"Multi-players Bandit Algorithms for Internet of Things Networks"

- By Lilian Besson
- ▶ PhD defense at CentraleSupélec (Rennes)
- Wednesday 20th of November, 2019
- Supervisors:
 - Prof. Christophe Moy at SCEE team, IETR & CentraleSupélec
 - Dr. Émilie Kaufmann at SequeL team, CNRS & Inria, in Lille

Introduction:

SPECTRUM ISSUES IN WIRELESS NETWORKS

Ref: Chapter 1 of my thesis.

Wireless networks

- All spectrum is allocated to different applications
- But all zones are not always used everywhere
- What if we could dynamically use the (most) empty channels?

Target of this study

Wireless networks. . .

We focus on **Internet of Things** networks (IoT) in unlicensed bands.

- → many wireless devices a wireless network served from one access point the base station is not affecting devices to radio resources...

Target of this study

Wireless networks...

We focus on **Internet of Things** networks (IoT) in unlicensed bands.

- → networks with decentralized access...
 - → many wireless devices a wireless network served from one access point the base station is not affecting devices to radio resources...

The "Internet of Things"

Main constraints

- decentralized: devices initiate transmission
- can be in unlicensed radio bands
- massive number of devices
- long range
- ultra-low power devices
- low duty cycle
- low data rate

Images from http://IBM.com/blogs/internet-of-things/what-is-the-iot and http://www.globalsign.com/en/blog/ connected-cows-and-crop-control-to-drones-the-internet-of-things-is-rapidly-improving-agriculture/

Main questions

➤ Can the IoT devices potimize their access to the radio resources in a simple, efficient, automatic and decentralized way?

In a given location, and a given time, for a given radio standard...

Main questions

- Can the IoT devices optimize their access to the radio resources in a simple, efficient, automatic and decentralized way?
 In a given location, and a given time, for a given radio standard...
- Goal: increase the battery life of IoT devices
- ► Fight the spectrum scarcity issue by using the spectrum more efficiently than a static or uniformly random allocation

Main questions

- Can the IoT devices optimize their access to the radio resources in a simple, efficient, automatic and decentralized way?
 In a given location, and a given time, for a given radio standard...
- ► Goal: increase the battery life of IoT devices 🕯
- ► Fight the spectrum scarcity issue by using the spectrum more efficiently than a static or uniformly random allocation

Main solutions!

- Yes we can!
- ▶ By letting the radio devices become "intelligent"
- ► With MAB algorithms!

OUTLINE OF THIS PRESENTATION

Contributions of my thesis highlighted today

Outline of this presentation

- ▶ Introduction. Spectrum issues in wireless networks
- ▶ Part I. Selfish MAB learning in a new model of IoT network
- ▶ Part II. Two tractable problems extending the classical bandit
 - multi-player bandits in stationary settings
 - single-player bandits in piece-wise stationary settings
- ► Conclusion and perspectives

Part I.

Selfish MAB Learning in IoT Networks

Ref: Chapter 5 of my thesis, and [Bonnefoi, Besson et al, 17].

We want

We control a *lot* of IoT devices

- We want to insert them in an already crowded wireless network
- Within a protocol slotted in time and frequency
- ► Each device \(/ \) has a low duty cycle ex: few messages per day

We want

We control a *lot* of IoT devices

- ▶ We want to insert them in an already crowded wireless network
- Within a protocol slotted in time and frequency
- ► Each device / / has a low duty cycle ex: few messages per day

A new model for IoT networks

lackbox Discrete time $t\in\mathbb{N}^*$ and K radio channels (e.g., 10) (known)

Chosen protocol: uplink messages / followed by acknowledgements \([Bonnefoi, Besson et al, 17], Sec. 5.2

[Bonneror, Besson et al, 17], Sec.3..

- ▶ *D* dynamic devices Trying to access the network *independently*
- $S = S_1 + \cdots + S_K$ **static** devices occupying the network: S_1, \ldots, S_K in each channel $\{1, \ldots, K\}$ (unknown)

Protocol: decentralized access with Ack. mode

1st case: Successful transmission if no collision on uplink messages \nearrow !

Protocol: decentralized access with Ack. mode

 2^{nd} case: Failed transmission if collision on uplink messages $\nearrow ...$

Emission model for IoT devices with *low duty cycle*

► Each device has the same low emission probability: each step, each device sends a packet with probability p

Emission model for IoT devices with low duty cycle

► Each device has the same low emission probability: each step, each device sends a packet with probability p

Background stationary ambiant traffic

- **Each** static device $^{\circ}$ uses only one channel $(S_k$ devices in channel k)
- ► Their repartition is fixed in time
- ⇒ This surrounding traffic is disturbing the dynamic devices

Emission model for IoT devices with *low duty cycle*

► Each device has the same *low* emission probability: each step, each device sends a packet with probability *p*

Background stationary ambiant traffic

- **Each** static device $^{\circ}$ uses only one channel $(S_k$ devices in channel k)
- ► Their repartition is fixed in time
- ⇒ This surrounding traffic is disturbing the dynamic devices

Dynamic radio reconfiguration

- ▶ Dynamic device decide the channel to use to send their packets
- ► They all have memory and computational capacity to implement small decision algorithms

Problem

Goal

- minimize packet loss ratio (max = number of received Ack)
- ▶ in a finite-space discrete-time Decision Making Problem

Baseline (naive solution)

Purely random (uniform) spectrum access for the $\it D$ dynamic devices $\it I$.

A possible solution

Embed a **decentralized Multi-Armed Bandit** algorithm, running **independently on each dynamic device** .

If an oracle can affect D_k dynamic devices to channel k, the successful transmission probability of the entire network is

$$\mathbb{P}(\text{success}|\text{sent}) = \sum_{k=1}^{K} \underbrace{(1-p)^{D_k-1}}_{D_k-1 \text{ others}} \times \underbrace{(1-p)^{S_k}}_{\text{No static device}} \times \underbrace{D_k/D}_{\text{Sent in channel }k}$$

If an oracle can affect D_k dynamic devices to channel $k \triangleq k$, the successful transmission probability of the entire network is

$$\mathbb{P}(\text{success}|\text{sent}) = \sum_{k=1}^{K} \underbrace{(1-p)^{D_k-1}}_{D_k-1 \text{ others}} \times \underbrace{(1-p)^{S_k}}_{\text{No static device}} \times \underbrace{D_k/D}_{\text{Sent in channel } k}$$

▶ The oracle has to solve this **optimization problem**:

$$\begin{cases} \mathop{\arg\max}_{D_1,\dots,D_K} & \sum\limits_{k=1}^K D_k (1-p)^{S_k+D_k-1} \\ \text{such that} & \sum\limits_{k=1}^K D_k = D \text{ and } D_k \geq 0, \ \ \forall 1 \leq k \leq K. \end{cases}$$

Contribution: a (numerical) solver for this quasi-convex optimization problem, with *Lagrange multipliers*.

1) Oracle centralized strategy

 \implies This *oracle* strategy has very good performance, as it maximizes the transmission rate of all the D dynamic devices

But unrealistic

But not achievable in practice!

- because there is no centralized supervision!
- ightharpoonup and (S_1, \ldots, S_K) are unknown!

We propose a realistic decentralized approach, with bandits!

Hum, what is a (one-armed) bandit?

It's an old name for a casino machine 🖳 !

© Dargaud 1981, Lucky Luke tome 18,.

Stochastic Multi-Armed Bandit formulation

A player tries to collect rewards when playing a K-armed \blacksquare bandit game.

At each round $t \in \{1, \ldots, T\}$

- ▶ player chooses an $arm extbf{ extit{ iny }} A(t) \in \{1, \dots, K\}$
- the arm generates an i.i.d. reward $r_{A(t)}(t) \sim \nu_{A(t)}$ Ex: from a Bernoulli distribution $\nu_k = \mathcal{B}(\mu_k)$
- ▶ player observes the reward $r_{A(t)}(t)$

Stochastic Multi-Armed Bandit formulation

A player tries to collect rewards when playing a K-armed \blacksquare bandit game.

At each round $t \in \{1, \dots, T\}$

- ▶ player chooses an $arm ext{ } ex$
- the arm generates an i.i.d. reward $r_{A(t)}(t) \sim \nu_{A(t)}$ Ex: from a Bernoulli distribution $\nu_k = \mathcal{B}(\mu_k)$
- ▶ player observes the reward $r_{A(t)}(t)$

Goal (Reinforcement Learning)

Maximize the sum reward or its expectation

$$\max_{A} \sum_{t=1}^{T} r_{A(t)} \quad \text{or} \quad \max_{A} \mathbb{E} \left[\sum_{t=1}^{T} r_{A(t)} \right].$$

[Bubeck, 12], [Lattimore & Szepesvári, 19], [Slivkins, 19]

2) Pseudo *MAB* formulation of our IoT problem

A dynamic device tries to collect rewards when transmitting:

- it transmits following a random Bernoulli process (ie. probability p of transmitting at each round t)
- ▶ it chooses a channel $A(\tau) \in \{1, ..., K\}$
 - if Ack (no collision) \implies reward $r_{A(\tau)} = 1$
 - ▶ if collision (no Ack) \implies reward $r_{A(\tau)} = 0$

```
(= arm 🗐)
```

(successful transm.!) (failed transmission!)

2) Pseudo *MAB* formulation of our IoT problem

A dynamic device tries to collect rewards when transmitting:

- it transmits following a random Bernoulli process
 (ie. probability p of transmitting at each round t)
- ▶ it chooses a channel $A(\tau) \in \{1, ..., K\}$
 - ▶ if Ack (no collision) \implies reward $r_{A(\tau)} = 1$
 - if collision (no Ack) \implies reward $r_{A(\tau)} = 0$

```
(= arm ♣)
```

(successful transm.!)
(failed transmission!)

Goal: Maximize transmission rate \equiv maximize cumulated rewards

It is not a stochastic Multi-Armed Bandit problem

It looks like a MAB but the environment is not stochastic or stationary

A dynamic device keeps au number of sent packets

• For the first K activations $(\tau = 1, ..., K)$, try each channel *once*.

A dynamic device keeps τ number of sent packets

- For the first K activations $(\tau = 1, ..., K)$, try each channel *once*.
- Then for the next steps t:
 - With probability p, the device is active $(\tau := \tau + 1)$

- ▶ Choose channel $A(\tau) = \arg \max UCB_k(\tau)$,
- ▶ Observe reward $r_{A(\tau)}(\tau)$ from arm $A(\tau)$
 - ▶ Update $N_k(\tau+1)$ nb selections of channel k
 - Update $X_k(\tau)$ nb of successful transmissions
- Wait for next message... (mean waiting time $\simeq 1/p$)

Confidence Bonus

- For any dynamic device $\hat{\ }$, for any round t:
 - ▶ With probability p, the device is active $(\tau := \tau + 1)$
 - ► Play UCB algorithm. . . [Auer et al, 02]
 - $lackbox{\hspace{0.5cm}$\hspace{0.6cm}$\hspace{0.5cm}$\hspace{0.6cm}$\hspace{0.5cm}}$

Problem 1: multiple dynamic devices

► The collisions between dynamic devices are **not stochastic!**

Problem 2: random activation times τ ?

- Devices transmits only with probability p at each time t (following its Bernoulli activation pattern)
- ▶ The times τ are **not** the global time indexes t (synchronized clock) !
- ⇒ These two problems make the model hard to analyze!

Experimental setting: simulation parameters

- ightharpoonup K = 10 channels $lap{1}{3}$,
- \triangleright S + D = 10000 devices in total,

Experimental setting: simulation parameters

- ightharpoonup K = 10 channels $lap{1}{2}$,
- \triangleright S + D = 10000 devices in total,
- $ightharpoonup p = 10^{-3}$ probability of emission,
- ▶ Horizon $T = 10^5$ total time slots (avg. $\simeq 100$ messages / device),

Experimental setting: simulation parameters

- ightharpoonup K = 10 channels $lap{1}{2}$,
- \triangleright S + D = 10000 devices in total,
- $ightharpoonup p = 10^{-3}$ probability of emission,
- ▶ Horizon $T=10^5$ total time slots (avg. $\simeq 100$ messages / device),
- ▶ We change the proportion of dynamic devices $D \cdot A / (S \cdot A + D \cdot A)$,
- ▶ For one example of repartition of $(S_1, ..., S_K)$ static devices $^{\bigcirc}$.

One result for 10% of dynamic devices

10% of dynamic devices . Gives 7% of gain. [Bonnefoi, Besson et al, 17], Sec.5.2

Growing proportion of dynamic devices D/(S+D)

- ► The MAB selfish learning is *almost optimal*, for any proportion of dynamic devices , *after a short learning time*.
- ▶ In this example, it gives up-to 16% gain over the naive approach!

We developed a realistic demonstration using USRP boards and GNU Radio, as a proof-of-concept in a "toy" IoT network.

Multi-Armed bandit Learning in lot Networks (MALIN) - Demo at ICT 2018

[Bonnefoi et al, ICT 18], [Besson et al, WCNC 19], Ch.5.3 and video published on YouTu.be/HospLNQhcMk

Using USRP board to simulate IoT devices

GNU Radio for the UI of the demo

(3/3**)**

From practice to theory

It works very well empirically! But random activation times and collisions due to multiple devices make the model hard to analyze...

- ► <u>Hyp 1:</u> in avg. $p \times D$ dynamic devices are using K channels \Longrightarrow so $p \leq \frac{K}{D}$ or $D \leq \frac{K}{D}$ gives best performance
- ▶ Hyp 2: we assumed a stationary background traffic 🖺 . . .

From practice to theory

It works very well empirically! But random activation times and collisions due to multiple devices make the model hard to analyze...

- ► <u>Hyp 1:</u> in avg. $p \times D$ dynamic devices $\stackrel{\checkmark}{=}$ are using K channels $\stackrel{\textcircled{\blacksquare}}{=}$ so $p \leq \frac{K}{D}$ or $D \leq \frac{K}{D}$ gives best performance
- ▶ Hyp 2: we assumed a stationary background traffic 🖺 . . .

Goal: obtain theoretical result for our proposed model of IoT networks, and guarantees about the observed behavior of *Selfish MAB learning*.

From practice to theory

It works very well empirically! But random activation times and collisions due to multiple devices make the model hard to analyze...

- ► <u>Hyp 1:</u> in avg. $p \times D$ dynamic devices are using K channels \Longrightarrow so $p \leq \frac{K}{D}$ or $D \leq \frac{K}{D}$ gives best performance
- ▶ Hyp 2: we assumed a stationary background traffic 🖺 . . .

Goal: obtain theoretical result for our proposed model of IoT networks, and guarantees about the observed behavior of *Selfish MAB learning*.

We can study theoretically two more specific models

- ▶ Model 1: multi-player bandits: devices are always activated ie. p = 1 in their random activation process $\implies D = M \le \frac{K}{p} = K$
- ▶ Model 2: non-stationary bandits (for one device 1)

Part II.

THEORETICAL ANALYSIS OF TWO RELAXED MODELS

Ref: Chapters 6 and 7 of my thesis and [Besson & Kaufmann, 18] and [Besson et al, 19].

Theoretical analysis of two relaxed models

Multi-player bandits

Ref: Chapter 6 of my thesis, and [Besson & Kaufmann, 18].

Piece-wise stationary bandits

Multi-players bandits: setup

 $M \ge 2$ players playing the same K-armed bandit $(2 \le M \le K)$ they are all activated at each time step, ie. p = 1

At round $t \in \{1, \ldots, T\}$:

- and the reward is computed as

$$r_{m,t} = \begin{cases} s_{A_t^m,t} & \text{if no other player chose the same arm} \\ 0 & \text{else (= COLLISION)} \end{cases}$$

Multi-players bandits: setup

 $M \ge 2$ players playing the same K-armed bandit $(2 \le M \le K)$ they are all activated at each time step, ie. p = 1

At round $t \in \{1, \ldots, T\}$:

- ▶ player m selects arm A_t^m $\stackrel{\text{left}}{=}$; then this arm generates $s_{A_t^m,t} \in \{0,1\}$
- and the reward is computed as

$$r_{m,t} = \begin{cases} s_{A_t^m,t} & \text{if no other player chose the same arm} \\ 0 & \text{else (= COLLISION)} \end{cases}$$

Goal

- ► maximize centralized (sum) rewards $\sum_{m=1}^{M} \sum_{t=1}^{T} r_{m,t}$
- ... without (explicit) communication between players
- trade-off: exploration / exploitation / and collisions!

Multi-Players bandits for Cognitive Radios

Different observation models: players observe $s_{A_t^m,t}$ and/or $r_{m,t}$

```
\# 1: "Listen before talk" [Liu & Zhao, 10], [Jouini et al. 10], [Anandkumar et al. 11]
```

- Good model for Opportunistic Spectrum Access (OSA)
- ► First do sensing, attempt of transmission if no Primary User (PU), possible collisions with other Secondary Users (SU).
- ► Feedback model:
 - ightharpoonup observe first $s_{A_t^m,t}$,
 - ▶ if $s_{A_t^m,t} = 1$, transmit and then observe the joint $r_{m,t}$,
 - else don't transmit and don't observe a reward.

M-P bandits for Cognitive Radios: proposed models

2: "Talk and maybe collide"

- [Besson & Kaufmann, 18]
- Good model for Internet of Things (IoT)
- Do not do any sensing, just transmit, and wait for an acknowledgment before any next message.
- ► Feedback model:
 - **b** observe only the joint information $r_{m,t}$,
 - ▶ no collision if $r_{m,t} \neq 0$,
 - but cannot distinguish between collision or zero reward if $r_{m,t} = 0$.

M-P bandits for Cognitive Radios: proposed models

2: "Talk and maybe collide"

- [Besson & Kaufmann, 18]
- ► Good model for Internet of Things (IoT)
- ▶ Do not do any sensing, just transmit, and wait for an acknowledgment before any next message.
- ► Feedback model:
 - **b** observe only the joint information $r_{m,t}$,
 - ▶ no collision if $r_{m,t} \neq 0$,
 - **b** but cannot distinguish between collision or zero reward if $r_{m,t} = 0$.

3: "Observe collision then talk?"

[Besson & Kaufmann, 18], [Boursier et al, 19]

- A third "hybrid" model studied by several recent papers, following our work
- Feedback model:
 - first check if collision,
 - ▶ then if not collision, receive joint reward $r_{m,t}$.

Regret for multi-player bandits (M players on K arms)

<u>Hypothesis:</u> arms sorted by decreasing mean: $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_K$

$$R_{\mu}(\mathcal{A}, T) := \underbrace{\left(\sum_{k=1}^{M} \mu_{k}\right) T}_{\text{oracle total reward}} - \mathbb{E}_{\mu}^{\mathcal{A}} \left[\sum_{t=1}^{T} \sum_{m=1}^{M} r_{m,t}\right]$$

Regret decomposition

[Besson & Kaufmann, 18]

$$R_{\mu}(\mathcal{A}, T) = \sum_{k=M+1}^{K} (\mu_{M} - \mu_{k}) \mathbb{E}[N_{k}(T)]$$

$$+ \sum_{k=1}^{M} (\mu_{k} - \mu_{M}) (T - \mathbb{E}[N_{k}(T)]) + \sum_{k=1}^{K} \mu_{k} \mathbb{E}[\mathcal{C}_{k}(T)].$$

- \triangleright $N_k(T)$ total number of selections of arm k
- \triangleright $C_k(T)$ total number of collisions experienced on arm k

Regret for multi-player bandits (M players on K arms)

Regret decomposition

[Besson & Kaufmann, 18]

$$R_{\mu}(\mathcal{A}, T) \leq \operatorname{cst} \sum_{k=M+1}^{K} \mathbb{E}\left[N_{k}(T)\right] + \operatorname{cst'} \sum_{k=1}^{M} \mathbb{E}\left[\mathcal{C}_{k}(T)\right].$$

A good algorithm has to control both

- the number of selections of sub-optimal arms
 - \hookrightarrow with a good classical bandit policy: like kl-UCB
- ▶ the number of collisions on optimal arms
 - \hookrightarrow with a good orthogonalization procedure

The MC-Top-M algorithm (for the OSA case)

At round t, player m uses his past sensing information to:

- lacktriangle compute an Upper Confidence Bound for each mean μ_k , $\mathrm{UCB}_k^m(t)$
- ▶ use the UCBs to estimate the *M* best arms

$$\hat{M}^m(t) := \{ \text{arms with } M \text{ largest UCB}_k^m(t) \}$$

Two simple ideas: inspired by Musical Chair [Rosenski et al. 16]

- lacktriangle always pick an arm estimated as "good" $A^m(t) \in \hat{M}^m(t-1)$
- try not to switch arm too often

$$\sigma^m(t) := \{ player m \text{ is "fixed" at the end of round } t \}$$

Other UCB-based algorithms: TDFS [Lui and Zhao, 10], Rho-Rand [Anandkumar et al., 11], Selfish [Bonnefoi, Besson et al., 17]

The MC-Top-M algorithm (for the OSA case)

Sketch of the proof to bound number of collisions

- ▶ any sequence of transitions (2) has constant length
- \triangleright $\mathcal{O}(\log T)$ number of transitions (3) and (5), by kl-UCB
- \implies player m is fixed, for almost all rounds $(\mathcal{O}(T \log T) \text{ times})$
 - ▶ nb of collisions $\leq M \times$ nb of collisions of non fixed players
- \implies nb of collisions = $\mathcal{O}(\log T)$ & $\mathcal{O}(\log(T))$ sub-optimal selections (4)

Theoretical results for MC-Top-M

MC-Top-M with kl-based confidence intervals

[Cappé et al. 13]

$$\mathrm{UCB}_k^m(t) = \max\left\{q: N_k^m(t)\mathrm{kl}\left(\hat{\mu}_k^m(t), q\right) \leq \ln(t)\right\},\,$$

where
$$kl(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y)) = x \ln\left(\frac{x}{y}\right) + (1 - x) \ln\left(\frac{1 - x}{1 - y}\right)$$
.

Control of the sub-optimal selections

(state-of-the-art)

For all sub-optimal arms $k \in \{M+1, \ldots, K\}$,

$$\mathbb{E}[N_k^m(T)] \leq \frac{\ln(T)}{\mathrm{kl}(\mu_k, \mu_M)} + C_{\mu} \sqrt{\ln(T)}.$$

Control of the collisions

(new result)

$$\mathbb{E}\left[\sum_{k=1}^K \frac{\mathcal{C}_k(T)}{\mathcal{C}_k(T)}\right] \leq M^2 \left(\sum_{a,b: \mu_1 \leq \mu_b} \frac{2M+1}{\mathrm{kl}(\mu_a,\mu_b)}\right) \ln(T) + \mathcal{O}(\ln T).$$

Theoretical results for MC-Top-M

MC-Top-M with kl-based confidence intervals

[Cappé et al. 13]

$$UCB_k^m(t) = \max \left\{ q : N_k^m(t) \operatorname{kl} \left(\hat{\mu}_k^m(t), q \right) \le \ln(t) \right\},\,$$

where
$$kl(x, y) = KL(\mathcal{B}(x), \mathcal{B}(y)) = x \ln\left(\frac{x}{y}\right) + (1 - x) \ln\left(\frac{1 - x}{1 - y}\right)$$
.

Control of the sub-optimal selections

(state-of-the-art)

For all sub-optimal arms $k \in \{M+1,\ldots,K\}$,

$$\mathbb{E}[N_k^m(T)] \leq \frac{\ln(T)}{\mathrm{kl}(\mu_k, \mu_M)} + C_{\mu} \sqrt{\ln(T)}.$$

logarithmic regret
$$\implies R_{\mu}(\mathcal{A}, T) = \mathcal{O}((\mathbf{MC_{M,\mu}} + \mathbf{M^{2}C_{6}})\log(T))$$

Control of the collisions

(new result)

$$\mathbb{E}\left[\sum_{k=1}^{K} \frac{\mathcal{C}_{k}(T)}{\operatorname{cl}_{k}(T)}\right] \leq M^{2}\left(\sum_{a,b:\mu_{a}<\mu_{b}} \frac{2M+1}{\operatorname{kl}(\mu_{a},\mu_{b})}\right) \ln(T) + \mathcal{O}(\ln T).$$

Results on a multi-player MAB problem (1/2)

For M = K, our strategy MC-Top-M (\bigcirc) achieves **constant** nb of collisions! \Longrightarrow Our new orthogonalization procedure is very efficient!

Results on a multi-player MAB problem (2/2)

For M=6 devices, our strategy MC-Top-M (\bigcirc) largely outperforms $\rho^{\rm rand}$ and other previous state-of-the-art policies (not included).

CentraleSupélec

State-of-the-art multi-player algorithms

Algorithm	Ref.	Regret bound	* is worst	Speed ∅ is worst	Parameters
Centralized multi-	[1]	$C_{M,\mu}\log(T)$	****	00	just M but
play kl-UCB	[+]	$CM_{,\mu} \log(7)$			in another model
$ ho^{rand}$ UCB	[2]	$M^3\mathbf{C}_2\log(T)$	**	00	just M
MEGA	[3]	$C_3 T^{3/4}$	*	00	4 params,
MEGN	[2]	C3 ,	^		impossible to tune
Musical Chair	[4]	$\binom{2M}{M}$ C ₄ log(T)	**	<i>©</i>	1 parameter T_0
Widsical Citali	[-]	(M) C4 log(r)	^^		hard to tune
Selfish UCB	[5]	T in some case	* / ****	000	none!
MCTopM kIUCB	[6]	$(MC_{M,\mu} + M^2C_6)\log(T)$	****	00	just M
Sic-MMAB	[7]	$(C_{M,\mu} + MK) \log(T)$	****	<i></i>	none! but
DIC-MIMAD	[/]	$(\mathbf{M}, \mu \mid \mathcal{M}) \log(T)$	^^^^		in another model
DPE	[8]	$C_{M,\mu}\log(\mathcal{T})$??	<i>©</i>	none! but
					in another model

Performance | Speed

Optimal **regret bound** is multiple-play bound $\mathcal{R}(A, T) \leq C_{M,\mu} \log(T) + o(\log(T))$, with

$$\mathbf{C}_{\mathbf{M},\mu} = \sum_{k:\mu_k < \mu_{k,i}^*} \sum_{j=1}^M \frac{\mu_{M}^*}{\mathrm{kl}(\mu_k,\mu_j^*)}$$
, and $\mathbf{C}_i \gg \mathbf{C}_{\mathbf{M},\mu}$ are much larger constants.

Papers: [1] Anantharam et al, 87 [2] Anandkumar et al, 11 [3] Avner et al, 15 [4] Rosenski et al, 15

[5] Bonnefoi et al 17 [6] Besson & Kaufmann, 18 [7] Boursier et al, 19 [8] Proutière et al, 19

Theoretical analysis of two relaxed models

Multi-player bandits

Piece-wise stationary bandits

Ref: Chapter 7 of my thesis, and [Besson et al, 19].

Piece-wise stationary bandits

Stationary MAB problems

Arm $k \triangleq \text{samples rewards from the same distribution for any round}$

$$\forall t, r_k(t) \stackrel{\mathsf{iid}}{\sim} \frac{\mathsf{v}_k}{\mathsf{v}_k} = \mathcal{B}(\underline{\mu}_k).$$

Piece-wise stationary bandits

Stationary MAB problems

Arm $k \equiv$ samples rewards from the same distribution for any round

$$\forall t, r_k(t) \stackrel{\mathsf{iid}}{\sim} \frac{\mathbf{v}_k}{\mathbf{v}_k} = \mathcal{B}(\underline{\mu}_k).$$

Non stationary MAB problems?

(possibly) different distributions for any round !

$$\forall t, r_k(t) \stackrel{\text{iid}}{\sim} \nu_k(t) = \mathcal{B}(\mu_k(t)).$$

⇒ harder problem! And impossible with no extra hypothesis

Piece-wise stationary bandits

Stationary MAB problems

Arm $k \equiv$ samples rewards from the same distribution for any round

$$\forall t, r_k(t) \stackrel{\text{iid}}{\sim} \frac{v_k}{v_k} = \mathcal{B}(\mu_k).$$

Non stationary MAB problems?

(possibly) different distributions for any round!

$$\forall t, r_k(t) \stackrel{\text{iid}}{\sim} \nu_k(t) = \mathcal{B}(\mu_k(t)).$$

⇒ harder problem! And impossible with no extra hypothesis

Piece-wise stationary problems!

The literature usually focuses on the easier case, when there are at most $\Upsilon_T = o(\sqrt{T})$ intervals, on which the means are all stationary.

Example of a piece-wise stationary MAB problem

We plots the means $\mu_1(t)$, $\mu_2(t)$, $\mu_3(t)$ of K=3 arms . There are $\Upsilon_T=4$ break-points and 5 sequences in $\{1,\ldots,T=5000\}$

Regret for piece-wise stationary bandits

The "oracle" plays the (unknown) best arm $k^*(t) = \operatorname{argmax} \mu_k(t)$ (which changes between the $\Upsilon_T \geq 1$ stationary sequences)

$$\mathcal{R}(\mathcal{A}, T) = \mathbb{E}\left[\sum_{t=1}^{T} r_{k^*(t)}(t)\right] - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right]$$
$$= \underbrace{\left(\sum_{t=1}^{T} \max_{k} \mu_k(t)\right)}_{\text{oracle total reward}} - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right].$$

Regret for piece-wise stationary bandits

The "oracle" plays the (unknown) best arm $k^*(t) = \operatorname{argmax} \mu_k(t)$ (which changes between the $\Upsilon_T \geq 1$ stationary sequences)

$$\mathcal{R}(\mathcal{A}, T) = \mathbb{E}\left[\sum_{t=1}^{T} r_{k^*(t)}(t)\right] - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right]$$
$$= \underbrace{\left(\sum_{t=1}^{T} \max_{k} \mu_k(t)\right)}_{\text{oracle total reward}} - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right].$$

Typical regimes for piece-wise stationary bandits

- ▶ The (minimax) worst-case lower-bound is $\mathcal{R}(A, T) \ge \Omega(\sqrt{KT\Upsilon_T})$
- ▶ State-of-the-art algorithms \mathcal{A} obtain $\mathcal{R}(\mathcal{A}, T) \leq \mathcal{O}(K\sqrt{T\Upsilon_T \log(T)})$

Three components of our algorithm

[Besson et al, 19]

Our algorithm is inspired by CUSUM-UCB [Liu et al, 18] and M-UCB [Cao et al, 19], and new analysis of the GLR test [Maillard, 19]

▶ A classical bandit index policy: kI-UCB which gets restarted after a change-point is detected

Three components of our algorithm

[Besson et al, 19]

- ▶ A classical bandit index policy: kI-UCB which gets restarted after a change-point is detected
- A change-point detection algorithm: the Generalized Likelihood Ratio Test for sub-Bernoulli observations (BGLR), we can bound

Three components of our algorithm

[Besson et al, 19]

- ▶ A classical bandit index policy: kI-UCB which gets restarted after a change-point is detected
- A change-point detection algorithm: the Generalized Likelihood Ratio Test for sub-Bernoulli observations (BGLR), we can bound
 - its false alarm probability (if enough samples between two restarts)

Three components of our algorithm

[Besson et al, 19]

- ► A classical bandit index policy: **kl-UCB** which gets *restarted* after a change-point is detected
- A change-point detection algorithm: the Generalized Likelihood Ratio Test for sub-Bernoulli observations (BGLR), we can bound
 - its false alarm probability (if enough samples between two restarts)
 - its detection delay (for "easy enough" problems)

Three components of our algorithm

[Besson et al, 19]

- ▶ A classical bandit index policy: kl-UCB which gets restarted after a change-point is detected
- A change-point detection algorithm: the **Generalized Likelihood**Ratio Test for sub-Bernoulli observations (BGLR), we can bound
 - its false alarm probability (if enough samples between two restarts)
 - its detection delay (for "easy enough" problems)
- ▶ Forced exploration of parameter $\alpha \in (0,1)$ (tuned with Υ_T)

Our new algorithm: kl-UCB index + BGLR detector

Three components of our algorithm

[Besson et al, 19]

Our algorithm is inspired by CUSUM-UCB [Liu et al, 18] and M-UCB [Cao et al, 19], and new analysis of the GLR test [Maillard, 19]

- ▶ A classical bandit index policy: kl-UCB which gets restarted after a change-point is detected
- A change-point detection algorithm: the Generalized Likelihood Ratio Test for sub-Bernoulli observations (BGLR), we can bound
 - its false alarm probability (if enough samples between two restarts)
 - its detection delay (for "easy enough" problems)
- ▶ Forced exploration of parameter $\alpha \in (0,1)$ (tuned with Υ_T)

Our new algorithm: kl-UCB index + BGLR detector

Three components of our algorithm

[Besson et al, 19]

Our algorithm is inspired by CUSUM-UCB [Liu et al, 18] and M-UCB [Cao et al, 19], and new analysis of the GLR test [Maillard, 19]

- ► A classical bandit index policy: **kl-UCB** which gets *restarted* after a change-point is detected
- ► A change-point detection algorithm: the **Generalized Likelihood Ratio Test** for sub-Bernoulli observations (BGLR), we can bound
 - its false alarm probability (if enough samples between two restarts)
 - its detection delay (for "easy enough" problems)
- ▶ Forced exploration of parameter $\alpha \in (0,1)$ (tuned with Υ_T)

Regret bound (if T and Υ_T are both known)

Our algorithm obtains $\mathcal{R}(\mathcal{A}, \mathcal{T}) \leq \mathcal{O}\left(\frac{K}{\Delta_{\text{change}}^2} \sqrt{T \Upsilon_{\mathcal{T}} \log(\mathcal{T})}\right)$

Results on a piece-wise stationary MAB problem

 \hookrightarrow kl-UCB + BGLR (\star) achieves the best performance (among non-oracle)!

State-of-the-art piece-wise stationary algorithms

Algorithm	Ref.	Regret bound	Performance * is worst	Speed	Parameters
Naive UCB	[1]	T in worst case	*	00000	none!
Oracle-Restart UCB	[1]	$\mathbf{C}\Upsilon_{\mathcal{T}}\log(\mathcal{T})$	****	00000	the break-points (unrealistic oracle!)
Discounted UCB	[2]	$\mathbf{C}_2\sqrt{T\Upsilon_T}\log(T)$	*	0000	T and Υ_T
Sliding-Window UCB	[2]	$\mathbf{C}_{2}^{\prime}\sqrt{T\Upsilon_{T}\log(T)}$	*	0000	T and Υ_T
Exp3.S	[3]	$C\sqrt{T} T \log(T)$	*	00000	Υ_T
Discounted TS	[4]	not yet proven	**	0000	how to tune γ ?
CUSUM-UCB	[5]	$C_5\sqrt{T\Upsilon_T\log(\frac{T}{\Upsilon_T})}$	***	00	T , Υ_T and δ_{min}
M-UCB	[6]	$C_6\sqrt{T\Upsilon_T\log(T)}$	**	<i>@@@</i>	\mathcal{T} , $\Upsilon_{\mathcal{T}}$ and δ_{min}
BGLR + kl-UCB	[7]	$C\sqrt{T} T \log(T)$	****	0	T and Υ_T
AdSwitch	[8]	$C_8\sqrt{T\Upsilon_T\log(T)}$	**	<i></i>	just T
$Ada ext{-}ILTCB^+$	[9]	$\mathbf{C}_{9}\sqrt{T\Upsilon_{T}\log(T)}$??	<i>(</i>	just T

Optimal minimax regret bound is $\mathcal{R}(\mathcal{A}, \mathcal{T}) = \mathcal{O}(\sqrt{KT\Upsilon_{\mathcal{T}}})$, and $\mathbf{C} = \mathbf{C}_{\Upsilon_{\mathcal{T}}, \mu} = \mathcal{O}(\frac{K}{\Delta_{\mathrm{change}}^2})$.

 $C_i \gg C_{\Upsilon_{\tau,\mu}}$ are much larger constants, and $\delta_{\min} < \Delta_{\text{change}}$ lower-bounds the problem difficulty.

Papers: [1] Auer et al. 02 [2] Garivier et al. 09 [3] Auer et al. 02 [5] Raj et al. 17

[5] Liu et al. 18 [6] Cao et al. 19 [7] Besson et al. 19 [8] Auer et al. 19 [9] Chen et al. 19

SUMMARY

Part I:

Part II:

Contributions (1/3)

Part I:

- ➤ A simple model of IoT network, where autonomous IoT devices can embed decentralized learning ("selfish MAB learning"),
- numerical simulations proving the quality of our solution,
- a realistic implementation on radio hardware.

Part II:

Contributions (1/3)

Part I:

- ➤ A simple model of IoT network, where autonomous IoT devices can embed decentralized learning ("selfish MAB learning"),
- numerical simulations proving the quality of our solution,
- a realistic implementation on radio hardware.

Part II:

- New algorithms and regret bounds, in two simplified models:
 - ▶ for multi-player bandits, with $M \le K$ players,
 - for piece-wise stationary bandits, with $\Upsilon_T = o(T)$ break-points,
- our proposed algorithms achieve state-of-the-art performance
 - on both numerical.
 - and theoretical results.

Perspectives (2/3)

▶ Unify the *multi-player* and *non-stationary* bandit models

 \hookrightarrow in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!

- ▶ Unify the *multi-player* and *non-stationary* bandit models
 - \hookrightarrow in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
 - \hookrightarrow started in summer 2019 with an intern working with Christophe Moy

- ▶ Unify the *multi-player* and *non-stationary* bandit models
 - \hookrightarrow in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
 - \hookrightarrow started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:

- ▶ Unify the *multi-player* and *non-stationary* bandit models
 - \hookrightarrow in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
 - \hookrightarrow started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:
 - propose a more realistic model for IoT networks (exogenous activation, non stationary traffic, etc)

- ▶ Unify the *multi-player* and *non-stationary* bandit models
 - \hookrightarrow in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
 - \hookrightarrow started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:
 - propose a more realistic model for IoT networks (exogenous activation, non stationary traffic, etc)
 - propose an efficient decentralized low-cost algorithm

- ▶ Unify the *multi-player* and *non-stationary* bandit models
 - \hookrightarrow in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- More validation of our contributions in real-world IoT environments
 - \hookrightarrow started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:
 - propose a more realistic model for IoT networks (exogenous activation, non stationary traffic, etc)
 - propose an efficient decentralized low-cost algorithm
 - that works empirically and has strong theoretical guarantees!

- ▶ Unify the *multi-player* and *non-stationary* bandit models
 - \hookrightarrow in progress: already one paper from last year (arXiv:1812.05165), we can probably do a better job with our tools!
- ▶ More validation of our contributions in real-world IoT environments
 - \hookrightarrow started in summer 2019 with an intern working with Christophe Moy
- ► Study the "Graal" goal:
 - propose a more realistic model for IoT networks (exogenous activation, non stationary traffic, etc)
 - propose an efficient decentralized low-cost algorithm
 - that works empirically and has strong theoretical guarantees!
- Extend my Python library SMPyBandits to cover many other bandit models (cascading, delay feedback, combinatorial, contextual etc)
 - \hookrightarrow it is already online, free and open-source on <code>GitHub.com/SMPyBandits</code>

List of publications

8 International conferences with proceedings:

- "MAB Learning in IoT Networks", Bonnefoi, Besson et al, CROWNCOM, 2017
- ▶ "Aggregation of MAB for OSA", Besson, Kaufmman, Moy, IEEE WCNC, 2018
- ▶ "Multi-Player Bandits Revisited", Besson & Kaufmann, ALT, 2018
- ▶ "MALIN with GRC ...", Bonnefoi, Besson, Moy, demo at ICT, 2018
- ► "GNU Radio Implementation of MALIN ...", Besson et al, IEEE WCNC, 2019
- ▶ "UCB ... LPWAN w/ Retransmissions", Bonnefoi, Besson et al, IEEE WCNC, 2019
- ► "Decentralized Spectrum Learning ...", Moy & Besson, ISIoT, 2019
- ► "Analyse non asymptotique ...", Besson & Kaufmann, GRETSI, 2019

1 Preprints:

▶ "Doubling-Trick ...", Besson & Kaufmann, arXiv:1803.06971, 2018

3 Submitted works:

- "Decentralized Spectrum Learning ...", Moy, Besson et al, for Annals of Telecommunications, July 2019
- ▶ "GLRT meets klUCB ...", Besson & Kaufmann & Maillard, for AISTATS, Oct.2019
- ► "SMPyBandits ...", Besson, for JMLR MLOSS, October 2019

Conclusion

Thanks for your attention!

Questions & Discussion

➤ an extension of our model of IoT network to account for retransmissions (Section 5.4),

- an extension of our model of IoT network to account for retransmissions (Section 5.4),
- my Python library SMPyBandits (Chapter 3),

- an extension of our model of IoT network to account for retransmissions (Section 5.4),
- my Python library SMPyBandits (Chapter 3),
- our proposed algorithm for aggregating bandit algorithms (Chapter 4),

- an extension of our model of IoT network to account for retransmissions (Section 5.4),
- my Python library SMPyBandits (Chapter 3),
- our proposed algorithm for aggregating bandit algorithms (Chapter 4),
- details about our algorithms, their precise theoretical results and proofs (Chapters 6 & 7),

- an extension of our model of IoT network to account for retransmissions (Section 5.4),
- my Python library SMPyBandits (Chapter 3),
- our proposed algorithm for aggregating bandit algorithms (Chapter 4),
- details about our algorithms, their precise theoretical results and proofs (Chapters 6 & 7),
- our work on the "doubling trick" (to make an algorithm $\mathcal A$ anytime and keep its regret bounds).

REFERENCES AND PUBLICATIONS

Check out the

"The Bandit Book"

by Tor Lattimore and Csaba Szepesvári Cambridge University Press, 2019.

Where to know more: about our work?

Reach me (or Christophe or Émilie) out by email, if you have questions

```
Lilian.Besson @ CentraleSupelec.fr

→ perso.crans.org/besson/
```

```
Christophe.Moy @ Univ-Rennes1.fr

→ moychristophe.wordpress.com
```

```
Emilie.Kaufmann @ Univ-Lille.fr

→ chercheurs.lille.inria.fr/ekaufman
```


Experiment with bandits by yourself!

Interactive demo on this web-page

→ perso.crans.org/besson/phd/MAB_interactive_demo/

Use my Python library for simulations of MAB problems **SMPyBandits**

- \hookrightarrow SMPyBandits.GitHub.io & GitHub.com/SMPyBandits
 - ▶ Install with \$ pip install SMPyBandits
 - Free and open-source (MIT license)
 - Easy to set up your own bandit experiments, add new algorithms etc.

\hookrightarrow SMPyBandits.GitHub.io

Main references

- My PhD thesis (Lilian Besson)
 - "Multi-players Bandit Algorithms for Internet of Things Networks"
 - → Online at perso.crans.org/besson/phd/
 - → Open-source at GitHub.com/Naereen/phd-thesis/

List of publications

Cf.: CV.archives-ouvertes.fr/lilian-besson

International conferences with proceedings (1/2)

- Decentralized Spectrum Learning for IoT Wireless Networks Collision Mitigation, by Christophe Moy & Lilian Besson.
 1st International ISIoT workshop, at Conference on Distributed Computing in Sensor Systems, Santorini, Greece, May 2019.
 See Chapter 5.
- ▶ Upper-Confidence Bound for Channel Selection in LPWA Networks with Retransmissions, by Rémi Bonnefoi, Lilian Besson, Julio Manco-Vasquez & Christophe Moy. 1st International MOTIoN workshop, at WCNC, Marrakech, Morocco, April 2019. See Section 5.4.
- GNU Radio Implementation of MALIN: "Multi-Armed bandits Learning for Internet-of-things Networks", by Lilian Besson, Rémi Bonnefoi & Christophe Moy. Wireless Communication and Networks Conference, Marrakech, April 2019. See Section 5.3.

For more details, see: CV.Archives-Ouvertes.fr/lilian-besson.

International conferences with proceedings (2/2)

- Multi-Player Bandits Revisited,
 by Lilian Besson & Émilie Kaufmann.
 Algorithmic Learning Theory, Lanzarote, Spain, April 2018.
 See Chapter 6.
- ▶ Aggregation of Multi-Armed Bandits learning algorithms for Opportunistic Spectrum Access, by Lilian Besson, Émilie Kaufmann & Christophe Moy.

 Wireless Communication and Networks Conference, Barcelona, Spain, April 2018. See Chapter 4.
- Multi-Armed Bandit Learning in IoT Networks and non-stationary settings, by Rémi Bonnefoi, L.Besson, C.Moy, É.Kaufmann & Jacques Palicot. Conference on Cognitive Radio Oriented Wireless Networks, Lisboa, Portugal, September 2017. Best Paper Award. See Section 5.2.

Demonstrations in international conferences

MALIN: "Multi-Arm bandit Learning for lot Networks" with GRC: A TestBed Implementation and Demonstration that Learning Helps, by Lilian Besson, Rémi Bonnefoi, Christophe Moy. Demonstration presented in International Conference on Communication, Saint-Malo, France, June 2018.
See YouTu. be/HospLNQhcMk for a 6-minutes presentation video.
See Section 5.3

French language conferences with proceedings

Analyse non asymptotique d'un test séquentiel de détection de ruptures et application aux bandits non stationnaires (in French), by Lilian Besson & Émilie Kaufmann, GRETSI, August 2019.
See Chapter 7.

Submitted works...

- Decentralized Spectrum Learning for Radio Collision Mitigation in Ultra-Dense IoT Networks: LoRaWAN Case Study and Measurements, by Christophe Moy, Lilian Besson, G. Delbarre & L. Toutain, July 2019. Submitted for a special volume of the Annals of Telecommunications journal, on "Machine Learning for Intelligent Wireless Communications and Networking". See Chapter 5.
- The Generalized Likelihood Ratio Test meets klUCB: an Improved Algorithm for Piece-Wise Non-Stationary Bandits, by Lilian Besson & Émilie Kaufmann & Odalric-Ambrym Maillard, October 2019. Submitted for AISTATS 2020. Preprint at HAL.Inria.fr/hal-02006471. See Chapter 7.
- SMPyBandits: an Open-Source Research Framework for Single and Multi-Players Multi-Arms Bandits (MAB) Algorithms in Python, by Lilian Besson
 Active development since October 2016, HAL.Inria.fr/hal-01840022. It currently consists in about 45000 lines of code, hosted on GitHub.com/SMPyBandits, and a complete documentation accessible on SMPyBandits.rtfd.io or SMPyBandits.GitHub.io.
 Submitted for JMLR MLOSS, in October 2019.
 See Chapter 3.

In progress works waiting for a new submission...

What Doubling-Trick Can and Can't Do for Multi-Armed Bandits, by Lilian Besson & Émilie Kaufmann, September 2018. Preprint at HAL.Inria.fr/hal-01736357.

Backup slides

I included here some extra slides. . .

- ▶ pseudo code of Rand-Top-M + kl-UCB
- pseudo code of MC-Top-M + kl-UCB
- exact regret bound of MC-Top-M + kl-UCB
- pseudo code of GLRT + kl-UCB
- exact regret bound of GLRT + kl-UCB

Our algorithm Rand-Top-M

```
1 Let A^{j}(0) \sim \mathcal{U}([K]) and C^{j}(0) = \text{False}
2 for t = 1, ..., T do
       if A^{j}(t-1) \notin M^{j}(t) then
           if C^{j}(t-1) then
                                                               // collision at previous step
              A^{j}(t) \sim \mathcal{U}\left(\widehat{M^{j}}(t)\right)
                                                                               // randomly switch
                         // randomly switch on an arm that had smaller UCB
              A^{j}(t) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap \left\{k : U_{k}^{j}(t-1) \leq U_{A^{j}(t)}^{j}(t-1)\right\}\right)
       else
8
            A^{j}(t) = A^{j}(t-1)
                                                                       // stays on the same arm
        Play arm A^{j}(t), get new observations (sensing and collision),
10
       Compute the indices U_k^j(t+1) and set \widehat{M}^j(t+1) for next step.
11
12 end
```

Algorithm 6.1: The RandTopM decentralized learning policy (for an index policy U^{j}).

Our algorithm MC-Top-M

```
1 Let A^{j}(0) \sim \mathcal{U}([K]) and C^{j}(0) = \text{False} and S^{j}(1) = \text{False}
 2 for t = 1, ..., T do
       if A^{j}(t-1) \notin M^{j}(t) then
           \begin{array}{ll} A^j(t-1) \notin M^j(t) \text{ then} & \text{// transition (3) or (5)} \\ A^j(t) \sim \mathcal{U}\left(\widehat{M^j}(t) \cap \left\{k: U^j_k(t-1) \leq U^j_{A^j(t)}(t-1)\right\}\right) & \text{// not empty} \end{array} 
        s^{j}(t) = \text{False} // aim at an arm with a smaller UCB at t-1
        else if C^{j}(t-1) and \overline{s^{j}(t-1)} then
                                                             // collision and not fixed
 6
           A^{j}(t) \sim \mathcal{U}\left(\widehat{M^{j}}(t)\right)
                                                                                     // transition (2)
          s^{j}(t) = \text{False}
 8
        else
                                                                           // transition (1) or (4)
           A^{j}(t) = A^{j}(t-1)
                                                                    // stay on the previous arm
10
        s^{j}(t) = \text{True}
                                   // become or stay fixed on a "chair"
11
        Play arm A^{j}(t), get new observations (sensing and collision),
12
        Compute the indices U_k^j(t+1) and set M^j(t+1) for next step.
13
14 end
```

Algorithm 6.2: The MCTopM decentralized learning policy (for an index policy U^{j}).

Lemma: bad selections for MC-Top-*M* with kl-UCB

Multi-Players Multi-Armed Bandits

Lemma 6.10. For any $\mu \in \mathcal{P}_M$, let player $j \in [M]$ use the RandTopM-, MCTopM- or RhoRand-kl-UCB decentralized policy with exploration function $f(t) \doteq \ln(t) + 3\ln(\ln(t))$. Then for any sub-optimal arm $k \in M$ -worst there exists problem-dependent constants C_{μ} , $D_{\mu} > 0$ such that

$$\mathbb{E}_{\mu}[N_k^j(T)] \le \frac{\ln(T)}{\mathrm{kl}(\mu_k, \mu_M^*)} + \underbrace{C_{\mu}\sqrt{\ln(T)} + D_{\mu}\ln(\ln(T)) + 3M + 1}_{=o(\ln(T))}.$$
 (6.19)

Lemma: collisions for MC-Top-*M* with kl-UCB

Lemma 6.14. For any $\mu \in \mathcal{P}_M$, if all players use the MCTopM-kl-UCB decentralized policy, and $M \leq K$, then the total average number of collisions (on all arms) is upper-bounded by

$$\mathbb{E}_{\mu} \left[\sum_{k=1}^{K} \mathcal{C}_{k}(T) \right] \leq M^{2} \left(2M + 1 \right) \left(\sum_{\substack{a,b=1,\dots,K\\\mu_{a} < \mu_{b}}} \frac{1}{\mathrm{kl}(\mu_{a}, \mu_{b})} \right) \ln(T) + o(\ln T) \,. \tag{6.26}$$

Theoreom: regret for MC-Top-*M* with kl-UCB

Theorem 6.15. If all M players use MCTopM-kl-UCB, and $M \leq K$, then for any problem $\mu \in \mathcal{P}_M$, there exists a problem dependent constant $G_{M,\mu}$, such that the regret satisfies:

$$R_T^{\mathcal{A}}(\mu, M) \le G_{M,\mu} \ln(T) + o(\ln T)$$
. (6.31)

Moreover, the dependency of the constant regarding the number of players is $G_{M,\mu} = \mathcal{O}(M^3)$.

Our algorigthm GLRT and kl-UCB

```
1 Input: Parameters: exploration rate \omega \in (0,1), confidence level \delta > 0
 2 Input: Option: Local or Global restart
 3 initialization: \forall k \in [K], \tau_k = 0 \text{ and } n_k = 0;
 4 for t = 1, 2, ..., T do
       if t \mod \left| \frac{K}{\omega} \right| \in [K] then
                                                                              // forced exploration
       A(t) = t \mod \left| \frac{K}{\omega} \right|;
       else
            A(t) \in \mathcal{U}\left(\arg\max_{k \in [K]} \mathsf{UCB}_k(t)\right), with \mathsf{UCB}_k(t) defined in (7.13);
        Play arm A(t): n_{A(t)} = n_{A(t)} + 1;
 9
        Observe the reward Y_{A(t),t}: Z_{A(t),n_{A(t)}} = Y_{A(t),t};
10
        if GLR_{\delta}(Z_{A(t),1},\ldots,Z_{A(t),n_{A(t)}}) = True then // change-point is detected
11
            if Global restart then
12
                \forall k \in [K], \tau_k = t \text{ and } n_k = 0;
                                                                                 // restart all arms
13
            else
14
             \tau_{A(t)} = t \text{ and } n_{A(t)} = 0;
                                                                         // restart only this arm
15
16 end
```

Algorithm 7.1: The GLR-klUCB algorithm, with Local or Global restarts.

Theorem: regret bound for GLRT + kl-UCB (global)

Theorem 7.8. For ω and δ for which Assumption 7.7 is satisfied, the regret of GLR-klUCB with parameters ω and δ based on **Global** Restart satisfies the following finite-time regret bound

$$R_{T} \leq 2 \sum_{i=1}^{\Upsilon_{T}} \frac{4K}{\omega \left(\Delta^{(i)}\right)^{2}} \beta(T, \delta) + \omega T + \delta(K+1) \Upsilon_{T}$$

$$+ \sum_{k=1}^{K} \sum_{\substack{i=1,\dots,Y_{T} \\ \mu^{(i)} \neq \mu^{(i)}}} \frac{\left(\mu_{k^{*}}^{(i)} - \mu_{k}^{(i)}\right)}{\operatorname{kl}\left(\mu_{k}^{(i)}, \mu_{k^{*}}^{(i)}\right)} \ln(T) + \mathcal{O}\left(\sqrt{\ln(T)}\right).$$
(7.14)

Corollary: regret bounds for GLRT + kl-UCB (global)

7.6 Finite-time upper-bounds on the regret of GLR-klUCB

1. Choosing $\omega = \sqrt{\ln(T)/T}$, $\delta = 1/\sqrt{T}$ (with no prior knowledge of Υ_T) gives

$$R_T = \mathcal{O}\left(\frac{K}{(\Delta^{change})^2} \Upsilon_T \sqrt{T \ln(T)} + \frac{(K-1)}{\Delta^{opt}} \Upsilon_T \ln(T)\right), \tag{7.15}$$

2. Choosing $\omega = \sqrt{\Upsilon_T \ln(T)/T}$, $\delta = 1/\sqrt{\Upsilon_T T}$ (with prior knowledge of Υ_T) gives

$$R_T = \mathcal{O}\left(\frac{K}{(\Delta^{change})^2} \sqrt{\Upsilon_T T \ln(T)} + \frac{(K-1)}{\Delta^{opt}} \Upsilon_T \ln(T)\right). \tag{7.16}$$

Theorem: regret bound for GLRT + kl-UCB (local)

Theorem 7.11. For ω and δ for which Assumption 7.10 is satisfied, the regret of GLR-klUCB with parameters ω and δ based on Local Restart satisfies the following finite-time regret bound

$$R_T \le 2 \sum_{k=1}^K \sum_{\ell=1}^{NC_k} \frac{4K}{\omega \left(\Delta_k^{(\ell)}\right)^2} \beta(T, \delta) + \omega T + 2\delta C_T + \sum_{k=1}^K \sum_{\ell=1}^{NC_k} \frac{\ln(T)}{\mathrm{kl}(\overline{\mu}_k^{(\ell)}, \mu_{i,\ell}^*)} + \underline{\mathcal{O}}\left(\sqrt{\ln(T)}\right), (7.17)$$

where
$$\mu_{i,\ell}^* \doteq \inf \left\{ \mu_{k_t^*}(t) : \mu_{k_t^*}(t) \neq \overline{\mu}_k^{(\ell)}, t \in [\tau_k^{(\ell)} + 1, \tau_k^{(\ell+1)}] \right\}$$
.

Corollary: regret bounds for GLRT + kl-UCB (local)

Corollary 7.12. For "easy" problems satisfying the corresponding Assumption 7.10, with Δ^{opt} and Δ^{change} defined as in Corollary 7.9, then the regret of GLR-klUCB with parameters ω and δ based Local Restarts satisfies

1. Choosing $\omega = \sqrt{\ln(T)/T}$, $\delta = 1/\sqrt{T}$ (with no prior knowledge of Υ_T or C_T) gives

$$R_T = \mathcal{O}\left(\frac{K}{\left(\Delta^{change}\right)^2} \frac{\mathbf{C}_T}{\sqrt{T \ln(T)}} + \frac{\mathbf{C}_T}{\left(\Delta^{opt}\right)^2} \ln(T)\right),\tag{7.18}$$

2. Choosing $\omega = \sqrt{\Upsilon_T \ln(T)/T}$, $\delta = 1/\sqrt{\Upsilon_T T}$ (with prior knowledge of Υ_T and "optimist" guess $\Upsilon_T \simeq C_T \ll K \Upsilon_T$) gives

$$R_T = \mathcal{O}\left(\frac{K^2}{\left(\Delta^{dange}\right)^2}\sqrt{\Upsilon_T T \ln(T)} + \frac{K\Upsilon_T}{\left(\Delta^{opt}\right)^2}\ln(T)\right),\tag{7.19}$$

3. Choosing $\omega = \sqrt{C_T \ln(T)/T}$, $\delta = 1/\sqrt{C_T T}$ (with prior knowledge of C_T) gives

$$R_{T} = \mathcal{O}\left(\frac{K}{\left(\Delta^{change}\right)^{2}}\sqrt{C_{T}T\ln(T)} + \frac{C_{T}}{\left(\Delta^{opt}\right)^{2}}\ln(T)\right), \tag{7.20}$$

4. Choosing $\omega = \sqrt{K\Upsilon_T \ln(T)/T}$, $\delta = 1/\sqrt{K\Upsilon_T T}$ (with prior knowledge of Υ_T and "pessimist" guess $C_T \simeq K\Upsilon_T$) gives

$$R_T = O\left(\frac{K}{\left(\Delta^{change}\right)^2}\sqrt{C_T T \ln(T)} + \frac{C_T}{\left(\Delta^{opt}\right)^2} \ln(T)\right).$$
 (7.21)

End of backup slides

End of backup slides

Thanks for your attention!

What about the climatic crisis?

© Jeph Jacques, 2015, QuestionableContent.net/view.php?comic=3074

