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Hi, I’m Lilian Besson
I finishing my PhD in telecommunication and machine learning
I under supervision of Prof. Christophe Moy at IETR &

CentraleSupélec in Rennes (France)
I and Dr. Émilie Kaufmann in Inria in Lille

Thanks to Émilie Kaufmann for most of the slides material!

I Lilian.Besson @ Inria.fr
I ↪→ perso.crans.org/besson/ & GitHub.com/Naereen
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.Who am I ?

https://perso.crans.org/besson/
https://perso.crans.org/besson/
https://GitHub.com/Naereen/


It’s an old name for a casino machine!

↪→ c© Dargaud, Lucky Luke tome 18.
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.What is a bandit?

https://www.dargaud.com/bd/LUCKY-LUKE/Lucky-Luke/Lucky-Luke-tome-18-Bandit-manchot-Le


Why Bandits?
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A (single) agent facing (multiple) arms in a Multi-Armed Bandit.

NO!
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.Make money in a casino?



Clinical trials
I K treatments for a given symptom (with unknown effect)

I What treatment should be allocated to the next patient, based on
responses observed on previous patients?

Online advertisement
I K adds that can be displayed

I Which add should be displayed for a user, based on the previous
clicks of previous (similar) users?
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.Sequential resource allocation
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.Sequential resource allocation



Opportunistic Spectrum Access
I K radio channels (orthogonal frequency bands)

I In which channel should a radio device send a packet, based on the
quality of its previous communications?

↪→ see the next talk at 4pm !

Communications in presence of a central controller
I K assignments from n users to m antennas ( combinatorial bandit)

I How to select the next matching based on the throughput observed in
previous communications?
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.Dynamic channel selection



Numerical experiments (bandits for “black-box” optimization)

I where to evaluate a costly function in order to find its maximum?

Artificial intelligence for games

I where to choose the next evaluation to perform in order to find the
best move to play next?
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.Dynamic allocation of computational resources
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.Dynamic allocation of computational resources



I rewards maximization in a stochastic bandit model
= the simplest Reinforcement Learning (RL) problem (one state)
=⇒ good introduction to RL !

I bandits showcase the important exploration/exploitation dilemma
I bandit tools are useful for RL

(UCRL, bandit-based MCTS for planning in games. . . )
I a rich literature to tackle many specific applications
I bandits have application beyond RL (i.e. without “reward”)
I and bandits have great applications to Cognitive Radio
↪→ see the next talk at 4pm !
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.Why talking about bandits today?



I Multi-armed Bandit
I Performance measure (regret) and first strategies
I Best possible regret? Lower bounds
I Mixing Exploration and Exploitation
I The Optimism Principle and Upper Confidence Bounds (UCB)

Algorithms
I A Bayesian Look at the Multi-Armed Bandit Model
I Many extensions of the stationary single-player bandit models
I Summary
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.Outline of this talk



K arms ⇔ K rewards streams (Xa,t)t∈N

At round t, an agent:
I chooses an arm At
I receives a reward Rt = XAt ,t (from the environment)

Sequential sampling strategy (bandit algorithm):
At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal: Maximize sum of rewards
T∑

t=1
Rt .
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.The Multi-Armed Bandit Setup



K arms ⇔ K probability distributions : νa has mean µa

ν1 ν2 ν3 ν4 ν5

At round t, an agent:
I chooses an arm At
I receives a reward Rt = XAt ,t ∼ νAt (i.i.d. from a distribution)

Sequential sampling strategy (bandit algorithm):
At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal: Maximize sum of rewards E
[

T∑
t=1

Rt

]
.
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.The Stochastic Multi-Armed Bandit Setup



↪→ Interactive demo on this web-page
perso.crans.org/besson/phd/MAB_interactive_demo/
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.Discover bandits by playing this online demo!

https://perso.crans.org/besson/phd/MAB_interactive_demo/


Historical motivation [Thompson 1933]

B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,
I chooses a treatment At
I observes a (Bernoulli) response Rt ∈ {0, 1} : P(Rt = 1|At = a) = µa

Goal: maximize the expected number of patients healed.
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.Clinical trials



Modern motivation ($$$$) [Li et al, 2010]
(recommender systems, online advertisement, etc)

ν1 ν2 ν3 ν4 ν5

For the t-th visitor of a website,
I recommend a movie At
I observe a rating Rt ∼ νAt (e.g. Rt ∈ {1, . . . , 5})

Goal: maximize the sum of ratings.

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 14/ 92

.Online content optimization



Opportunistic spectrum access [Zhao et al. 10] [Anandkumar et al. 11]

streams indicating channel quality

Channel 1 X1,1 X1,2 . . . X1,t . . . X1,T ∼ ν1
Channel 2 X2,1 X2,2 . . . X2,t . . . X2,T ∼ ν2

. . . . . . . . . . . . . . . . . . . . . . . .
Channel K XK ,1 XK ,2 . . . XK ,t . . . XK ,T ∼ νK

At round t, the device:
I selects a channel At
I observes the quality of its communication Rt = XAt ,t ∈ [0, 1]

Goal: Maximize the overall quality of communications.
↪→ see the next talk at 4pm !
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.Cognitive radios



Performance measure
and first strategies
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Bandit instance: ν = (ν1, ν2, . . . , νK ), mean of arm a: µa = EX∼νa [X ].

µ? = max
a∈{1,...,K}

µa and a? = argmax
a∈{1,...,K}

µa.

Maximizing rewards ⇔ selecting a? as much as possible
⇔ minimizing the regret [Robbins, 52]

Rν(A,T ) := Tµ?︸︷︷︸
sum of rewards of
an oracle strategy
always selecting a?

− E
[ T∑

t=1
Rt

]
︸ ︷︷ ︸

sum of rewards of
the strategyA

What regret rate can we achieve?
=⇒ consistency: Rν(A,T )/T =⇒ 0 (when T →∞)
=⇒ can we be more precise?
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.Regret of a bandit algorithm



Na(t) : number of selections of arm a in the first t rounds
∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1
∆aE [Na(T )] .

Proof.
Rν(A,T ) = µ?T − E

[ T∑
t=1

XAt ,t

]
= µ?T − E

[ T∑
t=1

µAt

]

= E
[ T∑

t=1
(µ? − µAt )

]

=
K∑

a=1
(µ? − µa)︸ ︷︷ ︸

∆a

E
[ T∑

t=1
1(At = a)︸ ︷︷ ︸
Na(T )

]
.
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.Regret decomposition



Na(t) : number of selections of arm a in the first t rounds
∆a := µ? − µa : sub-optimality gap of arm a

Regret decomposition

Rν(A,T ) =
K∑

a=1
∆aE [Na(T )] .

A strategy with small regret should:
I select not too often arms for which ∆a > 0 (sub-optimal arms)
I . . . which requires to try all arms to estimate the values of the ∆a

=⇒ Exploration / Exploitation trade-off !
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.Regret decomposition



I Idea 1 : =⇒ EXPLORATION

Draw each arm T/K times

↪→ Rν(A,T ) =

 1
K

∑
a:µa>µ?

∆a

T = Ω(T )

I Idea 2 : Always trust the empirical best arm =⇒ EXPLOITATION

At+1 = argmax
a∈{1,...,K}

µ̂a(t) using estimates of the unknown means µa

µ̂a(t) = 1
Na(t)

t∑
s=1

Xa,s1(As =a)

↪→ Rν(A,T ) ≥ (1− µ1)× µ2 × (µ1 − µ2)T = Ω(T )
(with K = 2 Bernoulli arms of means µ1 6= µ2)
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.Two naive strategies



Given m ∈ {1, . . . ,T/K},
I draw each arm m times
I compute the empirical best arm â = argmaxa µ̂a(Km)
I keep playing this arm until round T

At+1 = â for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for K = 2 arms. If µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]
= ∆E [m + (T − Km)1 (â = 2)]
≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m: empirical mean of the first m observations from arm a
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Given m ∈ {1, . . . ,T/K},
I draw each arm m times
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=⇒ EXPLORATION followed by EXPLOITATION

Analysis for K = 2 arms. If µ1 > µ2, ∆ := µ1 − µ2.

Rν(ETC,T ) = ∆E[N2(T )]
= ∆E [m + (T − Km)1 (â = 2)]
≤ ∆m + (∆T )× P (µ̂2,m ≥ µ̂1,m)

µ̂a,m: empirical mean of the first m observations from arm a
=⇒ requires a concentration inequality
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.A better idea: Explore-Then-Commit (ETC)



Given m ∈ {1, . . . ,T/K},
I draw each arm m times
I compute the empirical best arm â = argmaxa µ̂a(Km)
I keep playing this arm until round T

At+1 = â for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.
Assumption 1: ν1, ν2 are bounded in [0, 1].

Rν(T ) = ∆E[N2(T )]
= ∆E [m + (T − Km)1 (â = 2)]
≤ ∆m + (∆T )× exp(−m∆2/2)

µ̂a,m: empirical mean of the first m observations from arm a
=⇒ Hoeffding’s inequality
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.A better idea: Explore-Then-Commit (ETC)



Given m ∈ {1, . . . ,T/K},
I draw each arm m times
I compute the empirical best arm â = argmaxa µ̂a(Km)
I keep playing this arm until round T

At+1 = â for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.
Assumption 2: ν1 = N (µ1, σ

2), ν2 = N (µ2, σ
2) are Gaussian arms.

Rν(ETC,T ) = ∆E[N2(T )]
= ∆E [m + (T − Km)1 (â = 2)]
≤ ∆m + (∆T )× exp(−m∆2/4σ2)

µ̂a,m: empirical mean of the first m observations from arm a
=⇒ Gaussian tail inequality
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Given m ∈ {1, . . . ,T/K},
I draw each arm m times
I compute the empirical best arm â = argmaxa µ̂a(Km)
I keep playing this arm until round T

At+1 = â for t ≥ Km

=⇒ EXPLORATION followed by EXPLOITATION

Analysis for two arms. µ1 > µ2, ∆ := µ1 − µ2.
Assumption: ν1 = N (µ1, σ

2), ν2 = N (µ2, σ
2) are Gaussian arms.

For m = 4σ2

∆2 log
(

T ∆2

4σ2

)
,

Rν(ETC,T ) ≤ 4σ2

∆

[
log
(
T∆2

2

)
+ 1

]
= O

( 1
∆ log(T )

)
.

+ logarithmic regret!
− requires the knowledge of T (' OKAY) and ∆ (NOT OKAY)
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.A better idea: Explore-Then-Commit (ETC)



I explore uniformly until the random time

τ = inf

t ∈ N : |µ̂1(t)− µ̂2(t)| >

√
8σ2 log(T/t)

t



0 200 400 600 800 1000

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

I âτ = argmax a µ̂a(τ) and (At+1 = âτ ) for t ∈ {τ + 1, . . . ,T}

Rν(S-ETC,T ) ≤ 4σ2

∆ log
(
T∆2

)
+ C

√
log(T ) = O

( 1
∆ log(T )

)
.

=⇒ same regret rate, without knowing ∆ [Garivier et al. 2016]
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.Sequential Explore-Then-Commit (2 Gaussian arms)



Two Gaussian arms: ν1 = N (1, 1) and ν2 = N (1.5, 1)
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0

100

200

300

400

500 Uniform
FTL
Sequential-ETC
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Sequential-ETC

Expected regret estimated over N = 500 runs for Sequential-ETC versus
our two naive baselines.

(dashed lines: empirical 0.05% and 0.95% quantiles of the regret)
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.Numerical illustration



For two-armed Gaussian bandits,

Rν(ETC,T ) . 4σ2

∆ log
(
T∆2

)
= O

( 1
∆ log(T )

)
.

=⇒ problem-dependent logarithmic regret bound
Rν(algo,T ) = O(log(T )).

Observation: blows up when ∆ tends to zero. . .

Rν(ETC,T ) . min
[
4σ2

∆ log
(
T∆2

)
,∆T

]

≤
√
T min

u>0

[
4σ2

u log(u2), u
]
≤ C
√
T .

=⇒ problem-independent square-root regret bound
Rν(algo,T ) = O(

√
T ).
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.Is this a good regret rate?



Best possible regret?
Lower Bounds
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Context: a parametric bandit model where each arm is parameterized by
its mean ν = (νµ1 , . . . , νµK ), µa ∈ I.

distributions ν ⇔ µ = (µ1, . . . , µK ) means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := KL
(
νµ, νµ′

)
= EX∼νµ

[
log dνµ

dνµ′
(X )

]

Theorem [Lai and Robbins, 1985]
For uniformly efficient algorithms (Rµ(A,T ) = o(Tα) for all α ∈ (0, 1)
and µ ∈ IK ),

µa < µ? =⇒ lim inf
T→∞

Eµ[Na(T )]
logT ≥ 1

kl(µa, µ?) .
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.The Lai and Robbins lower bound
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its mean ν = (νµ1 , . . . , νµK ), µa ∈ I.

distributions ν ⇔ µ = (µ1, . . . , µK ) means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := (µ− µ′)2

2σ2 (Gaussian bandits with variance σ2)

Theorem [Lai and Robbins, 1985]
For uniformly efficient algorithms (Rµ(A,T ) = o(Tα) for all α ∈ (0, 1)
and µ ∈ IK ),

µa < µ? =⇒ lim inf
T→∞

Eµ[Na(T )]
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.The Lai and Robbins lower bound



Context: a parametric bandit model where each arm is parameterized by
its mean ν = (νµ1 , . . . , νµK ), µa ∈ I.

distributions ν ⇔ µ = (µ1, . . . , µK ) means

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

kl(µ, µ′) := µ log
(
µ

µ′

)
+ (1− µ) log

( 1− µ
1− µ′

)
(Bernoulli bandits)

Theorem [Lai and Robbins, 1985]
For uniformly efficient algorithms (Rµ(A,T ) = o(Tα) for all α ∈ (0, 1)
and µ ∈ IK ),

µa < µ? =⇒ lim inf
T→∞

Eµ[Na(T )]
logT ≥ 1

kl(µa, µ?) .
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.The Lai and Robbins lower bound



I For two-armed Gaussian bandits, ETC satisfies

Rν(ETC,T ) . 4σ2

∆ log
(
T∆2

)
= O

( 1
∆ log(T )

)
,

with ∆ = |µ1 − µ2|.

I The Lai and Robbins’ lower bound yields, for large values of T ,

Rν(A,T ) & 2σ2

∆ log
(
T∆2

)
= Ω

( 1
∆ log(T )

)
,

as kl(µ1, µ2) = (µ1−µ2)2

2σ2 .

=⇒ Explore-Then-Commit is not asymptotically optimal.
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.Some room for better algorithms?



Mixing Exploration and
Exploitation
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The ε-greedy rule [Sutton and Barton, 98] is the simplest way to
alternate exploration and exploitation.

ε-greedy strategy
At round t,
I with probability ε

At ∼ U({1, . . . ,K})
I with probability 1− ε

At = argmax
a=1,...,K

µ̂a(t).

=⇒ Linear regret: Rν (ε-greedy,T ) ≥ εK−1
K ∆minT .

∆min = min
a:µa<µ?

∆a.
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.A simple strategy: ε-greedy



A simple fix: make ε decreasing!

εt-greedy strategy
At round t,
I with probability εt := min

(
1, K

d2t

)
probability ↘ with t

At ∼ U({1, . . . ,K})
I with probability 1− εt

At = argmax
a=1,...,K

µ̂a(t − 1).

Theorem [Auer et al. 02]

If 0 < d ≤ ∆min, Rν (εt-greedy,T ) = O
(

1
d2K log(T )

)
.

=⇒ requires the knowledge of a lower bound on ∆min.
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.A simple strategy: ε-greedy



The Optimism Principle
Upper Confidence Bounds Algorithms
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Step 1: construct a set of statistically plausible models
I For each arm a, build a confidence interval Ia(t) on the mean µa :

Ia(t) = [LCBa(t),UCBa(t)]

LCB = Lower Confidence Bound
UCB = Upper Confidence Bound

Figure: Confidence intervals on the means after t rounds
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.The optimism principle



Step 2: act as if the best possible model were the true model
(“optimism in face of uncertainty”)

Figure: Confidence intervals on the means after t rounds

Optimistic bandit model = argmax
µ∈C(t)

max
a=1,...,K

µa

I That is, select

At+1 = argmax
a=1,...,K

UCBa(t).
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.The optimism principle



Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB(α)
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We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− 1/t.

=⇒ tool: concentration inequalities
Example: rewards are σ2 sub-Gaussian

E[Z ] = µ and E
[
eλ(Z−µ)

]
≤ eλ2σ2/2. (1)

Hoeffding inequality
Zi i.i.d. satisfying (1). For all (fixed) s ≥ 1

P
(Z1 + · · ·+ Zs

s ≥ µ+ x
)
≤ e−sx2/(2σ2)

I νa bounded in [0, 1]: 1/4 sub-Gaussian
I νa = N (µa, σ

2): σ2 sub-Gaussian
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.How to build confidence intervals?



We need UCBa(t) such that

P (µa ≤ UCBa(t)) & 1− 1/t.

=⇒ tool: concentration inequalities
Example: rewards are σ2 sub-Gaussian

E[Z ] = µ and E
[
eλ(Z−µ)

]
≤ eλ2σ2/2. (1)

Hoeffding inequality
Zi i.i.d. satisfying (1). For all (fixed) s ≥ 1

P
(Z1 + · · ·+ Zs

s ≤ µ− x
)
≤ e−sx2/(2σ2)

BCannot be used directly in a bandit model as the number of
observations s from each arm is random!
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.How to build confidence intervals?



I Na(t) =
∑t

s=1 1(As =a) number of selections of a after t rounds
I µ̂a,s = 1

s
∑s

k=1 Ya,k average of the first s observations from arm a
I µ̂a(t) = µ̂a,Na(t) empirical estimate of µa after t rounds

Hoeffding inequality + union bound

P
(
µa ≤ µ̂a(t) + σ

√
α log(t)
Na(t)

)
≥ 1− 1

t α2 −1

Proof.

P
(
µa > µ̂a(t) + σ

√
α log(t)
Na(t)

)
≤ P

∃s ≤ t : µa > µ̂a,s + σ

√
α log(t)

s


≤

t∑
s=1

P

µ̂a,s < µa − σ

√
α log(t)

s

 ≤ t∑
s=1

1
tα/2 = 1

tα/2−1 .
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.How to build confidence intervals?



I Na(t) =
∑t

s=1 1(As =a) number of selections of a after t rounds
I µ̂a,s = 1

s
∑s

k=1 Ya,k average of the first s observations from arm a
I µ̂a(t) = µ̂a,Na(t) empirical estimate of µa after t rounds

Hoeffding inequality + union bound

P
(
µa ≤ µ̂a(t) + σ

√
α log(t)
Na(t)

)
≥ 1− 1

t α2 −1

Proof.

P
(
µa > µ̂a(t) + σ

√
α log(t)
Na(t)

)
≤ P

∃s ≤ t : µa > µ̂a,s + σ

√
α log(t)

s


≤

t∑
s=1

P

µ̂a,s < µa − σ

√
α log(t)

s

 ≤ t∑
s=1

1
tα/2 = 1

tα/2−1 .
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.How to build confidence intervals?



UCB(α) selects At+1 = argmaxa UCBa(t) where

UCBa(t) = µ̂a(t)︸ ︷︷ ︸
exploitation term

+
√
α log(t)
Na(t)︸ ︷︷ ︸

exploration bonus

.

I this form of UCB was first proposed for Gaussian rewards
[Katehakis and Robbins, 95]

I popularized by [Auer et al. 02] for bounded rewards:
UCB1, for α = 2 ↪→ see the next talk at 4pm !

I the analysis was UCB(α) was further refined to hold for α > 1/2 in
that case [Bubeck, 11, Cappé et al. 13]
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.A first UCB algorithm



0

1

6 31 436 17 9
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.A UCB algorithm in action (movie)



Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB(α)
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Theorem [Auer et al, 02]
UCB(α) with parameter α = 2 satisfies

Rν(UCB1,T ) ≤ 8

 ∑
a:µa<µ?

1
∆a

 log(T ) +
(
1 + π2

3

)( K∑
a=1

∆a

)
.

Theorem
For every α > 1 and every sub-optimal arm a, there exists a constant
Cα > 0 such thatEµ[Na(T )] ≤ 4α

(µ? − µa)2 log(T ) + Cα.

It follows that
Rν(UCB(α),T ) ≤ 4α

 ∑
a:µa<µ?

1
∆a

 log(T ) + KCα.
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.Regret of UCB(α) for bounded rewards



I Several ways to solve the exploration/exploitation trade-off
I Explore-Then-Commit
I ε-greedy
I Upper Confidence Bound algorithms

I Good concentration inequalities are crucial to build good UCB
algorithms!

I Performance lower bounds motivate the design of (optimal)
algorithms
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.Intermediate Summary



A Bayesian Look at the
MAB Model
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Bayesian Bandits

Two points of view

Bayes-UCB

Thompson Sampling

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 45/ 92



1952 Robbins, formulation of the MAB problem

1985 Lai and Robbins: lower bound, first asymptotically optimal algorithm

1987 Lai, asymptotic regret of kl-UCB
1995 Agrawal, UCB algorithms
1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
2002 Auer et al: UCB1 with finite-time regret bound
2009 UCB-V, MOSS. . .

2011,13 Cappé et al: finite-time regret bound for kl-UCB
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.Historical perspective



1933 Thompson: a Bayesian mechanism for clinical trials
1952 Robbins, formulation of the MAB problem
1956 Bradt et al, Bellman: optimal solution of a Bayesian MAB problem
1979 Gittins: first Bayesian index policy
1985 Lai and Robbins: lower bound, first asymptocally optimal algorithm
1985 Berry and Fristedt: Bandit Problems, a survey on the Bayesian MAB
1987 Lai, asymptotic regret of kl-UCB + study of its Bayesian regret
1995 Agrawal, UCB algorithms
1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
2002 Auer et al: UCB1 with finite-time regret bound
2009 UCB-V, MOSS. . .
2010 Thompson Sampling is re-discovered

2011,13 Cappé et al: finite-time regret bound for kl-UCB
2012,13 Thompson Sampling is asymptotically optimal
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.Historical perspective



νµ = (νµ1 , . . . , νµK ) ∈ (P)K .

I Two probabilistic models two points of view!

Frequentist model Bayesian model
µ1, . . . , µK µ1, . . . , µK drawn from a

unknown parameters prior distribution : µa ∼ πa

arm a: (Ya,s)s
i.i.d.∼ νµa arm a: (Ya,s)s |µ

i.i.d.∼ νµa

I The regret can be computed in each case

Frequentist Regret Bayesian regret
(regret) (Bayes risk)

Rµ(A,T )= Eµ

[
T∑

t=1
(µ? − µAt )

]
Rπ(A,T )= Eµ∼π

[
T∑

t=1
(µ? − µAt )

]
=
∫
Rµ(A,T )dπ(µ)
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.Frequentist versus Bayesian bandit



I Two types of tools to build bandit algorithms:

Frequentist tools Bayesian tools

MLE estimators of the means Posterior distributions
Confidence Intervals πt

a = L(µa|Ya,1, . . . ,Ya,Na(t))

0

1

9 3 448 18 21

0

1

6 3 451 5 34
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.Frequentist and Bayesian algorithms



Bernoulli bandit model µ = (µ1, . . . , µK )
I Bayesian view: µ1, . . . , µK are random variables

prior distribution : µa ∼ U([0, 1])

=⇒ posterior distribution:

πa(t) = L (µa|R1, . . . ,Rt)

= Beta
(
Sa(t)︸ ︷︷ ︸
#ones

+1,Na(t)− Sa(t)︸ ︷︷ ︸
#zeros

+1
)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

π
0

π
a
(t)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

π
a
(t)

π
a
(t+1)

si X
t+1

 = 1

π
a
(t+1)

si X
t+1

 = 0

Sa(t) =
t∑

s=1
Rs1(As =a) sum of the rewards from arm a
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.Example: Bernoulli bandits



A Bayesian bandit algorithm exploits the posterior distributions of the
means to decide which arm to select.

0

1

2 4 346 107 40
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.Bayesian algorithm



Bayesian Bandits

Two points of view

Bayes-UCB

Thompson Sampling
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I Π0 = (π1(0), . . . , πK (0)) be a prior distribution over (µ1, . . . , µK )
I Πt = (π1(t), . . . , πK (t)) be the posterior distribution over the means

(µ1, . . . , µK ) after t observations

The Bayes-UCB algorithm chooses at time t

At+1 = argmax
a=1,...,K

Q
(
1− 1

t(log t)c , πa(t)
)

where Q(α, π) is the quantile of order α of the distribution π.

α

Q(α,π)
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.The Bayes-UCB algorithm



I Π0 = (π1(0), . . . , πK (0)) be a prior distribution over (µ1, . . . , µK )
I Πt = (π1(t), . . . , πK (t)) be the posterior distribution over the means

(µ1, . . . , µK ) after t observations

The Bayes-UCB algorithm chooses at time t

At+1 = argmax
a=1,...,K

Q
(
1− 1

t(log t)c , πa(t)
)

where Q(α, π) is the quantile of order α of the distribution π.

Bernoulli reward with uniform prior:
I πa(0) i .i .d∼ U([0, 1]) = Beta(1, 1)
I πa(t) = Beta(Sa(t) + 1,Na(t)− Sa(t) + 1)
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.The Bayes-UCB algorithm



I Π0 = (π1(0), . . . , πK (0)) be a prior distribution over (µ1, . . . , µK )
I Πt = (π1(t), . . . , πK (t)) be the posterior distribution over the means

(µ1, . . . , µK ) after t observations

The Bayes-UCB algorithm chooses at time t

At+1 = argmax
a=1,...,K

Q
(
1− 1

t(log t)c , πa(t)
)

where Q(α, π) is the quantile of order α of the distribution π.

Gaussian rewards with Gaussian prior:
I πa(0) i .i .d∼ N (0, κ2)
I πa(t) = N

(
Sa(t)

Na(t)+σ2/κ2 ,
σ2

Na(t)+σ2/κ2

)
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.The Bayes-UCB algorithm
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1

6 19 443 4 27
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.Bayes UCB in action (movie)



I Bayes-UCB is asymptotically optimal for Bernoulli rewards

Theorem [K.,Cappé,Garivier 2012]
Let ε > 0. The Bayes-UCB algorithm using a uniform prior over the arms
and parameter c ≥ 5 satisfies

Eµ[Na(T )] ≤ 1 + ε

kl(µa, µ?) log(T ) + oε,c (log(T )) .
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.Theoretical results in the Bernoulli case



Bayesian Bandits

Insights from the Optimal Solution

Bayes-UCB

Thompson Sampling
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1933 Thompson: in the context of clinical trial, the allocation of a treatment
should be some increasing function of its posterior probability to be optimal

2010 Thompson Sampling rediscovered under different names
Bayesian Learning Automaton [Granmo, 2010]
Randomized probability matching [Scott, 2010]

2011 An empirical evaluation of Thompson Sampling: an efficient algorithm,
beyond simple bandit models
[Li and Chapelle, 2011]

2012 First (logarithmic) regret bound for Thompson Sampling
[Agrawal and Goyal, 2012]

2012 Thompson Sampling is asymptotically optimal for Bernoulli bandits
[K., Korda and Munos, 2012][Agrawal and Goyal, 2013]

2013- Many successful uses of Thompson Sampling beyond Bernoulli bandits
(contextual bandits, reinforcement learning)
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.Historical perspective



Two equivalent interpretations:
I “select an arm at random according to its probability of being the best”
I “draw a possible bandit model from the posterior distribution and act

optimally in this sampled model” 6= optimistic

Thompson Sampling: a randomized Bayesian algorithm ∀a ∈ {1..K}, θa(t) ∼ πa(t)
At+1 = argmax

a=1...K
θa(t).
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.Thompson Sampling



Problem-dependent regret

∀ε > 0, Eµ[Na(T )] ≤ 1 + ε

kl(µa, µ?) log(T ) + oµ,ε(log(T )).

This results holds:
I for Bernoulli bandits, with a uniform prior

[K. Korda, Munos 12][Agrawal and Goyal 13]
I for Gaussian bandits, with Gaussian prior[Agrawal and Goyal 17]
I for exponential family bandits, with Jeffrey’s prior [Korda et al. 13]

Problem-independent regret [Agrawal and Goyal 13]
For Bernoulli and Gaussian bandits, Thompson Sampling satisfies

Rµ(TS,T ) = O
(√

KT log(T )
)
.

I Thompson Sampling is also asymptotically optimal for Gaussian with
unknown mean and variance [Honda and Takemura, 14]
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.Thompson Sampling is asymptotically optimal



I a key ingredient in the analysis of [K. Korda and Munos 12]

Proposition
There exists constants b = b(µ) ∈ (0, 1) and Cb <∞ such that

∞∑
t=1

P
(
N1(t) ≤ tb

)
≤ Cb.

{
N1(t) ≤ tb

}
= {there exists a time range of length at least t1−b − 1

with no draw of arm 1 }
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.Understanding Thompson Sampling



I Short horizon, T = 1000 (average over N = 10000 runs)
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.Bayesian versus Frequentist algorithms



I Long horizon, T = 20000 (average over N = 50000 runs)

K = 10 Bernoulli arms bandit problem
µ = [0.1 0.05 0.05 0.05 0.02 0.02 0.02 0.01 0.01 0.01]
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.Bayesian versus Frequentist algorithms



Other Bandit Models
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Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits
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Most famous extensions:
I (centralized) multiple-actions

I multiple choice : choose m ∈ {2, . . . ,K − 1} arms (fixed size)
I combinatorial : choose a subset of arms S ⊂ {1, . . . ,K} (large space)

I non stationary

I piece-wise stationary / abruptly changing
I slowly-varying
I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

↪→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)



Most famous extensions:
I (centralized) multiple-actions

I multiple choice : choose m ∈ {2, . . . ,K − 1} arms (fixed size)

I combinatorial : choose a subset of arms S ⊂ {1, . . . ,K} (large space)

I non stationary

I piece-wise stationary / abruptly changing
I slowly-varying
I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

↪→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)



Most famous extensions:
I (centralized) multiple-actions

I multiple choice : choose m ∈ {2, . . . ,K − 1} arms (fixed size)
I combinatorial : choose a subset of arms S ⊂ {1, . . . ,K} (large space)

I non stationary

I piece-wise stationary / abruptly changing
I slowly-varying
I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

↪→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)



Most famous extensions:
I (centralized) multiple-actions

I multiple choice : choose m ∈ {2, . . . ,K − 1} arms (fixed size)
I combinatorial : choose a subset of arms S ⊂ {1, . . . ,K} (large space)

I non stationary

I piece-wise stationary / abruptly changing
I slowly-varying
I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

↪→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)



Most famous extensions:
I (centralized) multiple-actions

I multiple choice : choose m ∈ {2, . . . ,K − 1} arms (fixed size)
I combinatorial : choose a subset of arms S ⊂ {1, . . . ,K} (large space)

I non stationary
I piece-wise stationary / abruptly changing

I slowly-varying
I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

↪→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)



Most famous extensions:
I (centralized) multiple-actions

I multiple choice : choose m ∈ {2, . . . ,K − 1} arms (fixed size)
I combinatorial : choose a subset of arms S ⊂ {1, . . . ,K} (large space)

I non stationary
I piece-wise stationary / abruptly changing
I slowly-varying

I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

↪→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)



Most famous extensions:
I (centralized) multiple-actions

I multiple choice : choose m ∈ {2, . . . ,K − 1} arms (fixed size)
I combinatorial : choose a subset of arms S ⊂ {1, . . . ,K} (large space)

I non stationary
I piece-wise stationary / abruptly changing
I slowly-varying
I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

↪→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)



Most famous extensions:
I (centralized) multiple-actions

I multiple choice : choose m ∈ {2, . . . ,K − 1} arms (fixed size)
I combinatorial : choose a subset of arms S ⊂ {1, . . . ,K} (large space)

I non stationary
I piece-wise stationary / abruptly changing
I slowly-varying
I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

↪→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)



Most famous extensions:
I (centralized) multiple-actions

I multiple choice : choose m ∈ {2, . . . ,K − 1} arms (fixed size)
I combinatorial : choose a subset of arms S ⊂ {1, . . . ,K} (large space)

I non stationary
I piece-wise stationary / abruptly changing
I slowly-varying
I adversarial. . .

I (decentralized) collaborative/communicating bandits over a graph

I (decentralized) non communicating multi-player bandits

↪→ Implemented in our library SMPyBandits!

Lilian Besson & Émilie Kaufmann - Introduction to Multi-Armed Bandits 23 September, 2019 - 65/ 92

.Many other bandits models and problems (1/2)



And many more extensions. . .
I non stochastic, Markov models rested/restless

I best arm identification (vs reward maximization)
I fixed budget setting
I fixed confidence setting
I PAC (probably approximately correct) algorithms

I bandits with (differential) privacy constraints

I for some applications (content recommendation)
I contextual bandits : observe a reward and a context (Ct ∈ Rd)
I cascading bandits
I delayed feedback bandits

I structured bandits (low-rank, many-armed, Lipschitz etc)

I X -armed, continuous-armed bandits
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Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits
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Stationary MAB problems
Arm a gives rewards sampled from the same distribution for any time step

∀t, ra(t) iid∼ νa = B(µa).

Non stationary MAB problems?
(possibly) different distributions for any time step !

∀t, ra(t) iid∼ νa(t) = B(µa(t)).

=⇒ harder problem! And very hard if µa(t) can change at any step!

Piece-wise stationary problems!
↪→ the litterature usually focuses on the easier case, when there are at
most YT = o(

√
T ) intervals, on which the means are all stationary.
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.Piece-wise stationary bandits



We plots the means µ1(t), µ2(t), µ3(t) of K = 3 arms. There are YT = 4
break-points and 5 sequences between t = 1 and t = T = 5000:
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.Example of a piece-wise stationary MAB problem



The “oracle” algorithm plays the (unknown) best arm
k∗(t) = argmax µk(t) (which changes between the YT ≥ 1 stationary
sequences)

R(A,T ) = E
[ T∑

t=1
rk∗(t)(t)

]
−

T∑
t=1

E [r(t)] =
( T∑

t=1
max

k
µk(t)

)
−

T∑
t=1

E [r(t)] .

Typical regimes for piece-wise stationary bandits
I The lower-bound is R(A,T ) ≥ Ω(

√
KTYT )

I Currently, state-of-the-art algorithms A obtain
I R(A,T ) ≤ O(K

√
TYT log(T )) if T and YT are known

I R(A,T ) ≤ O(KYT
√

T log(T )) if T and YT are unknown
I ↪→ our algorithm klUCB index + BGLR detector is state-of-the-art!

[Besson and Kaufmann, 19] arXiv:1902.01575
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Idea: combine a good bandit algorithm with an break-point detector

klUCB + BGLR achieves the best performance (among non-oracle)!
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Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits
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M players playing the same K -armed bandit (2 ≤ M ≤ K )

At round t:
I player m selects Am,t ; then observes XAm,t ,t
I and receives the reward

Xm,t =
{

XAm,t ,t if no other player chose the same arm
0 else (= collision)

Goal:

I maximize centralized rewards
M∑

m=1

T∑
t=1

Xm,t

I . . . without communication between players
I trade off : exploration / exploitation / and collisions !

Cognitive radio: (OSA) sensing, attempt of transmission if no PU,
possible collisions with other SUs ↪→ see the next talk at 4pm !
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.Multi-players bandits: setup



Idea: combine a good bandit algorithm with an orthogonalization strategy
(collision avoidance protocol)

Example: UCB1 + ρrand. At round t each player
I has a stored rank Rm,t ∈ {1, . . . ,M}
I selects the arm that has the Rm,t-largest UCB
I if a collision occurs, draws a new rank Rm,t+1 ∼ U({1, . . . ,M})
I any index policy may be used in place of UCB1
I their proof was wrong. . .
I Early references: [Liu and Zhao, 10] [Anandkumar et al., 11]
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Idea: combine a good bandit algorithm with an orthogonalization strategy
(collision avoidance protocol)

Example: our algorithm klUCB index + MC-TopM rule
I more complicated behavior (musical chair game)
I we obtain a R(A,T ) = O(M3 1

∆2
M

log(T )) regret upper bound

I lower bound is R(A,T ) = Ω(M 1
∆2

M
log(T ))

I order optimal, not asymptotically optimal
I Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]
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Idea: combine a good bandit algorithm with an orthogonalization strategy
(collision avoidance protocol)

Example: our algorithm klUCB index + MC-TopM rule
I Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]

Remarks:
I number of players M has to be known

=⇒ but it is possible to estimate it on the run
I does not handle an evolving number of devices

(entering/leaving the network)
I is it a fair orthogonalization rule?
I could players use the collision indicators to communicate? (yes!)
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.Multi-players bandits: algorithms
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Multi-players M=6 : Cumulated centralized regret, averaged 40 times
9 arms: [B(0.01), B(0.01), B(0.01), B(0.1) ∗ , B(0.12) ∗ , B(0.14) ∗ , B(0.16) ∗ , B(0.18) ∗ , B(0.2) ∗ ]

SIC-MMAB(UCB-H, T0 =265)
SIC-MMAB(UCB, T0 =265)
SIC-MMAB(kl-UCB, T0 =265)
RhoRand-UCB
RhoRand-kl-UCB
RandTopM-UCB
RandTopM-kl-UCB
MCTopM-UCB
MCTopM-kl-UCB
Selfish-UCB
Selfish-kl-UCB
CentralizedMultiplePlay(UCB)
CentralizedMultiplePlay(kl-UCB)
MusicalChair(T0 =450)
MusicalChair(T0 =900)
MusicalChair(T0 =1350)
Besson & Kaufmann lower-bound = 22.7 log(t)

Anandkumar et al.'s lower-bound = 14.3 log(t)

Centralized lower-bound = 3.79 log(t)

For M = 6 objects, our strategy (MC-TopM) largely outperform SIC-MMAB and ρrand.
MCTopM + klUCB achieves the best performance (among decentralized algorithms) !
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Summary
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Now you are aware of:
I several methods for facing an exploration/exploitation dilemma
I notably two powerful classes of methods

I optimistic “UCB” algorithms
I Bayesian approaches, mostly Thompson Sampling

=⇒ And you can learn more about more complex bandit problems and
Reinforcement Learning!
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You also saw a bunch of important tools:
I performance lower bounds, guiding the design of algorithms
I Kullback-Leibler divergence to measure deviations
I applications of self-normalized concentration inequalities
I Bayesian tools. . .

And we presented many extensions of the single-player stationary MAB
model.
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Check out the

“The Bandit Book”
by Tor Lattimore and Csaba Szepesvári

Cambridge University Press, 2019.

↪→ tor-lattimore.com/downloads/book/book.pdf
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.Where to know more? (1/3)

https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf


Reach me (or Émilie Kaufmann) out by email, if you have questions

Lilian.Besson @ Inria.fr
↪→ perso.crans.org/besson/

Emilie.Kaufmann @ Univ-Lille.fr
↪→ chercheurs.lille.inria.fr/ekaufman
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https://perso.crans.org/besson/
https://perso.crans.org/besson/
http://chercheurs.lille.inria.fr/ekaufman/
http://chercheurs.lille.inria.fr/ekaufman/


Experiment with bandits by yourself!

Interactive demo on this web-page
↪→ perso.crans.org/besson/phd/MAB_interactive_demo/

Use our Python library for simulations of MAB problems SMPyBandits
↪→ SMPyBandits.GitHub.io & GitHub.com/SMPyBandits

I Install with $ pip install SMPyBandits
I Free and open-source (MIT license)
I Easy to set up your own bandit experiments, add new algorithms etc.
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.Where to know more? (3/3)

https://perso.crans.org/besson/phd/MAB_interactive_demo/
https://smpybandits.github.io/
https://GitHub.com/SMPyBandits/
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.↪→ SMPyBandits.GitHub.io

https://smpybandits.github.io/


Thanks for your attention !

Questions & Discussion ?

↪→ Break and then next talk by Christophe Moy
“Decentralized Spectrum Learning for IoT”
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c© Jeph Jacques, 2015, QuestionableContent.net/view.php?comic=3074
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.Climatic crisis ?

https://QuestionableContent.net/view.php?comic=3074


We are scientists. . .
Goals: inform ourselves, think, find, communicate!
I Inform ourselves of the causes and consequences of climatic crisis,
I Think of the all the problems, at political, local and individual scales,
I Find simple solutions !

=⇒ Aim at sobriety: transports, tourism, clothing, food,
computations, fighting smoking, etc.

I Communicate our awareness, and our actions !
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.Let’s talk about actions against the climatic crisis !



I My PhD thesis (Lilian Besson)
“Multi-players Bandit Algorithms for Internet of Things Networks”
↪→ perso.crans.org/besson/phd/
↪→ GitHub.com/Naereen/phd-thesis/

I Our Python library for simulations of MAB problems, SMPyBandits
↪→ SMPyBandits.GitHub.io

I “The Bandit Book”, by Tor Lattimore and Csaba Szepesvari
↪→ tor-lattimore.com/downloads/book/book.pdf

I “Introduction to Multi-Armed Bandits”, by Alex Slivkins
↪→ arXiv.org/abs/1904.07272
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