit models
  - $\hookrightarrow$  in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
  - $\hookrightarrow$  started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:
  - propose a more realistic model for IoT networks (exogenous activation, non stationary traffic, etc)
  - propose an efficient decentralized low-cost algorithm
  - that works empirically and has strong theoretical guarantees!
- Extend my Python library SMPyBandits to cover many other bandit models (cascading, delay feedback, combinatorial, contextual etc)
  - $\hookrightarrow$  it is already online, free and open-source on <code>GitHub.com/SMPyBandits</code>



## List of publications

#### 8 International conferences with proceedings:

- "MAB Learning in IoT Networks", Bonnefoi, Besson et al, CROWNCOM, 2017
- ▶ "Aggregation of MAB for OSA", Besson, Kaufmman, Moy, IEEE WCNC, 2018
- ▶ "Multi-Player Bandits Revisited", Besson & Kaufmann, ALT, 2018
- ▶ "MALIN with GRC ...", Bonnefoi, Besson, Moy, demo at ICT, 2018
- ► "GNU Radio Implementation of MALIN ...", Besson et al, IEEE WCNC, 2019
- ▶ "UCB ... LPWAN w/ Retransmissions", Bonnefoi, Besson et al, IEEE WCNC, 2019
- ► "Decentralized Spectrum Learning ...", Moy & Besson, ISIoT, 2019
- ► "Analyse non asymptotique ...", Besson & Kaufmann, GRETSI, 2019

#### 1 Preprints:

▶ "Doubling-Trick ...", Besson & Kaufmann, arXiv:1803.06971, 2018

#### 3 Submitted works:

- "Decentralized Spectrum Learning ...", Moy, Besson et al, for Annals of Telecommunications, July 2019
- ▶ "GLRT meets klUCB ...", Besson & Kaufmann & Maillard, for AISTATS, Oct.2019
- ► "SMPyBandits ...", Besson, for JMLR MLOSS, October 2019



#### **Conclusion**

# Thanks for your attention!

Questions & Discussion



➤ an extension of our model of IoT network to account for retransmissions (Section 5.4),

- an extension of our model of IoT network to account for retransmissions (Section 5.4),
- my Python library SMPyBandits (Chapter 3),

- an extension of our model of IoT network to account for retransmissions (Section 5.4),
- my Python library SMPyBandits (Chapter 3),
- our proposed algorithm for aggregating bandit algorithms (Chapter 4),

- an extension of our model of IoT network to account for retransmissions (Section 5.4),
- my Python library SMPyBandits (Chapter 3),
- our proposed algorithm for aggregating bandit algorithms (Chapter 4),
- details about our algorithms, their precise theoretical results and proofs (Chapters 6 & 7),

- an extension of our model of IoT network to account for retransmissions (Section 5.4),
- my Python library SMPyBandits (Chapter 3),
- our proposed algorithm for aggregating bandit algorithms (Chapter 4),
- details about our algorithms, their precise theoretical results and proofs (Chapters 6 & 7),
- our work on the "doubling trick" (to make an algorithm  $\mathcal A$  anytime and keep its regret bounds).



# REFERENCES AND PUBLICATIONS

Check out the

# "The Bandit Book"

by Tor Lattimore and Csaba Szepesvári Cambridge University Press, 2019.



## Where to know more: about our work?

Reach me (or Christophe or Émilie) out by email, if you have questions

```
Lilian.Besson @ CentraleSupelec.fr

→ perso.crans.org/besson/
```

```
Christophe.Moy @ Univ-Rennes1.fr

→ moychristophe.wordpress.com
```

```
Emilie.Kaufmann @ Univ-Lille.fr

→ chercheurs.lille.inria.fr/ekaufman
```



Experiment with bandits by yourself!

Interactive demo on this web-page

→ perso.crans.org/besson/phd/MAB\_interactive\_demo/

Use my Python library for simulations of MAB problems **SMPyBandits** 

- $\hookrightarrow$  SMPyBandits.GitHub.io & GitHub.com/SMPyBandits
  - ▶ Install with \$ pip install SMPyBandits
  - Free and open-source (MIT license)
  - Easy to set up your own bandit experiments, add new algorithms etc.

#### $\hookrightarrow$ SMPyBandits.GitHub.io



#### Main references

- My PhD thesis (Lilian Besson)
  - "Multi-players Bandit Algorithms for Internet of Things Networks"
  - → Online at perso.crans.org/besson/phd/
  - → Open-source at GitHub.com/Naereen/phd-thesis/



# List of publications

Cf.: CV.archives-ouvertes.fr/lilian-besson



## International conferences with proceedings (1/2)

- Decentralized Spectrum Learning for IoT Wireless Networks Collision Mitigation, by Christophe Moy & Lilian Besson.
   1st International ISIoT workshop, at Conference on Distributed Computing in Sensor Systems, Santorini, Greece, May 2019.
   See Chapter 5.
- ▶ Upper-Confidence Bound for Channel Selection in LPWA Networks with Retransmissions, by Rémi Bonnefoi, Lilian Besson, Julio Manco-Vasquez & Christophe Moy. 1st International MOTIoN workshop, at WCNC, Marrakech, Morocco, April 2019. See Section 5.4.
- GNU Radio Implementation of MALIN: "Multi-Armed bandits Learning for Internet-of-things Networks", by Lilian Besson, Rémi Bonnefoi & Christophe Moy. Wireless Communication and Networks Conference, Marrakech, April 2019. See Section 5.3.

For more details, see: CV.Archives-Ouvertes.fr/lilian-besson.



## International conferences with proceedings (2/2)

- Multi-Player Bandits Revisited,
   by Lilian Besson & Émilie Kaufmann.
   Algorithmic Learning Theory, Lanzarote, Spain, April 2018.
   See Chapter 6.
- ▶ Aggregation of Multi-Armed Bandits learning algorithms for Opportunistic Spectrum Access, by Lilian Besson, Émilie Kaufmann & Christophe Moy.

  Wireless Communication and Networks Conference, Barcelona, Spain, April 2018. See Chapter 4.
- Multi-Armed Bandit Learning in IoT Networks and non-stationary settings, by Rémi Bonnefoi, L.Besson, C.Moy, É.Kaufmann & Jacques Palicot. Conference on Cognitive Radio Oriented Wireless Networks, Lisboa, Portugal, September 2017. Best Paper Award. See Section 5.2.

#### **Demonstrations in international conferences**

MALIN: "Multi-Arm bandit Learning for lot Networks" with GRC: A TestBed Implementation and Demonstration that Learning Helps, by Lilian Besson, Rémi Bonnefoi, Christophe Moy. Demonstration presented in International Conference on Communication, Saint-Malo, France, June 2018.
See YouTu. be/HospLNQhcMk for a 6-minutes presentation video.
See Section 5.3

## French language conferences with proceedings

Analyse non asymptotique d'un test séquentiel de détection de ruptures et application aux bandits non stationnaires (in French), by Lilian Besson & Émilie Kaufmann, GRETSI, August 2019.
See Chapter 7.

#### Submitted works...

- Decentralized Spectrum Learning for Radio Collision Mitigation in Ultra-Dense IoT Networks: LoRaWAN Case Study and Measurements, by Christophe Moy, Lilian Besson, G. Delbarre & L. Toutain, July 2019. Submitted for a special volume of the Annals of Telecommunications journal, on "Machine Learning for Intelligent Wireless Communications and Networking". See Chapter 5.
- The Generalized Likelihood Ratio Test meets klUCB: an Improved Algorithm for Piece-Wise Non-Stationary Bandits, by Lilian Besson & Émilie Kaufmann & Odalric-Ambrym Maillard, October 2019. Submitted for AISTATS 2020. Preprint at HAL.Inria.fr/hal-02006471. See Chapter 7.
- SMPyBandits: an Open-Source Research Framework for Single and Multi-Players Multi-Arms Bandits (MAB) Algorithms in Python, by Lilian Besson
  Active development since October 2016, HAL.Inria.fr/hal-01840022. It currently consists in about 45000 lines of code, hosted on GitHub.com/SMPyBandits, and a complete documentation accessible on SMPyBandits.rtfd.io or SMPyBandits.GitHub.io.
  Submitted for JMLR MLOSS, in October 2019.
  See Chapter 3.



## In progress works waiting for a new submission...

What Doubling-Trick Can and Can't Do for Multi-Armed Bandits, by Lilian Besson & Émilie Kaufmann, September 2018. Preprint at HAL.Inria.fr/hal-01736357.

## Backup slides

I included here some extra slides. . .

- ▶ pseudo code of Rand-Top-M + kl-UCB
- pseudo code of MC-Top-M + kl-UCB
- exact regret bound of MC-Top-M + kl-UCB
- pseudo code of GLRT + kl-UCB
- exact regret bound of GLRT + kl-UCB



#### Our algorithm Rand-Top-M

```
1 Let A^{j}(0) \sim \mathcal{U}([K]) and C^{j}(0) = \text{False}
2 for t = 1, ..., T do
       if A^{j}(t-1) \notin M^{j}(t) then
           if C^{j}(t-1) then
                                                               // collision at previous step
              A^{j}(t) \sim \mathcal{U}\left(\widehat{M^{j}}(t)\right)
                                                                               // randomly switch
                         // randomly switch on an arm that had smaller UCB
              A^{j}(t) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap \left\{k : U_{k}^{j}(t-1) \leq U_{A^{j}(t)}^{j}(t-1)\right\}\right)
       else
8
            A^{j}(t) = A^{j}(t-1)
                                                                       // stays on the same arm
        Play arm A^{j}(t), get new observations (sensing and collision),
10
       Compute the indices U_k^j(t+1) and set \widehat{M}^j(t+1) for next step.
11
12 end
```

**Algorithm 6.1:** The RandTopM decentralized learning policy (for an index policy  $U^{j}$ ).

#### Our algorithm MC-Top-M

```
1 Let A^{j}(0) \sim \mathcal{U}([K]) and C^{j}(0) = \text{False} and S^{j}(1) = \text{False}
 2 for t = 1, ..., T do
       if A^{j}(t-1) \notin M^{j}(t) then
           \begin{array}{ll} A^j(t-1) \notin M^j(t) \text{ then} & \text{// transition (3) or (5)} \\ A^j(t) \sim \mathcal{U}\left(\widehat{M^j}(t) \cap \left\{k: U^j_k(t-1) \leq U^j_{A^j(t)}(t-1)\right\}\right) & \text{// not empty} \end{array} 
        s^{j}(t) = \text{False} // aim at an arm with a smaller UCB at t-1
        else if C^{j}(t-1) and \overline{s^{j}(t-1)} then
                                                             // collision and not fixed
 6
           A^{j}(t) \sim \mathcal{U}\left(\widehat{M^{j}}(t)\right)
                                                                                     // transition (2)
          s^{j}(t) = \text{False}
 8
        else
                                                                           // transition (1) or (4)
           A^{j}(t) = A^{j}(t-1)
                                                                    // stay on the previous arm
10
        s^{j}(t) = \text{True}
                                   // become or stay fixed on a "chair"
11
        Play arm A^{j}(t), get new observations (sensing and collision),
12
        Compute the indices U_k^j(t+1) and set M^j(t+1) for next step.
13
14 end
```

**Algorithm 6.2:** The MCTopM decentralized learning policy (for an index policy  $U^{j}$ ).



#### Lemma: bad selections for MC-Top-*M* with kl-UCB

#### Multi-Players Multi-Armed Bandits

**Lemma 6.10.** For any  $\mu \in \mathcal{P}_M$ , let player  $j \in [M]$  use the RandTopM-, MCTopM- or RhoRand-kl-UCB decentralized policy with exploration function  $f(t) \doteq \ln(t) + 3\ln(\ln(t))$ . Then for any sub-optimal arm  $k \in M$ -worst there exists problem-dependent constants  $C_{\mu}$ ,  $D_{\mu} > 0$  such that

$$\mathbb{E}_{\mu}[N_k^j(T)] \le \frac{\ln(T)}{\mathrm{kl}(\mu_k, \mu_M^*)} + \underbrace{C_{\mu}\sqrt{\ln(T)} + D_{\mu}\ln(\ln(T)) + 3M + 1}_{=o(\ln(T))}.$$
 (6.19)

## Lemma: collisions for MC-Top-*M* with kl-UCB

**Lemma 6.14.** For any  $\mu \in \mathcal{P}_M$ , if all players use the MCTopM-kl-UCB decentralized policy, and  $M \leq K$ , then the total average number of collisions (on all arms) is upper-bounded by

$$\mathbb{E}_{\mu} \left[ \sum_{k=1}^{K} \mathcal{C}_{k}(T) \right] \leq M^{2} \left( 2M + 1 \right) \left( \sum_{\substack{a,b=1,\dots,K\\\mu_{a} < \mu_{b}}} \frac{1}{\mathrm{kl}(\mu_{a}, \mu_{b})} \right) \ln(T) + o(\ln T) \,. \tag{6.26}$$

#### Theoreom: regret for MC-Top-*M* with kl-UCB

**Theorem 6.15.** If all M players use MCTopM-kl-UCB, and  $M \leq K$ , then for any problem  $\mu \in \mathcal{P}_M$ , there exists a problem dependent constant  $G_{M,\mu}$ , such that the regret satisfies:

$$R_T^{\mathcal{A}}(\mu, M) \le G_{M,\mu} \ln(T) + o(\ln T)$$
. (6.31)

Moreover, the dependency of the constant regarding the number of players is  $G_{M,\mu} = \mathcal{O}(M^3)$ .

## Our algorigthm GLRT and kl-UCB

```
1 Input: Parameters: exploration rate \omega \in (0,1), confidence level \delta > 0
 2 Input: Option: Local or Global restart
 3 initialization: \forall k \in [K], \tau_k = 0 \text{ and } n_k = 0;
 4 for t = 1, 2, ..., T do
       if t \mod \left| \frac{K}{\omega} \right| \in [K] then
                                                                              // forced exploration
       A(t) = t \mod \left| \frac{K}{\omega} \right|;
       else
            A(t) \in \mathcal{U}\left(\arg\max_{k \in [K]} \mathsf{UCB}_k(t)\right), with \mathsf{UCB}_k(t) defined in (7.13);
        Play arm A(t): n_{A(t)} = n_{A(t)} + 1;
 9
        Observe the reward Y_{A(t),t}: Z_{A(t),n_{A(t)}} = Y_{A(t),t};
10
        if GLR_{\delta}(Z_{A(t),1},\ldots,Z_{A(t),n_{A(t)}}) = True then // change-point is detected
11
            if Global restart then
12
                \forall k \in [K], \tau_k = t \text{ and } n_k = 0;
                                                                                 // restart all arms
13
            else
14
             \tau_{A(t)} = t \text{ and } n_{A(t)} = 0;
                                                                         // restart only this arm
15
16 end
```

Algorithm 7.1: The GLR-klUCB algorithm, with Local or Global restarts.

## Theorem: regret bound for GLRT + kl-UCB (global)

**Theorem 7.8.** For  $\omega$  and  $\delta$  for which Assumption 7.7 is satisfied, the regret of GLR-klUCB with parameters  $\omega$  and  $\delta$  based on **Global** Restart satisfies the following finite-time regret bound

$$R_{T} \leq 2 \sum_{i=1}^{\Upsilon_{T}} \frac{4K}{\omega \left(\Delta^{(i)}\right)^{2}} \beta(T, \delta) + \omega T + \delta(K+1) \Upsilon_{T}$$

$$+ \sum_{k=1}^{K} \sum_{\substack{i=1,\dots,Y_{T} \\ \mu^{(i)} \neq \mu^{(i)}}} \frac{\left(\mu_{k^{*}}^{(i)} - \mu_{k}^{(i)}\right)}{\operatorname{kl}\left(\mu_{k}^{(i)}, \mu_{k^{*}}^{(i)}\right)} \ln(T) + \mathcal{O}\left(\sqrt{\ln(T)}\right).$$
(7.14)

## Corollary: regret bounds for GLRT + kl-UCB (global)

#### 7.6 Finite-time upper-bounds on the regret of GLR-klUCB

1. Choosing  $\omega = \sqrt{\ln(T)/T}$ ,  $\delta = 1/\sqrt{T}$  (with no prior knowledge of  $\Upsilon_T$ ) gives

$$R_T = \mathcal{O}\left(\frac{K}{(\Delta^{change})^2} \Upsilon_T \sqrt{T \ln(T)} + \frac{(K-1)}{\Delta^{opt}} \Upsilon_T \ln(T)\right), \tag{7.15}$$

2. Choosing  $\omega = \sqrt{\Upsilon_T \ln(T)/T}$ ,  $\delta = 1/\sqrt{\Upsilon_T T}$  (with prior knowledge of  $\Upsilon_T$ ) gives

$$R_T = \mathcal{O}\left(\frac{K}{(\Delta^{change})^2} \sqrt{\Upsilon_T T \ln(T)} + \frac{(K-1)}{\Delta^{opt}} \Upsilon_T \ln(T)\right). \tag{7.16}$$

#### Theorem: regret bound for GLRT + kl-UCB (local)

**Theorem 7.11.** For  $\omega$  and  $\delta$  for which Assumption 7.10 is satisfied, the regret of GLR-klUCB with parameters  $\omega$  and  $\delta$  based on Local Restart satisfies the following finite-time regret bound

$$R_T \le 2 \sum_{k=1}^K \sum_{\ell=1}^{NC_k} \frac{4K}{\omega \left(\Delta_k^{(\ell)}\right)^2} \beta(T, \delta) + \omega T + 2\delta C_T + \sum_{k=1}^K \sum_{\ell=1}^{NC_k} \frac{\ln(T)}{\mathrm{kl}(\overline{\mu}_k^{(\ell)}, \mu_{i,\ell}^*)} + \underline{\mathcal{O}}\left(\sqrt{\ln(T)}\right), (7.17)$$

where 
$$\mu_{i,\ell}^* \doteq \inf \left\{ \mu_{k_t^*}(t) : \mu_{k_t^*}(t) \neq \overline{\mu}_k^{(\ell)}, t \in [\tau_k^{(\ell)} + 1, \tau_k^{(\ell+1)}] \right\}$$
.

## Corollary: regret bounds for GLRT + kl-UCB (local)

Corollary 7.12. For "easy" problems satisfying the corresponding Assumption 7.10, with  $\Delta^{opt}$  and  $\Delta^{change}$  defined as in Corollary 7.9, then the regret of GLR-klUCB with parameters  $\omega$  and  $\delta$  based Local Restarts satisfies

1. Choosing  $\omega = \sqrt{\ln(T)/T}$ ,  $\delta = 1/\sqrt{T}$  (with no prior knowledge of  $\Upsilon_T$  or  $C_T$ ) gives

$$R_T = \mathcal{O}\left(\frac{K}{\left(\Delta^{change}\right)^2} \frac{\mathbf{C}_T}{\sqrt{T \ln(T)}} + \frac{\mathbf{C}_T}{\left(\Delta^{opt}\right)^2} \ln(T)\right),\tag{7.18}$$

2. Choosing  $\omega = \sqrt{\Upsilon_T \ln(T)/T}$ ,  $\delta = 1/\sqrt{\Upsilon_T T}$  (with prior knowledge of  $\Upsilon_T$  and "optimist" guess  $\Upsilon_T \simeq C_T \ll K \Upsilon_T$ ) gives

$$R_T = \mathcal{O}\left(\frac{K^2}{\left(\Delta^{dange}\right)^2}\sqrt{\Upsilon_T T \ln(T)} + \frac{K\Upsilon_T}{\left(\Delta^{opt}\right)^2}\ln(T)\right),\tag{7.19}$$

3. Choosing  $\omega = \sqrt{C_T \ln(T)/T}$ ,  $\delta = 1/\sqrt{C_T T}$  (with prior knowledge of  $C_T$ ) gives

$$R_{T} = \mathcal{O}\left(\frac{K}{\left(\Delta^{change}\right)^{2}}\sqrt{C_{T}T\ln(T)} + \frac{C_{T}}{\left(\Delta^{opt}\right)^{2}}\ln(T)\right), \tag{7.20}$$

4. Choosing  $\omega = \sqrt{K\Upsilon_T \ln(T)/T}$ ,  $\delta = 1/\sqrt{K\Upsilon_T T}$  (with prior knowledge of  $\Upsilon_T$  and "pessimist" guess  $C_T \simeq K\Upsilon_T$ ) gives

$$R_T = O\left(\frac{K}{\left(\Delta^{change}\right)^2}\sqrt{C_T T \ln(T)} + \frac{C_T}{\left(\Delta^{opt}\right)^2} \ln(T)\right).$$
 (7.21)



# End of backup slides

End of backup slides

Thanks for your attention!



#### What about the climatic crisis?



© Jeph Jacques, 2015, QuestionableContent.net/view.php?comic=3074

