

INTRODUCTION TO MULTI-ARMED BANDITS AND REINFORCEMENT LEARNING Training School on Machine Learning for Communications

Paris, 23-25 September 2019

Who am I?

Hi, I'm Lilian Besson

- finishing my PhD in telecommunication and machine learning
- under supervision of Prof. Christophe Moy at IETR & CentraleSupélec in Rennes (France)
- and Dr. Émilie Kaufmann in Inria in Lille Thanks to Émilie Kaufmann for most of the slides material!
- Lilian.Besson @ Inria.fr
- ▶ \hookrightarrow perso.crans.org/besson/ & GitHub.com/Naereen

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 2/92

What is a *bandit*?

It's an old name for a casino machine!

 \hookrightarrow \bigcirc Dargaud, Lucky Luke tome 18.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 3/ 92

WHY BANDITS?

Innia

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 4/92

Make money in a casino?

A (single) agent facing (multiple) arms in a Multi-Armed Bandit.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 5/ 92

Make money in a casino?

A (single) agent facing (multiple) arms in a Multi-Armed Bandit.

NO!

Sequential resource allocation

Clinical trials

► *K* treatments for a given symptom (with unknown effect)

What treatment should be allocated to the next patient, based on responses observed on previous patients?

Sequential resource allocation

Clinical trials

► *K* treatments for a given symptom (with unknown effect)

What treatment should be allocated to the next patient, based on responses observed on previous patients?

Online advertisement

► K adds that can be displayed

Which add should be displayed for a user, based on the previous clicks of previous (similar) users?

Dynamic channel selection

Opportunistic Spectrum Access

K radio channels (orthogonal frequency bands)

In which channel should a radio device send a packet, based on the quality of its previous communications?

Dynamic channel selection

Opportunistic Spectrum Access

K radio channels (orthogonal frequency bands)

In which channel should a radio device send a packet, based on the quality of its previous communications? → see the next talk at 4pm !

Dynamic channel selection

Opportunistic Spectrum Access

K radio channels (orthogonal frequency bands)

In which channel should a radio device send a packet, based on the quality of its previous communications? → see the next talk at 4pm !

Communications in presence of a central controller

▶ *K* assignments from *n* users to *m* antennas (~→ *combinatorial* bandit)

How to select the next *matching* based on the throughput observed in previous communications?

Dynamic allocation of computational resources

Numerical experiments (bandits for "black-box" optimization)

where to evaluate a costly function in order to find its maximum?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 8/ 92

Dynamic allocation of computational resources

Numerical experiments (bandits for "black-box" optimization)

where to evaluate a costly function in order to find its maximum?

Artificial intelligence for games

where to choose the next evaluation to perform in order to find the best move to play next?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 8/92

Why talking about bandits today?

- rewards maximization in a stochastic bandit model
 the simplest Reinforcement Learning (RL) problem (one state)
 good introduction to RL !
- bandits showcase the important exploration/exploitation dilemma
- bandit tools are useful for RL (UCRL, bandit-based MCTS for planning in games...)
- a rich literature to tackle many specific applications
- bandits have application beyond RL (i.e. without "reward")

Outline of this talk

- Multi-armed Bandit
- Performance measure (regret) and first strategies
- Best possible regret? Lower bounds
- Mixing Exploration and Exploitation
- The Optimism Principle and Upper Confidence Bounds (UCB) Algorithms
- A Bayesian Look at the Multi-Armed Bandit Model
- Many extensions of the stationary single-player bandit models

Summary

The Multi-Armed Bandit Setup

K arms \Leftrightarrow K rewards streams $(X_{a,t})_{t \in \mathbb{N}}$

At round t, an agent:

- chooses an arm A_t
- receives a reward $R_t = X_{A_t,t}$ (from the environment)

Sequential sampling strategy (bandit algorithm): $A_{t+1} = F_t(A_1, R_1, \ldots, A_t, R_t).$

Goal: Maximize sum of rewards $\sum_{i=1}^{T} R_t$.

The Stochastic Multi-Armed Bandit Setup

K arms \Leftrightarrow *K* probability distributions : ν_a has mean μ_a

At round *t*, an agent:

- chooses an arm A_t
- ▶ receives a reward $R_t = X_{A_t,t} \sim \nu_{A_t}$ (i.i.d. from a distribution)

Sequential sampling strategy (bandit algorithm): $A_{t+1} = F_t(A_1, R_1, \dots, A_t, R_t).$

Goal: Maximize sum of rewards $\mathbb{E}\left|\sum_{t=1}^{T} R_{t}\right|$.

Discover bandits by playing this online demo!

Total Total Reward Plays 14 24

	Arm 1	Arm 2	Arm 3	Arm 4	Arm 5
Rewards:	6	2	2	2	2
Pulls:	8	4	4	4	4
Estimated Probs:	0.750	0.500	0.500	0.500	0.500
UCBs:	1.641	1.761	1.761	1.761	1.761

→ Interactive demo on this web-page
perso.crans.org/besson/phd/MAB_interactive_demo/

Historical motivation [Thompson 1933]

For the *t*-th patient in a clinical study,

- chooses a treatment A_t
- ▶ observes a (Bernoulli) response $R_t \in \{0,1\}$: $\mathbb{P}(R_t = 1 | A_t = a) = \mu_a$

Goal: maximize the expected number of patients healed.

Modern motivation (\$\$\$) [Li et al, 2010] (recommender systems, online advertisement, etc)

For the *t*-th visitor of a website,

- \blacktriangleright recommend a movie A_t
- observe a rating $R_t \sim \nu_{A_t}$ (e.g. $R_t \in \{1, \ldots, 5\}$)

Goal: maximize the sum of ratings.

Cognitive radios

Opportunistic spectrum access [Zhao et al. 10] [Anandkumar et al. 11]

Channel 1	<i>X</i> _{1,1}	<i>X</i> _{1,2}	 $X_{1,t}$	 X _{1,T}	$\sim \nu_1$
Channel 2	X _{2,1}	<i>X</i> _{2,2}	 <i>X</i> _{2,<i>t</i>}	 $X_{2,T}$	$\sim \nu_2$
Channel K	$X_{K,1}$	<i>X</i> _{<i>K</i>,2}	 $X_{K,t}$	 $X_{K,T}$	$\sim \nu_K$

streams indicating channel quality

At round *t*, the device:

- \blacktriangleright selects a channel A_t
- ▶ observes the quality of its communication $R_t = X_{A_t,t} \in [0,1]$

Goal: Maximize the overall quality of communications. \hookrightarrow see the next talk at 4pm !

PERFORMANCE MEASURE AND FIRST STRATEGIES

maia

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 16/92

Regret of a bandit algorithm

Bandit instance: $\boldsymbol{\nu} = (\nu_1, \nu_2, \dots, \nu_K)$, mean of arm \boldsymbol{a} : $\mu_{\boldsymbol{a}} = \mathbb{E}_{X \sim \nu_{\boldsymbol{a}}}[X]$.

$$\mu_{\star} = \max_{a \in \{1, \dots, K\}} \mu_a$$
 and $a_{\star} = \operatorname*{argmax}_{a \in \{1, \dots, K\}} \mu_a$.

always selecting a_{\star}

sum of rewards of the strategy ${\cal A}$

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 17/92

Regret of a bandit algorithm

Bandit instance: $\boldsymbol{\nu} = (\nu_1, \nu_2, \dots, \nu_K)$, mean of arm \boldsymbol{a} : $\mu_{\boldsymbol{a}} = \mathbb{E}_{X \sim \nu_{\boldsymbol{a}}}[X]$.

$$\mu_{\star} = \max_{\mathbf{a} \in \{1, \dots, K\}} \mu_{\mathbf{a}} \text{ and } \mathbf{a}_{\star} = \operatorname*{argmax}_{\mathbf{a} \in \{1, \dots, K\}} \mu_{\mathbf{a}}.$$

$$\mathcal{R}_{\nu}(\mathcal{A}, T) := \underbrace{T\mu_{\star}}_{\substack{\text{sum of rewards of} \\ \text{an oracle strategy} \\ \text{always selecting } a_{\star}}^{} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]}_{\substack{\text{sum of rewards of} \\ \text{the strategy}\mathcal{A}}}$$

What regret rate can we achieve?

$$\implies$$
 consistency: $\mathcal{R}_{\nu}(\mathcal{A}, T)/T \Longrightarrow 0$ (when $T \to \infty$)

 \implies can we be more precise?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 17/92

Regret decomposition

 $N_a(t)$: number of selections of arm a in the first t rounds $\Delta_a := \mu_\star - \mu_a$: sub-optimality gap of arm a

Regret decomposition

$$\mathcal{R}_{\nu}(\mathcal{A},T) = \sum_{a=1}^{K} \Delta_{a} \mathbb{E} \left[N_{a}(T) \right].$$

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 18/ 92

Regret decomposition

 $N_a(t)$: number of selections of arm a in the first t rounds $\Delta_a := \mu_\star - \mu_a$: sub-optimality gap of arm a

Regret decomposition

$$\mathcal{R}_{\nu}(\mathcal{A},T) = \sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right].$$

Proof.

$$\mathcal{R}_{\nu}(\mathcal{A}, T) = \mu_{\star} T - \mathbb{E}\left[\sum_{t=1}^{T} X_{A_{t}, t}\right] = \mu_{\star} T - \mathbb{E}\left[\sum_{t=1}^{T} \mu_{A_{t}}\right]$$
$$= \mathbb{E}\left[\sum_{t=1}^{T} (\mu_{\star} - \mu_{A_{t}})\right]$$
$$= \sum_{a=1}^{K} \underbrace{(\mu_{\star} - \mu_{a})}_{\Delta_{a}} \mathbb{E}\left[\underbrace{\sum_{t=1}^{T} \mathbb{1}(A_{t} = a)}_{N_{a}(T)}\right].$$

Lilian Besson & Émilie Kaufmann - *Introduction to Multi-Armed Bandits* 👥 23 September, 2019 - 18/ 92

Regret decomposition

 $N_a(t)$: number of selections of arm a in the first t rounds $\Delta_a := \mu_\star - \mu_a$: sub-optimality gap of arm a

Regret decomposition

$$\mathcal{R}_{\nu}(\mathcal{A}, T) = \sum_{a=1}^{K} \Delta_{a} \mathbb{E} \left[N_{a}(T) \right].$$

A strategy with small regret should:

- select not too often arms for which $\Delta_a > 0$ (sub-optimal arms)
- \blacktriangleright ... which requires to try all arms to estimate the values of the Δ_a

 \implies Exploration / Exploitation trade-off !

Two naive strategies

▶ Idea 1 :

 \implies EXPLORATION

Draw each arm T/K times

$$\hookrightarrow \mathcal{R}_{\nu}(\mathcal{A}, T) = \left(\frac{1}{K} \sum_{a: \mu_{a} > \mu_{\star}} \Delta_{a}\right) T = \Omega(T)$$

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 19/ 92

Two naive strategies

▶ Idea 1 :

 \implies EXPLORATION

Draw each arm T/K times

$$\hookrightarrow \mathcal{R}_{\nu}(\mathcal{A}, T) = \left(\frac{1}{K} \sum_{a: \mu_a > \mu_{\star}} \Delta_a\right) T = \Omega(T)$$

▶ Idea 2 : Always trust the empirical best arm ⇒ EXPLOITATION

 $A_{t+1} = rgmax_{a \in \{1,...,K\}} \widehat{\mu}_a(t)$ using estimates of the unknown means μ_a

$$\widehat{\mu}_{a}(t) = \frac{1}{N_{a}(t)} \sum_{s=1}^{\iota} X_{a,s} \mathbb{1}_{(A_{s}=a)}$$

 $\hookrightarrow \mathcal{R}_{\nu}(\mathcal{A}, T) \ge (1 - \mu_1) \times \mu_2 \times (\mu_1 - \mu_2)T = \Omega(T)$ (with K = 2 Bernoulli arms of means $\mu_1 \neq \mu_2$)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 19/ 92

Given $m \in \{1, \ldots, T/K\}$,

- draw each arm *m* times
- compute the empirical best arm $\hat{a} = \operatorname{argmax}_{a} \hat{\mu}_{a}(Km)$

keep playing this arm until round T

 $A_{t+1} = \widehat{a}$ for $t \ge Km$

 \implies EXPLORATION followed by EXPLOITATION

Given $m \in \{1, \ldots, T/K\}$,

- draw each arm *m* times
- compute the empirical best arm $\hat{a} = \operatorname{argmax}_{a} \hat{\mu}_{a}(Km)$

keep playing this arm until round T

 $A_{t+1} = \widehat{a}$ for $t \ge Km$

\implies EXPLORATION followed by EXPLOITATION

Analysis for K = 2 arms. If $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$.

$$\begin{aligned} \mathcal{R}_{\nu}(\text{ETC}, T) &= \Delta \mathbb{E}[N_2(T)] \\ &= \Delta \mathbb{E}\left[m + (T - Km)\mathbb{1}\left(\widehat{a} = 2\right)\right] \\ &\leq \Delta m + (\Delta T) \times \mathbb{P}\left(\widehat{\mu}_{2,m} \geq \widehat{\mu}_{1,m}\right) \end{aligned}$$

 $\widehat{\mu}_{a,m}$: empirical mean of the first *m* observations from arm *a*

Given $m \in \{1, \ldots, T/K\}$,

- draw each arm *m* times
- compute the empirical best arm $\hat{a} = \operatorname{argmax}_{a} \hat{\mu}_{a}(Km)$

keep playing this arm until round T

 $A_{t+1} = \widehat{a}$ for $t \ge Km$

\implies EXPLORATION followed by EXPLOITATION

Analysis for
$$K = 2$$
 arms. If $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$.

$$\begin{aligned} \mathcal{R}_{\nu}(\text{ETC}, T) &= \Delta \mathbb{E}[N_2(T)] \\ &= \Delta \mathbb{E}\left[m + (T - Km)\mathbb{1}\left(\widehat{a} = 2\right)\right] \\ &\leq \Delta m + (\Delta T) \times \mathbb{P}\left(\widehat{\mu}_{2,m} \geq \widehat{\mu}_{1,m}\right) \end{aligned}$$

 $\widehat{\mu}_{a,m}$: empirical mean of the first *m* observations from arm *a*

 \implies requires a concentration inequality

Given $m \in \{1, \ldots, T/K\}$,

- draw each arm *m* times
- compute the empirical best arm $\hat{a} = \operatorname{argmax}_{a} \hat{\mu}_{a}(Km)$

keep playing this arm until round T

$$A_{t+1} = \widehat{a}$$
 for $t \ge Km$

 \implies EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$. **Assumption 1:** ν_1, ν_2 are bounded in [0, 1].

$$\begin{aligned} \mathcal{R}_{\nu}(T) &= \Delta \mathbb{E}[N_2(T)] \\ &= \Delta \mathbb{E}\left[m + (T - Km)\mathbb{1}\left(\widehat{a} = 2\right)\right] \\ &\leq \Delta m + (\Delta T) \times \exp(-m\Delta^2/2) \end{aligned}$$

 $\widehat{\mu}_{\mathbf{a},\mathbf{m}}$: empirical mean of the first \mathbf{m} observations from arm \mathbf{a}

 \implies Hoeffding's inequality

Given $m \in \{1, \ldots, T/K\}$,

- draw each arm *m* times
- compute the empirical best arm $\hat{a} = \operatorname{argmax}_{a} \hat{\mu}_{a}(Km)$

keep playing this arm until round T

$$A_{t+1} = \widehat{a}$$
 for $t \ge Km$

 \implies EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$. Assumption 2: $\nu_1 = \mathcal{N}(\mu_1, \sigma^2), \nu_2 = \mathcal{N}(\mu_2, \sigma^2)$ are Gaussian arms. $\mathcal{R}_{\nu}(\text{ETC}, T) = \Delta \mathbb{E}[N_2(T)]$ $= \Delta \mathbb{E}[m + (T - Km)\mathbb{1}(\hat{a} = 2)]$ $\leq \Delta m + (\Delta T) \times \exp(-m\Delta^2/4\sigma^2)$

 $\widehat{\mu}_{\mathbf{a},\mathbf{m}}:$ empirical mean of the first \mathbf{m} observations from arm \mathbf{a}

 \implies Gaussian tail inequality

Given $m \in \{1, \ldots, T/K\}$,

- draw each arm *m* times
- compute the empirical best arm $\hat{a} = \operatorname{argmax}_{a} \hat{\mu}_{a}(Km)$

keep playing this arm until round T

$$A_{t+1} = \widehat{a}$$
 for $t \ge Km$

 \implies EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$. Assumption 2: $\nu_1 = \mathcal{N}(\mu_1, \sigma^2), \nu_2 = \mathcal{N}(\mu_2, \sigma^2)$ are Gaussian arms. $\mathcal{R}_{\nu}(\text{ETC}, T) = \Delta \mathbb{E}[N_2(T)]$ $= \Delta \mathbb{E}[m + (T - Km)\mathbb{1}(\hat{a} = 2)]$ $\leq \Delta m + (\Delta T) \times \exp(-m\Delta^2/4\sigma^2)$

 $\widehat{\mu}_{\mathbf{a},\mathbf{m}}:$ empirical mean of the first \mathbf{m} observations from arm \mathbf{a}

 \implies Gaussian tail inequality

Given $m \in \{1, \ldots, T/K\}$,

- draw each arm *m* times
- compute the empirical best arm $\hat{a} = \operatorname{argmax}_{a} \hat{\mu}_{a}(Km)$

keep playing this arm until round T

$$A_{t+1} = \widehat{a}$$
 for $t \ge Km$

\implies EXPLORATION followed by EXPLOITATION

 $\begin{aligned} & \frac{\text{Analysis for two arms. } \mu_1 > \mu_2, \ \Delta := \mu_1 - \mu_2. \\ & \overline{\text{Assumption: } \nu_1 = \mathcal{N}(\mu_1, \sigma^2), \nu_2 = \mathcal{N}(\mu_2, \sigma^2) \text{ are Gaussian arms.} \\ & \text{For } m = \frac{4\sigma^2}{\Delta^2} \log\left(\frac{T\Delta^2}{4\sigma^2}\right), \\ & \mathcal{R}_{\nu}(\text{ETC}, T) \leq \frac{4\sigma^2}{\Delta} \left[\log\left(\frac{T\Delta^2}{2}\right) + 1\right] = \mathcal{O}\left(\frac{1}{\Delta}\log(T)\right). \end{aligned}$

A better idea: Explore-Then-Commit (ETC)

Given $m \in \{1, \ldots, T/K\}$,

- draw each arm *m* times
- compute the empirical best arm $\hat{a} = \operatorname{argmax}_{a} \hat{\mu}_{a}(Km)$

keep playing this arm until round T

$$A_{t+1} = \widehat{a}$$
 for $t \ge Km$

\implies EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_1 > \mu_2$, $\Delta := \mu_1 - \mu_2$. **Assumption:** $\nu_1 = \mathcal{N}(\mu_1, \sigma^2), \nu_2 = \mathcal{N}(\mu_2, \sigma^2)$ are Gaussian arms. For $m = \frac{4\sigma^2}{\Delta^2} \log\left(\frac{T\Delta^2}{4\sigma^2}\right)$, $\mathcal{R}_{\nu}(\text{ETC}, T) \le \frac{4\sigma^2}{\Delta} \left[\log\left(\frac{T\Delta^2}{2}\right) + 1\right] = \mathcal{O}\left(\frac{1}{\Delta}\log(T)\right)$.

+ logarithmic regret!

– requires the knowledge of T (\simeq OKAY) and Δ (NOT OKAY)

Sequential Explore-Then-Commit (2 Gaussian arms)

explore uniformly until the random time

$$\tau = \inf \left\{ t \in \mathbb{N} : |\hat{\mu}_1(t) - \hat{\mu}_2(t)| > \sqrt{\frac{8\sigma^2 \log(T/t)}{t}} \right\}$$

 $\widehat{a}_{\tau} = \operatorname{argmax}_{a} \widehat{\mu}_{a}(\tau) \text{ and } (A_{t+1} = \widehat{a}_{\tau}) \text{ for } t \in \{\tau + 1, \dots, T\}$

$$\mathcal{R}_{\nu}(ext{S-ETC}, T) \leq rac{4\sigma^2}{\Delta} \log\left(T\Delta^2
ight) + C\sqrt{\log(T)} = \mathcal{O}\left(rac{1}{\Delta}\log(T)
ight).$$

same regret rate, without knowing Δ [Garivier et al. 2016] maia

23 September, 2019 - 24/ 92

Numerical illustration

Two Gaussian arms: $\nu_1 = \mathcal{N}(1,1)$ and $\nu_2 = \mathcal{N}(1.5,1)$

Expected regret estimated over N = 500 runs for Sequential-ETC versus our two naive baselines.

(dashed lines: empirical 0.05% and 0.95% quantiles of the regret)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 25/92

Is this a good regret rate?

For two-armed Gaussian bandits,

$$\mathcal{R}_{\nu}(\text{ETC}, T) \lesssim rac{4\sigma^2}{\Delta} \log\left(T\Delta^2\right) = \mathcal{O}\left(rac{1}{\Delta}\log(T)\right)$$

 $\implies \text{problem-dependent logarithmic regret bound} \\ \mathcal{R}_{\nu}(\text{algo}, T) = \mathcal{O}(\log(T)).$

Observation: blows up when Δ tends to zero...

$$\begin{aligned} \mathcal{R}_{\nu}(\text{ETC}, T) &\lesssim & \min\left[\frac{4\sigma^2}{\Delta}\log\left(T\Delta^2\right), \Delta T\right] \\ &\leq & \sqrt{T}\min_{u>0}\left[\frac{4\sigma^2}{u}\log(u^2), u\right] \leq C\sqrt{T}. \end{aligned}$$

 $\implies \text{problem-independent square-root regret bound} \\ \mathcal{R}_{\nu}(\text{algo}, T) = \mathcal{O}(\sqrt{T}).$

Best possible regret? Lower Bounds

Innia

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 27/ 92

The Lai and Robbins lower bound

Context: a parametric bandit model where each arm is parameterized by its mean $\boldsymbol{\nu} = (\nu_{\mu_1}, \dots, \nu_{\mu_K}), \ \mu_a \in \mathcal{I}.$

distributions
$$oldsymbol{
u} \;\; \Leftrightarrow \;\; oldsymbol{\mu} = (\mu_1, \dots, \mu_{\mathcal{K}})$$
 means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

$$\mathrm{kl}(\mu,\mu'):=\mathsf{KL}\left(
u_{\mu},
u_{\mu'}
ight)=\mathbb{E}_{X\sim
u_{\mu}}\left|\lograc{d
u_{\mu}}{d
u_{\mu'}}(X)
ight|$$

Theorem [Lai and Robbins, 1985]

For uniformly efficient algorithms $(\mathcal{R}_{\mu}(\mathcal{A}, T) = o(T^{\alpha})$ for all $\alpha \in (0, 1)$ and $\mu \in \mathcal{I}^{K}$), $\lim_{k \to \infty} e^{\sum_{i=1}^{K} |N_{a}(T)|} \ge 1$

$$\mu_{a} < \mu_{\star} \Longrightarrow \liminf_{T \to \infty} \frac{\mathbb{E}_{\mu}[N_{a}(T)]}{\log T} \ge \frac{1}{\mathrm{kl}(\mu_{a}, \mu_{\star})}$$

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 28/92

The Lai and Robbins lower bound

Context: a parametric bandit model where each arm is parameterized by its mean $\boldsymbol{\nu} = (\nu_{\mu_1}, \dots, \nu_{\mu_K})$, $\mu_a \in \mathcal{I}$.

distributions
$$oldsymbol{
u} \;\; \Leftrightarrow \;\; oldsymbol{\mu} = (\mu_1, \dots, \mu_{\mathcal{K}})$$
 means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

$$\mathrm{kl}(\mu,\mu') := rac{(\mu-\mu')^2}{2\sigma^2}$$
 (Gaussian bandits with variance σ^2)

Theorem [Lai and Robbins, 1985]

For uniformly efficient algorithms $(\mathcal{R}_{\mu}(\mathcal{A}, T) = o(T^{\alpha}) \text{ for all } \alpha \in (0, 1)$ and $\mu \in \mathcal{I}^{K}$), $\mu_{a} < \mu_{\star} \Longrightarrow \liminf_{T \to \infty} \frac{\mathbb{E}_{\mu}[N_{a}(T)]}{\log T} \ge \frac{1}{\mathrm{kl}(\mu_{2}, \mu_{\star})}.$

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 28/92

The Lai and Robbins lower bound

Context: a parametric bandit model where each arm is parameterized by its mean $\boldsymbol{\nu} = (\nu_{\mu_1}, \dots, \nu_{\mu_K}), \ \mu_a \in \mathcal{I}.$

distributions
$$oldsymbol{
u} \;\; \Leftrightarrow \;\; oldsymbol{\mu} = (\mu_1, \dots, \mu_K)$$
 means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

$$\operatorname{kl}(\mu, \mu') := \mu \log \left(\frac{\mu}{\mu'}\right) + (1 - \mu) \log \left(\frac{1 - \mu}{1 - \mu'}\right)$$
 (Bernoulli

Theorem [Lai and Robbins, 1985]

For uniformly efficient algorithms $(\mathcal{R}_{\mu}(\mathcal{A}, T) = o(T^{\alpha}) \text{ for all } \alpha \in (0, 1)$ and $\mu \in \mathcal{I}^{K}$, $\mu_{a} < \mu_{\star} \Longrightarrow \liminf_{T \to \infty} \frac{\mathbb{E}_{\mu}[N_{a}(T)]}{\log T} \ge \frac{1}{\mathrm{kl}(\mu_{a}, \mu_{\star})}.$

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 28/92

bandits)

Some room for better algorithms?

For two-armed Gaussian bandits, ETC satisfies

$$\mathcal{R}_{m{
u}}(\mathrm{ETC},\mathcal{T})\lesssimrac{4\sigma^{2}}{\Delta}\log\left(\mathcal{T}\Delta^{2}
ight)=\mathcal{O}\left(rac{1}{\Delta}\log(\mathcal{T})
ight),$$

with $\Delta = |\mu_1 - \mu_2|$.

▶ The Lai and Robbins' lower bound yields, for large values of *T*,

$$\mathcal{R}_{m{
u}}(\mathcal{A}, \mathcal{T}) \gtrsim rac{2\sigma^2}{\Delta} \log \left(\mathcal{T}\Delta^2
ight) = \Omega\left(rac{1}{\Delta}\log(\mathcal{T})
ight),$$

as kl $(\mu_1, \mu_2) = \frac{(\mu_1 - \mu_2)^2}{2\sigma^2}$.

⇒ Explore-Then-Commit is not asymptotically optimal.

MIXING EXPLORATION AND EXPLOITATION

main

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 30/ 92

A simple strategy: ε -greedy

The ε -greedy rule [Sutton and Barton, 98] is the simplest way to alternate exploration and exploitation.

ε -greedy strategy

At round t,

 \blacktriangleright with probability ε

$$A_t \sim \mathcal{U}(\{1,\ldots,K\})$$

• with probability
$$1-arepsilon$$

$$A_t = \underset{a=1,...,K}{\operatorname{argmax}} \ \widehat{\mu}_a(t).$$

 $\implies \underline{\text{Linear regret: }} \mathcal{R}_{\nu} \left(\varepsilon \text{-greedy}, T \right) \geq \varepsilon \frac{K-1}{K} \Delta_{\min} T.$ $\underline{\Delta_{\min}} = \min_{a: \mu_{a} < \mu_{\star}} \Delta_{a}.$

A simple strategy: ε -greedy

A simple fix: make ε decreasing!

ε_t -greedy strategy

At round t,

• with probability $\varepsilon_t := \min\left(1, \frac{K}{d^2t}\right)$ probability \searrow with t

$$A_t \sim \mathcal{U}(\{1,\ldots,K\})$$

• with probability $1 - \varepsilon_t$

$$A_t = \operatorname*{argmax}_{a=1,\ldots,K} \widehat{\mu}_a(t-1).$$

Theorem [Auer et al. 02]

If
$$0 < d \leq \Delta_{\min}$$
, $\mathcal{R}_{\nu}(\varepsilon_t \text{-greedy}, T) = \mathcal{O}\left(\frac{1}{d^2}K\log(T)\right)$.

 \implies requires the knowledge of a lower bound on $\Delta_{\mathsf{min}}.$

THE OPTIMISM PRINCIPLE UPPER CONFIDENCE BOUNDS ALGORITHMS

nata

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 33/92

The optimism principle

Step 1: construct a set of statistically plausible models

For each arm *a*, build a confidence interval $\mathcal{I}_a(t)$ on the mean μ_a :

 $\mathcal{I}_{a}(t) = [\text{LCB}_{a}(t), \text{UCB}_{a}(t)]$

LCB = Lower Confidence BoundUCB = Upper Confidence Bound

Figure: Confidence intervals on the means after t rounds

The optimism principle

Step 2: act as if the best possible model were the true model

("optimism in face of uncertainty")

Figure: Confidence intervals on the means after t rounds

$$\begin{array}{l} \text{Optimistic bandit model} = \mathop{\mathrm{argmax}}_{\mu \in \mathcal{C}(t)} \max_{a=1,\ldots,K} \ \mu_{a} \end{array}$$

That is, select

$$A_{t+1} = \underset{a=1,\ldots,K}{\operatorname{argmax}} \operatorname{UCB}_{a}(t).$$

Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB(α)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 36/ 92

We need $UCB_a(t)$ such that

$$\mathbb{P}\left(\mu_{a} \leq \mathrm{UCB}_{a}(t)\right) \gtrsim 1 - 1/t.$$

 \implies tool: concentration inequalities

Example: rewards are σ^2 sub-Gaussian

$$\mathbb{E}[Z] = \mu \text{ and } \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \le e^{\lambda^2 \sigma^2/2}.$$
 (1)

Hoeffding inequality

 Z_i i.i.d. satisfying (1). For all (fixed) $s \geq 1$

$$\mathbb{P}\left(\frac{Z_1 + \dots + Z_s}{s} \ge \mu + x\right) \le e^{-sx^2/(2\sigma^2)}$$

▶ ν_a bounded in [0,1]: 1/4 sub-Gaussian

•
$$\nu_a = \mathcal{N}(\mu_a, \sigma^2)$$
: σ^2 sub-Gaussian

We need $UCB_a(t)$ such that

$$\mathbb{P}\left(\mu_{a} \leq \mathrm{UCB}_{a}(t)\right) \gtrsim 1 - 1/t.$$

 \implies tool: concentration inequalities

Example: rewards are σ^2 sub-Gaussian

$$\mathbb{E}[Z] = \mu \text{ and } \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \le e^{\lambda^2 \sigma^2/2}.$$
 (1)

Hoeffding inequality

 Z_i i.i.d. satisfying (1). For all (fixed) $s \geq 1$

$$\mathbb{P}\left(\frac{Z_1 + \dots + Z_s}{s} \le \mu - x\right) \le e^{-sx^2/(2\sigma^2)}$$

▶ ν_a bounded in [0,1]: 1/4 sub-Gaussian

•
$$\nu_a = \mathcal{N}(\mu_a, \sigma^2)$$
: σ^2 sub-Gaussian

We need $UCB_a(t)$ such that

 $\mathbb{P}\left(\mu_{a} \leq \mathrm{UCB}_{a}(t)\right) \gtrsim 1 - 1/t.$

 \implies tool: concentration inequalities

Example: rewards are σ^2 sub-Gaussian

$$\mathbb{E}[Z] = \mu \text{ and } \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \le e^{\lambda^2 \sigma^2/2}.$$
 (1)

Hoeffding inequality

 Z_i i.i.d. satisfying (1). For all (fixed) $s \ge 1$

$$\mathbb{P}\left(\frac{Z_1 + \dots + Z_s}{s} \le \mu - x\right) \le e^{-sx^2/(2\sigma^2)}$$

 \bigwedge Cannot be used directly in a bandit model as the number of observations *s* from each arm is random!

N_a(t) = ∑^t_{s=1} 1_(A_s=a) number of selections of a after t rounds
 µ̂_{a,s} = 1/s ∑^s_{k=1} Y_{a,k} average of the first s observations from arm a

 ⁽ⁱ⁾ (i)

► $\hat{\mu}_{a}(t) = \hat{\mu}_{a,N_{a}(t)}$ empirical estimate of μ_{a} after t rounds

Hoeffding inequality + union bound

$$\mathbb{P}\left(\mu_{a} \leq \widehat{\mu}_{a}(t) + \sigma \sqrt{\frac{\alpha \log(t)}{N_{a}(t)}}\right) \geq 1 - \frac{1}{t^{\frac{\alpha}{2} - 1}}$$

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 38/ 92

N_a(t) = ∑^t_{s=1} 1_(A_s=a) number of selections of a after t rounds
 μ̂_{a,s} = 1/s ∑^s_{k=1} Y_{a,k} average of the first s observations from arm a
 μ̂_a(t) = μ̂_{a,Na(t)} empirical estimate of μ_a after t rounds

Hoeffding inequality + union bound

$$\mathbb{P}\left(\mu_{\textit{a}} \leq \widehat{\mu}_{\textit{a}}(t) + \sigma \sqrt{\frac{\alpha \log(t)}{N_{\textit{a}}(t)}}\right) \geq 1 - \frac{1}{t^{\frac{\alpha}{2} - 1}}$$

Proof.

$$\mathbb{P}\left(\mu_{a} > \widehat{\mu}_{a}(t) + \sigma \sqrt{\frac{\alpha \log(t)}{N_{a}(t)}}\right) \leq \mathbb{P}\left(\exists s \leq t : \mu_{a} > \widehat{\mu}_{a,s} + \sigma \sqrt{\frac{\alpha \log(t)}{s}}\right)$$
$$\leq \sum_{s=1}^{t} \mathbb{P}\left(\widehat{\mu}_{a,s} < \mu_{a} - \sigma \sqrt{\frac{\alpha \log(t)}{s}}\right) \leq \sum_{s=1}^{t} \frac{1}{t^{\alpha/2}} = \frac{1}{t^{\alpha/2-1}}.$$

Inría

23 Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 38

A first UCB algorithm

 $UCB(\alpha)$ selects $A_{t+1} = \operatorname{argmax}_{a} UCB_{a}(t)$ where

- this form of UCB was first proposed for Gaussian rewards [Katehakis and Robbins, 95]
- ▶ popularized by [Auer et al. 02] for bounded rewards: UCB1, for $\alpha = 2$ \hookrightarrow see the next talk at 4pm !
- the analysis was UCB(α) was further refined to hold for α > 1/2 in that case [Bubeck, 11, Cappé et al. 13]

A UCB algorithm in action

ilian Besson & Émilie Kaufmann - *Introduction to Multi-Armed Bandits* 23 September, 2019 - 40/ 92.

Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB(α)

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 41/ 92

Regret of UCB(α) for bounded rewards

Theorem [Auer et al, 02]

 $UCB(\alpha)$ with parameter $\alpha = 2$ satisfies

$$\mathcal{R}_{m{
u}}(\mathtt{UCB1},T) \leq 8\left(\sum_{m{a}:\mu_{m{a}}<\mu_{\star}}rac{1}{\Delta_{m{a}}}
ight)\log(T) + \left(1+rac{\pi^2}{3}
ight)\left(\sum_{m{a}=1}^K\Delta_{m{a}}
ight).$$

Theorem

For every $\alpha > 1$ and every sub-optimal arm a, there exists a constant $C_{\alpha} > 0$ such that $\mathbb{E}_{\mu}[N_{a}(T)] \leq \frac{4\alpha}{(\mu_{\star} - \mu_{a})^{2}} \log(T) + C_{\alpha}.$

It follows that

$$\mathcal{R}_{\nu}(\mathrm{UCB}(\alpha), T) \leq 4\alpha \left(\sum_{\boldsymbol{a}: \mu_{\boldsymbol{a}} < \mu_{\star}} \frac{1}{\Delta_{\boldsymbol{a}}}\right) \log(T) + \mathcal{K}C_{\alpha}.$$

Several ways to solve the exploration/exploitation trade-off

- Explore-Then-Commit
- \triangleright ε -greedy
- Upper Confidence Bound algorithms
- Good concentration inequalities are crucial to build good UCB algorithms!
- Performance lower bounds motivate the design of (optimal) algorithms

A BAYESIAN LOOK AT THE MAB MODEL

Innia

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 44/ 92

Bayesian Bandits

Two points of view

Bayes-UCB

Thompson Sampling

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 👘 23 September, 2019 - 45/ 92

1952 Robbins, formulation of the MAB problem

1985 Lai and Robbins: lower bound, first asymptotically optimal algorithm

1987 Lai, asymptotic regret of kl-UCB

- 1995 Agrawal, UCB algorithms
- 1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
- 2002 Auer et al: UCB1 with finite-time regret bound

2009 UCB-V, MOSS...

2011,13 Cappé et al: finite-time regret bound for kl-UCB

naío

Historical perspective

- 1933 Thompson: a Bayesian mechanism for clinical trials
- 1952 Robbins, formulation of the MAB problem
- 1956 Bradt et al, Bellman: optimal solution of a Bayesian MAB problem
- 1979 Gittins: first Bayesian index policy
- 1985 Lai and Robbins: lower bound, first asymptocally optimal algorithm
- 1985 Berry and Fristedt: Bandit Problems, a survey on the Bayesian MAB
- 1987 Lai, asymptotic regret of kl-UCB + study of its Bayesian regret
- 1995 Agrawal, UCB algorithms
- 1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
- 2002 Auer et al: UCB1 with finite-time regret bound
- 2009 UCB-V, MOSS...
- 2010 Thompson Sampling is re-discovered
- 2011,13 Cappé et al: finite-time regret bound for kl-UCB
- 2012,13 Thompson Sampling is asymptotically optimal

Frequentist versus Bayesian bandit

$$oldsymbol{
u}_{oldsymbol{\mu}}=(
u^{\mu_1},\ldots,
u^{\mu_K})\in(\mathcal{P})^K.$$

Two probabilistic models

two points of view!

Frequentist model		Bayesian model
μ_1,\ldots,μ_K		μ_1,\ldots,μ_K drawn from a
unknown parameters		prior distribution : $\mu_{a} \sim \pi_{a}$
arm	a: $(Y_{a,s})_s \stackrel{\text{i.i.d.}}{\sim} \nu^{\mu_a}$	arm a: $(Y_{a,s})_s \mu \overset{\text{i.i.d.}}{\sim} u^{\mu_a}$

The regret can be computed in each case

Frequentist Regret
(regret)Bayesian regret
(Bayes risk) $\mathcal{R}_{\mu}(\mathcal{A}, T) = \mathbb{E}_{\mu} \begin{bmatrix} T \\ \Sigma \\ t=1 \end{bmatrix} (\mu_{\star} - \mu_{A_{t}}) \end{bmatrix}$ $\mathbb{R}^{\pi}(\mathcal{A}, T) = \mathbb{E}_{\mu \sim \pi} \begin{bmatrix} T \\ \Sigma \\ t=1 \end{bmatrix} (\mu_{\star} - \mu_{A_{t}}) \end{bmatrix}$ $= \int \mathcal{R}_{\mu}(\mathcal{A}, T) d\pi(\mu)$

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 48/ 92

Frequentist and Bayesian algorithms

Two types of tools to build bandit algorithms:

Frequentist tools	Bayesian tools
MLE estimators of the means	Posterior distributions
Confidence Intervals	$\pi_a^t = \mathcal{L}(\mu_a Y_{a,1}, \dots, Y_{a,N_a(t)})$

Lilian Besson & Émilie Kaufmann - *Introduction to Multi-Armed Bandits* 👥 23 September, 2019 - 49/ 92

Example: Bernoulli bandits

Bernoulli bandit model $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$

- Bayesian view: μ₁,..., μ_K are random variables prior distribution : μ_a ~ U([0, 1])
- ⇒ posterior distribution:

Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions of the means to decide which arm to select.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 51/ 92

Bayesian Bandits

Two points of view

Bayes-UCB

Thompson Sampling

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 52/92

The Bayes-UCB algorithm

- $\Pi_0 = (\pi_1(0), \dots, \pi_K(0))$ be a prior distribution over (μ_1, \dots, μ_K)
- $\Pi_t = (\pi_1(t), \dots, \pi_K(t))$ be the posterior distribution over the means (μ_1, \dots, μ_K) after t observations

The Bayes-UCB algorithm chooses at time t

$$A_{t+1} = \underset{a=1,\ldots,K}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\log t)^c}, \pi_a(t)\right)$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π .

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 53/ 92

The Bayes-UCB algorithm

Π₀ = (π₁(0),...,π_K(0)) be a prior distribution over (μ₁,...,μ_K)
 Π_t = (π₁(t),...,π_K(t)) be the posterior distribution over the means (μ₁,...,μ_K) after t observations

The Bayes-UCB algorithm chooses at time t

$$A_{t+1} = \underset{a=1,\ldots,K}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\log t)^c}, \pi_a(t)\right)$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π .

Bernoulli reward with uniform prior:

•
$$\pi_a(0) \stackrel{i.i.d}{\sim} \mathcal{U}([0,1]) = \text{Beta}(1,1)$$

• $\pi_a(t) = \text{Beta}(S_a(t) + 1, N_a(t) - S_a(t) + 1)$

The Bayes-UCB algorithm

Π₀ = (π₁(0),...,π_K(0)) be a prior distribution over (μ₁,...,μ_K)
 Π_t = (π₁(t),...,π_K(t)) be the posterior distribution over the means (μ₁,...,μ_K) after t observations

The Bayes-UCB algorithm chooses at time t

$$A_{t+1} = \underset{a=1,\dots,K}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\log t)^c}, \pi_a(t)\right)$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π .

Gaussian rewards with Gaussian prior:

$$\begin{array}{l} \bullet \quad \pi_a(0) \stackrel{i.i.d}{\sim} \mathcal{N}(0,\kappa^2) \\ \bullet \quad \pi_a(t) = \mathcal{N}\left(\frac{S_a(t)}{N_a(t) + \sigma^2/\kappa^2}, \frac{\sigma^2}{N_a(t) + \sigma^2/\kappa^2}\right) \end{array}$$

Bayes UCB in action

(movie)

. 2019 - 54/ Lilian Besson & Émilie Kaufmann - *Introduction to Multi-Armed Bandits* 23 September, 2019

Theoretical results in the Bernoulli case

Bayes-UCB is asymptotically optimal for Bernoulli rewards

Theorem [K., Cappé, Garivier 2012]

Let $\varepsilon > 0$. The Bayes-UCB algorithm using a uniform prior over the arms and parameter $c \ge 5$ satisfies $1 + \varepsilon$

$$\mathbb{E}_{\mu}[N_{a}(T)] \leq \frac{1}{\mathrm{kl}(\mu_{a},\mu_{\star})} \log(T) + o_{\varepsilon,c} \left(\log(T)\right).$$

Bayesian Bandits

Insights from the Optimal Solution Bayes-UCB Thompson Sampling

Historical perspective

- 1933 Thompson: in the context of clinical trial, the allocation of a treatment should be some increasing function of its posterior probability to be optimal
- 2010 Thompson Sampling rediscovered under different names Bayesian Learning Automaton [Granmo, 2010] Randomized probability matching [Scott, 2010]
- 2011 An empirical evaluation of Thompson Sampling: an efficient algorithm, beyond simple bandit models

[Li and Chapelle, 2011]

- 2012 First (logarithmic) regret bound for Thompson Sampling [Agrawal and Goyal, 2012]
- 2012 Thompson Sampling is asymptotically optimal for Bernoulli bandits [K., Korda and Munos, 2012][Agrawal and Goyal, 2013]
- 2013- Many successful uses of Thompson Sampling beyond Bernoulli bandits (contextual bandits, reinforcement learning)

Thompson Sampling

Two equivalent interpretations:

- "select an arm at random according to its probability of being the best"

Thompson Sampling: a randomized Bayesian algorithm

$$\forall a \in \{1..K\}, \quad \theta_a(t) \sim \pi_a(t) \\ A_{t+1} = \underset{a=1...K}{\operatorname{argmax}} \theta_a(t).$$

Thompson Sampling is asymptotically optimal

Problem-dependent regret

$$\forall \varepsilon > 0, \quad \mathbb{E}_{\mu}[N_{a}(T)] \leq \frac{1+\varepsilon}{\mathrm{kl}(\mu_{a},\mu_{\star})}\log(T) + o_{\mu,\varepsilon}(\log(T)).$$

This results holds:

Innia

- for Bernoulli bandits, with a uniform prior [K. Korda, Munos 12][Agrawal and Goyal 13]
- ▶ for Gaussian bandits, with Gaussian prior[Agrawal and Goyal 17]
- ▶ for exponential family bandits, with Jeffrey's prior [Korda et al. 13]

Problem-independent regret [Agrawal and Goyal 13]

For Bernoulli and Gaussian bandits, Thompson Sampling satisfies

$$\mathcal{R}_{\mu}(extsf{TS}, extsf{T}) = O\left(\sqrt{ extsf{KT} \log(extsf{T})}
ight)$$
 .

Thompson Sampling is also asymptotically optimal for Gaussian with unknown mean and variance [Honda and Takemura, 14]

Understanding Thompson Sampling

▶ a key ingredient in the analysis of [K. Korda and Munos 12]

Proposition

There exists constants
$$b = b(\mu) \in (0,1)$$
 and $C_b < \infty$ such that

$$\sum_{t=1}^{\infty} \mathbb{P}\left(N_1(t) \le t^b\right) \le C_b.$$

Bayesian versus Frequentist algorithms

Short horizon, T = 1000 (average over N = 10000 runs)

Bayesian versus Frequentist algorithms

► Long horizon, T = 20000 (average over N = 50000 runs)

K = 10 Bernoulli arms bandit problem $\mu = [0.1 \ 0.05 \ 0.05 \ 0.05 \ 0.02 \ 0.02 \ 0.02 \ 0.01 \ 0.01 \ 0.01]$

OTHER BANDIT MODELS

Innia

Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits

Many other bandits models and problems (1/2)

Most famous extensions:

(centralized) multiple-actions

\hookrightarrow Implemented in our library **SMPyBandits**!

maia

Many other bandits models and problems (1/2)

Most famous extensions:

- (centralized) multiple-actions
 - ▶ multiple choice : choose $m \in \{2, ..., K 1\}$ arms (fixed size)

\hookrightarrow Implemented in our library **SMPyBandits**!

naío

- (centralized) multiple-actions
 - multiple choice : choose $m \in \{2, ..., K 1\}$ arms (fixed size)
 - combinatorial : choose a subset of arms $S \subset \{1, \ldots, K\}$ (large space)

\hookrightarrow Implemented in our library **SMPyBandits**!

- (centralized) multiple-actions
 - multiple choice : choose $m \in \{2, ..., K 1\}$ arms (fixed size)
 - combinatorial : choose a subset of arms $S \subset \{1, \ldots, K\}$ (large space)

non stationary

\hookrightarrow Implemented in our library **SMPyBandits**!

- (centralized) multiple-actions
 - multiple choice : choose $m \in \{2, ..., K 1\}$ arms (fixed size)
 - combinatorial : choose a subset of arms $S \subset \{1, \ldots, K\}$ (large space)
- non stationary
 - piece-wise stationary / abruptly changing

\hookrightarrow Implemented in our library **SMPyBandits**!

- (centralized) multiple-actions
 - multiple choice : choose $m \in \{2, ..., K 1\}$ arms (fixed size)
 - combinatorial : choose a subset of arms $S \subset \{1, \ldots, K\}$ (large space)
- non stationary
 - piece-wise stationary / abruptly changing
 - slowly-varying

\hookrightarrow Implemented in our library **SMPyBandits**!

- (centralized) multiple-actions
 - multiple choice : choose $m \in \{2, ..., K 1\}$ arms (fixed size)
 - combinatorial : choose a subset of arms $S \subset \{1, \ldots, K\}$ (large space)
- non stationary
 - piece-wise stationary / abruptly changing
 - slowly-varying
 - adversarial...

\hookrightarrow Implemented in our library SMPyBandits!

- (centralized) multiple-actions
 - multiple choice : choose $m \in \{2, ..., K 1\}$ arms (fixed size)
 - combinatorial : choose a subset of arms $S \subset \{1, \ldots, K\}$ (large space)
- non stationary
 - piece-wise stationary / abruptly changing
 - slowly-varying
 - adversarial...

(decentralized) collaborative/communicating bandits over a graph

\hookrightarrow Implemented in our library SMPyBandits!

- (centralized) multiple-actions
 - multiple choice : choose $m \in \{2, ..., K 1\}$ arms (fixed size)
 - combinatorial : choose a subset of arms $S \subset \{1, \ldots, K\}$ (large space)
- non stationary
 - piece-wise stationary / abruptly changing
 - slowly-varying
 - adversarial...

(decentralized) collaborative/communicating bandits over a graph

(decentralized) non communicating multi-player bandits

 \hookrightarrow Implemented in our library SMPyBandits!

Many other bandits models and problems (2/2)

And many more extensions...

- non stochastic, Markov models rested/restless
- best arm identification (vs reward maximization)
 - fixed budget setting
 - fixed confidence setting
 - PAC (probably approximately correct) algorithms
- bandits with (differential) privacy constraints
- for some applications (content recommendation)
 - contextual bandits : observe a reward and a *context* $(C_t \in \mathbb{R}^d)$
 - cascading bandits
 - delayed feedback bandits
- structured bandits (low-rank, many-armed, Lipschitz etc)
- \mathcal{X} -armed, continuous-armed bandits

Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits

Stationary MAB problems

Arm a gives rewards sampled from the same distribution for any time step

$$\forall t, r_{a}(t) \stackrel{\mathsf{iid}}{\sim} \nu_{a} = \mathcal{B}(\mu_{a}).$$

Stationary MAB problems

Arm a gives rewards sampled from the same distribution for any time step

$$\forall t, r_a(t) \stackrel{\text{iid}}{\sim} \nu_a = \mathcal{B}(\mu_a).$$

Non stationary MAB problems?

(possibly) different distributions for any time step !

$$\forall t, r_{a}(t) \stackrel{\text{iid}}{\sim} \nu_{a}(t) = \mathcal{B}(\mu_{a}(t)).$$

 \implies harder problem! And very hard if $\mu_a(t)$ can change at any step!

Stationary MAB problems

Arm a gives rewards sampled from the same distribution for any time step

$$\forall t, r_a(t) \stackrel{\text{iid}}{\sim} \nu_a = \mathcal{B}(\mu_a).$$

Non stationary MAB problems?

(possibly) different distributions for any time step !

$$\forall t, r_a(t) \stackrel{\text{iid}}{\sim} \nu_a(t) = \mathcal{B}(\mu_a(t)).$$

 \implies harder problem! And very hard if $\mu_a(t)$ can change at any step!

Piece-wise stationary problems!

 \hookrightarrow the litterature usually focuses on the easier case, when there are at most $Y_T = o(\sqrt{T})$ intervals, on which the means are all stationary.

Example of a piece-wise stationary MAB problem

We plots the means $\mu_1(t)$, $\mu_2(t)$, $\mu_3(t)$ of K = 3 arms. There are $Y_T = 4$ break-points and 5 sequences between t = 1 and t = T = 5000:

Regret for piece-wise stationary bandits

The "oracle" algorithm plays the (unknown) best arm $k^*(t) = \operatorname{argmax} \mu_k(t)$ (which changes between the $Y_T \ge 1$ stationary sequences)

$$\mathcal{R}(\mathcal{A}, \mathcal{T}) = \mathbb{E}\left[\sum_{t=1}^{T} r_{k^{*}(t)}(t)\right] - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right] = \left(\sum_{t=1}^{T} \max_{k} \mu_{k}(t)\right) - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right].$$

Regret for piece-wise stationary bandits

The "oracle" algorithm plays the (unknown) best arm $k^*(t) = \operatorname{argmax} \mu_k(t)$ (which changes between the $Y_T \ge 1$ stationary sequences)

$$\mathcal{R}(\mathcal{A}, \mathcal{T}) = \mathbb{E}\left[\sum_{t=1}^{T} r_{k^{*}(t)}(t)\right] - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right] = \left(\sum_{t=1}^{T} \max_{k} \mu_{k}(t)\right) - \sum_{t=1}^{T} \mathbb{E}\left[r(t)\right].$$

Typical regimes for piece-wise stationary bandits

- The lower-bound is $\mathcal{R}(\mathcal{A}, T) \geq \Omega(\sqrt{KTY_T})$
- Currently, state-of-the-art algorithms A obtain
 - ▶ $\mathcal{R}(\mathcal{A}, T) \leq \mathcal{O}(K\sqrt{TY_T \log(T)})$ if T and Y_T are known
 - $\mathcal{R}(\mathcal{A}, T) \leq \mathcal{O}(KY_T \sqrt{T \log(T)})$ if T and Y_T are unknown
- ► → our algorithm kIUCB index + BGLR detector is state-of-the-art! [Besson and Kaufmann, 19] arXiv:1902.01575

Results on a piece-wise stationary MAB problem

Idea: combine a good bandit algorithm with an break-point detector

kIUCB + BGLR achieves the best performance (among non-oracle)!

Other Bandit Models

Many different extensions Piece-wise stationary bandits Multi-player bandits

Multi-players bandits: setup

M players playing *the same K*-armed bandit $(2 \le M \le K)$

At round *t*:

- ▶ player *m* selects $A_{m,t}$; then *observes* $X_{A_{m,t},t}$
- and receives the reward

 $X_{m,t} = \begin{cases} X_{A_{m,t},t} & \text{if no other player chose the same arm} \\ 0 & \text{else } (= \text{ collision}) \end{cases}$

Goal:

• maximize centralized rewards $\sum_{m=1}^{M} \sum_{t=1}^{T} X_{m,t}$

- ... without communication between players
- trade off : exploration / exploitation / and collisions !

 $\frac{\text{Cognitive radio}}{\text{possible collisions with other SUs}} \text{ (OSA) sensing, attempt of transmission if no PU,} \\ \hookrightarrow \text{ see the next talk at 4pm }!$

Idea: combine a good *bandit algorithm* with an *orthogonalization strategy* (collision avoidance protocol)

Example: UCB1 + ρ^{rand} . At round t each player

- ▶ has a stored rank $R_{m,t} \in \{1, ..., M\}$
- selects the arm that has the R_{m,t}-largest UCB
- ▶ if a collision occurs, draws a new rank $R_{m,t+1} \sim U(\{1, ..., M\})$
- any index policy may be used in place of UCB1
- their proof was wrong...
- ▶ Early references: [Liu and Zhao, 10] [Anandkumar et al., 11]

Idea: combine a good *bandit algorithm* with an *orthogonalization strategy* (collision avoidance protocol)

Example: our algorithm klUCB index + MC-TopM rule

more complicated behavior (musical chair game)

- ▶ we obtain a $\mathcal{R}(\mathcal{A}, T) = \mathcal{O}(M^3 \frac{1}{\Delta_M^2} \log(T))$ regret upper bound
- lower bound is $\mathcal{R}(\mathcal{A}, T) = \Omega(M_{\Delta_{\mathcal{A}}^2}^1 \log(T))$
- order optimal, not asymptotically optimal
- Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]

Multi-players bandits: algorithms

Idea: combine a good *bandit algorithm* with an *orthogonalization strategy* (collision avoidance protocol)

Example: our algorithm kIUCB index + MC-TopM rule

Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]

Remarks:

- number of players *M* has to be known
 but it is possible to estimate it on the run
- does not handle an evolving number of devices (entering/leaving the network)
- is it a fair orthogonalization rule?
- could players use the collision indicators to communicate? (yes!)

Results on a multi-player MAB problem

For M = 6 objects, our strategy (MC-TopM) largely outperform SIC-MMAB and ρ^{rand} . MCTopM + kIUCB achieves the best performance (among decentralized algorithms) ! (m1/a Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 75/92

SUMMARY

Inría

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 76/ 92

(1/2**)**

Now you are aware of:

- several methods for facing an exploration/exploitation dilemma
- notably two powerful classes of methods
 - optimistic "UCB" algorithms
 - Bayesian approaches, mostly Thompson Sampling

 \implies And you can learn more about more complex bandit problems and Reinforcement Learning!

nnin

You also saw a bunch of important tools:

- performance lower bounds, guiding the design of algorithms
- Kullback-Leibler divergence to measure deviations
- applications of self-normalized concentration inequalities
- Bayesian tools...

And we presented many extensions of the single-player stationary MAB model.

(1/3**)**

Check out the

"The Bandit Book"

by Tor Lattimore and Csaba Szepesvári Cambridge University Press, 2019.

 $\hookrightarrow \texttt{tor-lattimore.com/downloads/book/book.pdf}$

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 79/92

(2/3

Reach me (or Émilie Kaufmann) out by email, if you have questions

Lilian.Besson @ Inria.fr → perso.crans.org/besson/

Emilie.Kaufmann @ Univ-Lille.fr ↔ chercheurs.lille.inria.fr/ekaufman

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 80/ 92

(3/3)

Experiment with bandits by yourself!

```
Interactive demo on this web-page
```

```
\hookrightarrow perso.crans.org/besson/phd/MAB_interactive_demo/
```

Use our Python library for simulations of MAB problems **SMPyBandits** \hookrightarrow SMPyBandits.GitHub.io & GitHub.com/SMPyBandits

- Install with \$ pip install SMPyBandits
- Free and open-source (MIT license)
- Easy to set up your own bandit experiments, add new algorithms etc.

→ SMPyBandits.GitHub.io

Welcome to SMPyBand × + ← → Ċ ☆ ① & 1

🛈 🔒 https://smpybandits.github.io/index.html

P .

Search doc

CONTENTS

SMPyBandits

SMPyBandits modules

How to run the code ?

List of research publications using Lilian Besson's SMPyBandits project

Policy aggregation algorithms

Multi-players simulation environment

Doubling Trick for Multi-Armed Bandits

Structure and Sparsity of Stochastic Multi-Armed Bandits

Non-Stationary Stochastic Multi-Armed Bandits

Short documentation of the API

🍅 TODO

Some illustrations for this project

Jupyter Notebooks 🐞 by Naereen @ GitHub

List of notebooks for SMPyBandits

A note on execution times, speed and profiling

UML diagrams

Toda ulea

Welcome to SMPyBandits documentation!

Open-Source Python package for Single- and Multi-Players multi-armed Bandits algorithms.

A research framework for Single and Multi-Players Multi-Arms Bandits (MAB) Algorithms: UCB, KL-UCB, Thompson and many more for single-players, and MCTopM & RandTopM, MusicalChair, ALOHA, MEGA, rhoRand for multi-players simulations. It runs on Python 2 and 3, and is publically released as an open-source software under the MT License.

Note

See more on the GitHub page for this project: https://github.com/SMPyBandits/SMPyBandits/. The project is also hofted on Inria GForge, and the documentation can be seen online at https://smpybandits.github.io/ or http://http://banditsliliangforge.inria.fr/ or https://https://smpybandits.readthedocs.io/

This repository contains the code of my numerical environment, written in Python, in order to perform numerical simulations on single-player and multi-players Multi-Armed Bandits (MAB) algorithms.

Open Source 7 Yes1 Maintained7 yes Ask me anything pypi v0.9.5 implementation cpytho python 2.7 [3.4] 3.5 [3.6] docs passing buildpassing

I (Lilian Besson) have started my PhD in October 2016, and this is a part of my on going research since December 2016.

How to cite this work?

If you use this package for your own work, please consider citing it with this piece of BibTeX:

@misc{SMPyBandits,

title = {{SMPyBandits: an Open-Source Research Framework for S author = {Lilian Besson}, year = {2018}, url = {https://github.com/SMPyBandits/SMPyBandits/, howpublished = {online at: \url{GitHub.com/SMPyBandits/SMPyBandits/, note = {Code at https://github.com/SMPyBandits/SMPyBandits/,

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 82/92

Thanks for your attention !

Questions & Discussion ?

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 83/ 92

Thanks for your attention !

Questions & Discussion ?

→ Break and then next talk by Christophe Moy "Decentralized Spectrum Learning for IoT"

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 83/ 92

Climatic crisis ?

© Jeph Jacques, 2015, QuestionableContent.net/view.php?comic=3074

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 84/ 92

Let's talk about actions against the climatic crisis

We are *scientists*...

Goals: inform ourselves, think, find, communicate!

- Inform ourselves of the causes and consequences of climatic crisis,
- Think of the all the problems, at political, local and individual scales,
- Find simple solutions !

 \implies Aim at sobriety: transports, tourism, clothing, food, computations, fighting smoking, etc.

Communicate our awareness, and our actions !

Main references

- My PhD thesis (Lilian Besson)
 "Multi-players Bandit Algorithms for Internet of Things Networks"

 → perso.crans.org/besson/phd/
 - \hookrightarrow GitHub.com/Naereen/phd-thesis/
- Our Python library for simulations of MAB problems, SMPyBandits
 SMPyBandits.GitHub.io
- "Introduction to Multi-Armed Bandits", by Alex Slivkins arXiv.org/abs/1904.07272

References (1/6)

- W.R. Thompson (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika.
- H. Robbins (1952). Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society.
- Bradt, R., Johnson, S., and Karlin, S. (1956). On sequential designs for maximizing the sum of n observations. Annals of Mathematical Statistics.
- R. Bellman (1956). A problem in the sequential design of experiments. The indian journal of statistics.
- Gittins, J. (1979). Bandit processes and dynamic allocation indices. Journal of the Royal Statistical Society.
- Berry, D. and Fristedt, B. Bandit Problems (1985). Sequential allocation of experiments. *Chapman and Hall.*
- Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. *Advances in Applied Mathematics*.
- Lai, T. (1987). Adaptive treatment allocation and the multi-armed bandit problem. *Annals of Statistics*.

References (2/6)

- Agrawal, R. (1995). Sample mean based index policies with O(log n) regret for the multi-armed bandit problem. Advances in Applied Probability.
- Katehakis, M. and Robbins, H. (1995). Sequential choice from several populations. *Proceedings of the National Academy of Science*.
- Burnetas, A. and Katehakis, M. (1996). Optimal adaptive policies for sequential allocation problems. Advances in Applied Mathematics.
- Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. *Machine Learning*.
- Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. (2002). The nonstochastic multiarmed bandit problem. SIAM Journal of Computing.
- Burnetas, A. and Katehakis, M. (2003). Asymptotic Bayes Analysis for the finite horizon one armed bandit problem. *Probability in the Engineering and Informational Sciences*.
- Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning and Games. Cambridge University Press.
- Audibert, J-Y., Munos, R. and Szepesvari, C. (2009). Exploration-exploitation trade-off using varianceestimates in multi-armed bandits. *Theoretical Computer Science*.

References (3/6)

- Audibert, J.-Y. and Bubeck, S. (2010). Regret Bounds and Minimax Policies under Partial Monitoring. *Journal of Machine Learning Research*.
- Li, L., Chu, W., Langford, J. and Shapire, R. (2010). A Contextual-Bandit Approach to Personalized News Article Recommendation. WWW.
- Honda, J. and Takemura, A. (2010). An Asymptotically Optimal Bandit Algorithm for Bounded Support Models. COLT.
- Bubeck, S. (2010). Jeux de bandits et fondation du clustering. PhD thesis, Université de Lille 1.
- A. Anandkumar, N. Michael, A. K. Tang, and S. Agrawal (2011). Distributed algorithms for learning and cognitive medium access with logarithmic regret. IEEE Journal on Selected Areas in Communications
- Garivier, A. and Cappé, O. (2011). The KL-UCB algorithm for bounded stochastic bandits and beyond. COLT.
- Maillard, O.-A., Munos, R., and Stoltz, G. (2011). A Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler Divergences. COLT.
- Chapelle, O. and Li, L. (2011). An empirical evaluation of Thompson Sampling. NIPS.

References (4/6)

- E. Kaufmann, O. Cappé, A. Garivier (2012). On Bayesian Upper Confidence Bounds for Bandits Problems. AISTATS.
- Agrawal, S. and Goyal, N. (2012). Analysis of Thompson Sampling for the multi-armed bandit problem. COLT.
- E. Kaufmann, N. Korda, R. Munos (2012), Thompson Sampling : an Asymptotically Optimal Finite-Time Analysis. Algorithmic Learning Theory.
- Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Fondations and Trends in Machine Learning.
- Agrawal, S. and Goyal, N. (2013). Further Optimal Regret Bounds for Thompson Sampling. AISTATS.
- O. Cappé, A. Garivier, O-A. Maillard, R. Munos, and G. Stoltz (2013). Kullback-Leibler upper confidence bounds for optimal sequential allocation. *Annals of Statistics*.
- Korda, N., Kaufmann, E., and Munos, R. (2013). Thompson Sampling for 1-dimensional Exponential family bandits. *NIPS*.

References (5/6)

- Honda, J. and Takemura, A. (2014). Optimality of Thompson Sampling for Gaussian Bandits depends on priors. AISTATS.
- Baransi, Maillard, Mannor (2014). Sub-sampling for multi-armed bandits. ECML.
- Honda, J. and Takemura, A. (2015). Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards. JMLR.
- Kaufmann, E., Cappé O. and Garivier, A. (2016). On the complexity of best arm identification in multi-armed bandit problems. JMLR
- Lattimore, T. (2016). Regret Analysis of the Finite-Horizon Gittins Index Strategy for Multi-Armed Bandits. COLT.
- Garivier, A., Kaufmann, E. and Lattimore, T. (2016). On Explore-Then-Commit strategies. NIPS.
- E.Kaufmann (2017), On Bayesian index policies for sequential resource allocation. Annals of Statistics.
- Agrawal, S. and Goyal, N. (2017). Near-Optimal Regret Bounds for Thompson Sampling. *Journal of ACM*.

References (6/6)

- Maillard, O-A (2017). Boundary Crossing for General Exponential Families. Algorithmic Learning Theory.
- Besson, L., Kaufmann E. (2018). Multi-Player Bandits Revisited. Algorithmic Learning Theory.
- Cowan, W., Honda, J. and Katehakis, M.N. (2018). Normal Bandits of Unknown Means and Variances. JMLR.
- Garivier, A. and Ménard, P. and Stoltz, G. (2018). Explore first, exploite next: the true shape of regret in bandit problems, *Mathematics of Operations Research*
- Garivier, A. and Hadiji, H. and Ménard, P. and Stoltz, G. (2018). KL-UCB-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints. arXiv: 1805.05071.
- Besson, L., Kaufmann E. (2019). The Generalized Likelihood Ratio Test meets klUCB: an Improved Algorithm for Piece-Wise Non-Stationary Bandits. *Algorithmic Learning Theory. arXiv: 1902.01575.*

