Introduction to Multi-Armed BANDITS AND REINFORCEMENT LEARNING
Training School on Machine Learning for Communications Paris, 23-25 September 2019

Hi, I'm Lilian Besson

- finishing my PhD in telecommunication and machine learning
- under supervision of Prof. Christophe Moy at IETR \& CentraleSupélec in Rennes (France)
- and Dr. Émilie Kaufmann in Inria in Lille Thanks to Émilie Kaufmann for most of the slides material!
- Lilian.Besson @ Inria.fr
- \hookrightarrow perso.crans.org/besson/ \& GitHub.com/Naereen

CentraleSupélec

INVENTEURS DU MONDE NUMÉRIQQUE

What is a bandit?

It's an old name for a casino machine!

\hookrightarrow (c) Dargaud, Lucky Luke tome 18 .

Why Bandits?

A (single) agent facing (multiple) arms in a Multi-Armed Bandit.

A (single) agent facing (multiple) arms in a Multi-Armed Bandit.

NO!

Sequential resource allocation

Clinical trials

- K treatments for a given symptom (with unknown effect)

- What treatment should be allocated to the next patient, based on responses observed on previous patients?

Sequential resource allocation

Clinical trials

- K treatments for a given symptom (with unknown effect)

- What treatment should be allocated to the next patient, based on responses observed on previous patients?

Online advertisement

- K adds that can be displayed

- Which add should be displayed for a user, based on the previous clicks of previous (similar) users?

Lilian Besson \& Émilie Kaufmann - Introduction to Multi-Armed Bandits

Dynamic channel selection

Opportunistic Spectrum Access

- K radio channels (orthogonal frequency bands)

- In which channel should a radio device send a packet, based on the quality of its previous communications?

Dynamic channel selection

Opportunistic Spectrum Access

- K radio channels (orthogonal frequency bands)

- In which channel should a radio device send a packet, based on the quality of its previous communications? \hookrightarrow see the next talk at 4pm!

Dynamic channel selection

Opportunistic Spectrum Access

- K radio channels (orthogonal frequency bands)

- In which channel should a radio device send a packet, based on the quality of its previous communications? \hookrightarrow see the next talk at 4 pm !

Communications in presence of a central controller

-K assignments from n users to m antennas (\rightsquigarrow combinatorial bandit)

- How to select the next matching based on the throughput observed in previous communications?

Dynamic allocation of computational resources

Numerical experiments (bandits for "black-box" optimization)

- where to evaluate a costly function in order to find its maximum?

Dynamic allocation of computational resources

Numerical experiments (bandits for "black-box" optimization)

- where to evaluate a costly function in order to find its maximum?

Artificial intelligence for games

- where to choose the next evaluation to perform in order to find the best move to play next?

Why talking about bandits today?

- rewards maximization in a stochastic bandit model $=$ the simplest Reinforcement Learning (RL) problem (one state) \Longrightarrow good introduction to RL!
- bandits showcase the important exploration/exploitation dilemma
- bandit tools are useful for RL (UCRL, bandit-based MCTS for planning in games...)
- a rich literature to tackle many specific applications
- bandits have application beyond RL (i.e. without "reward")
- and bandits have great applications to Cognitive Radio \hookrightarrow see the next talk at 4 pm !

Outline of this talk

- Multi-armed Bandit
- Performance measure (regret) and first strategies
- Best possible regret? Lower bounds
- Mixing Exploration and Exploitation
- The Optimism Principle and Upper Confidence Bounds (UCB) Algorithms
- A Bayesian Look at the Multi-Armed Bandit Model
- Many extensions of the stationary single-player bandit models
- Summary

The Multi-Armed Bandit Setup

K arms $\Leftrightarrow K$ rewards streams $\left(X_{a, t}\right)_{t \in \mathbb{N}}$

At round t, an agent:

- chooses an arm A_{t}
- receives a reward $R_{t}=X_{A_{t}, t}$ (from the environment)

Sequential sampling strategy (bandit algorithm):
$A_{t+1}=F_{t}\left(A_{1}, R_{1}, \ldots, A_{t}, R_{t}\right)$.
Goal: Maximize sum of rewards $\sum_{t=1}^{T} R_{t}$.

The Stochastic Multi-Armed Bandit Setup

K arms $\Leftrightarrow K$ probability distributions: ν_{a} has mean μ_{a}

ν_{1}

ν_{2}

ν_{3}

ν_{4}

ν_{5}

At round t, an agent:

- chooses an arm A_{t}
- receives a reward $R_{t}=X_{A_{t, t}} \sim \nu_{A_{t}}$ (i.i.d. from a distribution)

Sequential sampling strategy (bandit algorithm):
$A_{t+1}=F_{t}\left(A_{1}, R_{1}, \ldots, A_{t}, R_{t}\right)$.
Goal: Maximize sum of rewards $\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]$.

Total Total
Reward Plays
$14 \quad 24$

\hookrightarrow Interactive demo on this web-page perso.crans.org/besson/phd/MAB_interactive_demo/

Lilian Besson \& Émilie Kaufmann - Introduction to Multi-Armed Bandits

Clinical trials

Historical motivation [Thompson 1933]

$\mathcal{B}\left(\mu_{1}\right) \quad \mathcal{B}\left(\mu_{2}\right) \quad \mathcal{B}\left(\mu_{3}\right)$

$\mathcal{B}\left(\mu_{4}\right) \quad \mathcal{B}\left(\mu_{5}\right)$

For the t-th patient in a clinical study,

- chooses a treatment A_{t}
- observes a (Bernoulli) response $R_{t} \in\{0,1\}: \mathbb{P}\left(R_{t}=1 \mid A_{t}=a\right)=\mu_{a}$

Goal: maximize the expected number of patients healed.

Online content optimization

Modern motivation (\$\$\$) [Li et al, 2010]
(recommender systems, online advertisement, etc)

ν_{1}

ν_{2}

ν_{3}

ν_{4}

ν_{5}

For the t-th visitor of a website,

- recommend a movie A_{t}
- observe a rating $R_{t} \sim \nu_{A_{t}}$ (e.g. $R_{t} \in\{1, \ldots, 5\}$)

Goal: maximize the sum of ratings.

Opportunistic spectrum access [Zhao et al. 10] [Anandkumar et al. 11]
streams indicating channel quality

Channel 1	$X_{1,1}$	$X_{1,2}$	\ldots	$X_{1, t}$	\ldots	$X_{1, T}$	$\sim \nu_{1}$
Channel 2	$X_{2,1}$	$X_{2,2}$	\ldots	$X_{2, t}$	\ldots	$X_{2, T}$	$\sim \nu_{2}$
\ldots							
Channel K	$X_{K, 1}$	$X_{K, 2}$	\ldots	$X_{K, t}$	\ldots	$X_{K, T}$	$\sim \nu_{K}$

At round t, the device:

- selects a channel A_{t}
- observes the quality of its communication $R_{t}=X_{A_{t}, t} \in[0,1]$

Goal: Maximize the overall quality of communications.
\hookrightarrow see the next talk at 4 pm !

PERFORMANCE MEASURE AND FIRST STRATEGIES

Regret of a bandit algorithm

Bandit instance: $\boldsymbol{\nu}=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{K}\right)$, mean of arm a: $\mu_{a}=\mathbb{E}_{X \sim \nu_{a}}[X]$.

$$
\mu_{\star}=\max _{a \in\{1, \ldots, K\}} \mu_{a} \text { and } a_{\star}=\underset{a \in\{1, \ldots, K\}}{\operatorname{argmax}} \mu_{a} .
$$

Maximizing rewards \Leftrightarrow selecting a_{\star} as much as possible \Leftrightarrow minimizing the regret [Robbins, 52]

$$
\mathcal{R}_{\nu}(\mathcal{A}, T):=\underbrace{T \mu_{\star}}_{\begin{array}{c}
\text { sum of rewards of } \\
\text { an oracle strategy } \\
\text { always selecting } a_{\star}
\end{array}}-\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]}_{\begin{array}{c}
\text { sum of rewards of } \\
\text { the strategy } \mathcal{A}
\end{array}}
$$

Regret of a bandit algorithm

Bandit instance: $\boldsymbol{\nu}=\left(\nu_{1}, \nu_{2}, \ldots, \nu_{K}\right)$, mean of arm a: $\mu_{a}=\mathbb{E}_{X \sim \nu_{a}}[X]$.

$$
\mu_{\star}=\max _{a \in\{1, \ldots, K\}} \mu_{a} \text { and } a_{\star}=\underset{a \in\{1, \ldots, K\}}{\operatorname{argmax}} \mu_{a} .
$$

Maximizing rewards \Leftrightarrow selecting a_{\star} as much as possible \Leftrightarrow minimizing the regret [Robbins, 52]

$$
\mathcal{R}_{\nu}(\mathcal{A}, T):=\underbrace{T \mu_{\star}}_{\begin{array}{c}
\text { sum of rewards of } \\
\text { an oracle strategy } \\
\text { always selecting } a_{\star}
\end{array}}-\underbrace{\mathbb{E}\left[\sum_{t=1}^{T} R_{t}\right]}_{\begin{array}{c}
\text { sum of rewards of } \\
\text { the strategy } \mathcal{A}
\end{array}}
$$

What regret rate can we achieve?

\Longrightarrow consistency: $\mathcal{R}_{\nu}(\mathcal{A}, T) / T \Longrightarrow 0$ (when $T \rightarrow \infty$)
\Longrightarrow can we be more precise?

Lilian Besson \& Émilie Kaufmann - Introduction to Multi-Armed Bandits

Regret decomposition

$N_{a}(t)$: number of selections of arm a in the first t rounds $\Delta_{a}:=\mu_{\star}-\mu_{a}$: sub-optimality gap of arm a

Regret decomposition

$$
\mathcal{R}_{\nu}(\mathcal{A}, T)=\sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]
$$

Regret decomposition

$N_{a}(t)$: number of selections of arm a in the first t rounds $\Delta_{a}:=\mu_{\star}-\mu_{a}$: sub-optimality gap of arm a

Regret decomposition

$$
\mathcal{R}_{\nu}(\mathcal{A}, T)=\sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]
$$

Proof.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathcal{A}, T) & =\mu_{\star} T-\mathbb{E}\left[\sum_{t=1}^{T} X_{A_{t}, t}\right]=\mu_{\star} T-\mathbb{E}\left[\sum_{t=1}^{T} \mu_{A_{t}}\right] \\
& =\mathbb{E}\left[\sum_{t=1}^{T}\left(\mu_{\star}-\mu_{A_{t}}\right)\right] \\
& =\sum_{a=1}^{K} \underbrace{\left(\mu_{\star}-\mu_{a}\right)}_{\Delta_{a}} \mathbb{E}[\underbrace{\sum_{t=1}^{T} \mathbb{1}\left(A_{t}=a\right)}_{N_{a}(T)}]
\end{aligned}
$$

Regret decomposition

$N_{a}(t)$: number of selections of arm a in the first t rounds $\Delta_{a}:=\mu_{\star}-\mu_{a}$: sub-optimality gap of arm a

Regret decomposition

$$
\mathcal{R}_{\nu}(\mathcal{A}, T)=\sum_{a=1}^{K} \Delta_{a} \mathbb{E}\left[N_{a}(T)\right]
$$

A strategy with small regret should:

- select not too often arms for which $\Delta_{a}>0$ (sub-optimal arms)
- ... which requires to try all arms to estimate the values of the Δ_{a}

\Longrightarrow Exploration / Exploitation trade-off!

Two naive strategies

- Idea 1 :

Draw each arm T / K times

$$
\hookrightarrow \mathcal{R}_{\nu}(\mathcal{A}, T)=\left(\frac{1}{K} \sum_{a: \mu_{a}>\mu_{*}} \Delta_{a}\right) T=\Omega(T)
$$

- Idea 1 :

Draw each arm T / K times

$$
\hookrightarrow \mathcal{R}_{\nu}(\mathcal{A}, T)=\left(\frac{1}{K} \sum_{a: \mu_{a}>\mu_{\star}} \Delta_{a}\right) T=\Omega(T)
$$

- Idea 2 : Always trust the empirical best arm \Longrightarrow EXPLOITATION
$A_{t+1}=\underset{a \in\{1, \ldots, K\}}{\operatorname{argmax}} \widehat{\mu}_{a}(t)$ using estimates of the unknown means μ_{a}

$$
\widehat{\mu}_{a}(t)=\frac{1}{N_{a}(t)} \sum_{s=1}^{t} X_{a, s} \mathbb{1}_{\left(A_{s}=a\right)}
$$

$$
\begin{aligned}
\hookrightarrow & \mathcal{R}_{\nu}(\mathcal{A}, T) \geq\left(1-\mu_{1}\right) \times \mu_{2} \times\left(\mu_{1}-\mu_{2}\right) T=\Omega(T) \\
& \left(\text { with } K=2 \text { Bernoulli arms of means } \mu_{1} \neq \mu_{2}\right)
\end{aligned}
$$

A better idea: Explore-Then-Commit

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\widehat{a}=\operatorname{argmax}_{a} \widehat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\widehat{a} \text { for } t \geq K m
$$

\Longrightarrow EXPLORATION followed by EXPLOITATION

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\widehat{a}=\operatorname{argmax}_{a} \widehat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Longrightarrow EXPLORATION followed by EXPLOITATION

Analysis for $K=2$ arms. If $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-K m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \mathbb{P}\left(\widehat{\mu}_{2, m} \geq \widehat{\mu}_{1, m}\right)
\end{aligned}
$$

$\widehat{\mu}_{a, m}$: empirical mean of the first m observations from arm a

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\widehat{a}=\operatorname{argmax}_{a} \widehat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\widehat{a} \text { for } t \geq K m
$$

\Longrightarrow EXPLORATION followed by EXPLOITATION

Analysis for $K=2$ arms. If $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-K m) \mathbb{1}(\widehat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \mathbb{P}\left(\widehat{\mu}_{2, m} \geq \widehat{\mu}_{1, m}\right)
\end{aligned}
$$

$\widehat{\mu}_{a, m}$: empirical mean of the first m observations from arm a
\Longrightarrow requires a concentration inequality
Lilian Besson \& Émilie Kaufmann - Introduction to Multi-Armed Bandits

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\widehat{a}=\operatorname{argmax}_{a} \widehat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Longrightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption 1: ν_{1}, ν_{2} are bounded in $[0,1]$.

$$
\begin{aligned}
\mathcal{R}_{\nu}(T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-K m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \exp \left(-m \Delta^{2} / 2\right)
\end{aligned}
$$

$\widehat{\mu}_{a, m}$: empirical mean of the first m observations from arm a
\Longrightarrow Hoeffding's inequality

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\widehat{a}=\operatorname{argmax}_{a} \widehat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Longrightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption 2: $\nu_{1}=\mathcal{N}\left(\mu_{1}, \sigma^{2}\right), \nu_{2}=\mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$ are Gaussian arms.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-K m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \exp \left(-m \Delta^{2} / 4 \sigma^{2}\right)
\end{aligned}
$$

$\widehat{\mu}_{a, m}$: empirical mean of the first m observations from arm a \Longrightarrow Gaussian tail inequality

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\widehat{a}=\operatorname{argmax}_{a} \widehat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Longrightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption 2: $\nu_{1}=\mathcal{N}\left(\mu_{1}, \sigma^{2}\right), \nu_{2}=\mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$ are Gaussian arms.

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & =\Delta \mathbb{E}\left[N_{2}(T)\right] \\
& =\Delta \mathbb{E}[m+(T-K m) \mathbb{1}(\hat{a}=2)] \\
& \leq \Delta m+(\Delta T) \times \exp \left(-m \Delta^{2} / 4 \sigma^{2}\right)
\end{aligned}
$$

$\widehat{\mu}_{a, m}$: empirical mean of the first m observations from arm a \Longrightarrow Gaussian tail inequality

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\widehat{a}=\operatorname{argmax}_{a} \widehat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\widehat{a} \text { for } t \geq K m
$$

\Longrightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption: $\nu_{1}=\mathcal{N}\left(\mu_{1}, \sigma^{2}\right), \nu_{2}=\mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$ are Gaussian arms.
For $m=\frac{4 \sigma^{2}}{\Delta^{2}} \log \left(\frac{T \Delta^{2}}{4 \sigma^{2}}\right)$,

$$
\mathcal{R}_{\nu}(\mathrm{ETC}, T) \leq \frac{4 \sigma^{2}}{\Delta}\left[\log \left(\frac{T \Delta^{2}}{2}\right)+1\right]=\mathcal{O}\left(\frac{1}{\Delta} \log (T)\right)
$$

Given $m \in\{1, \ldots, T / K\}$,

- draw each arm m times
- compute the empirical best arm $\widehat{a}=\operatorname{argmax}_{a} \widehat{\mu}_{a}(K m)$
- keep playing this arm until round T

$$
A_{t+1}=\hat{a} \text { for } t \geq K m
$$

\Longrightarrow EXPLORATION followed by EXPLOITATION

Analysis for two arms. $\mu_{1}>\mu_{2}, \Delta:=\mu_{1}-\mu_{2}$.
Assumption: $\nu_{1}=\mathcal{N}\left(\mu_{1}, \sigma^{2}\right), \nu_{2}=\mathcal{N}\left(\mu_{2}, \sigma^{2}\right)$ are Gaussian arms.
For $m=\frac{4 \sigma^{2}}{\Delta^{2}} \log \left(\frac{T \Delta^{2}}{4 \sigma^{2}}\right)$,

$$
\mathcal{R}_{\nu}(\mathrm{ETC}, T) \leq \frac{4 \sigma^{2}}{\Delta}\left[\log \left(\frac{T \Delta^{2}}{2}\right)+1\right]=\mathcal{O}\left(\frac{1}{\Delta} \log (T)\right)
$$

+ logarithmic regret!
- requires the knowledge of $T(\simeq$ OKAY $)$ and Δ (NOT OKAY)

Sequential Explore-Then-Commit

- explore uniformly until the random time

$$
\tau=\inf \left\{t \in \mathbb{N}:\left|\widehat{\mu}_{1}(t)-\widehat{\mu}_{2}(t)\right|>\sqrt{\frac{8 \sigma^{2} \log (T / t)}{t}}\right\}
$$

- $\hat{a}_{\tau}=\operatorname{argmax}_{a} \widehat{\mu}_{a}(\tau)$ and $\left(A_{t+1}=\widehat{a}_{\tau}\right)$ for $t \in\{\tau+1, \ldots, T\}$

$$
\mathcal{R}_{\nu}(\mathrm{S}-\mathrm{ETC}, T) \leq \frac{4 \sigma^{2}}{\Delta} \log \left(T \Delta^{2}\right)+C \sqrt{\log (T)}=\mathcal{O}\left(\frac{1}{\Delta} \log (T)\right)
$$

\Longrightarrow same regret rate, without knowing Δ [Garivier et al. 2016]

Two Gaussian arms: $\nu_{1}=\mathcal{N}(1,1)$ and $\nu_{2}=\mathcal{N}(1.5,1)$

Expected regret estimated over $N=500$ runs for Sequential-ETC versus our two naive baselines.
(dashed lines: empirical 0.05% and 0.95% quantiles of the regret)

Is this a good regret rate?

For two-armed Gaussian bandits,

$$
\mathcal{R}_{\nu}(\operatorname{ETC}, T) \lesssim \frac{4 \sigma^{2}}{\Delta} \log \left(T \Delta^{2}\right)=\mathcal{O}\left(\frac{1}{\Delta} \log (T)\right)
$$

\Longrightarrow problem-dependent logarithmic regret bound $\mathcal{R}_{\nu}($ algo, $T)=\mathcal{O}(\log (T))$.
Observation: blows up when Δ tends to zero...

$$
\begin{aligned}
\mathcal{R}_{\nu}(\mathrm{ETC}, T) & \lesssim \min \left[\frac{4 \sigma^{2}}{\Delta} \log \left(T \Delta^{2}\right), \Delta T\right] \\
& \leq \sqrt{T} \min _{u>0}\left[\frac{4 \sigma^{2}}{u} \log \left(u^{2}\right), u\right] \leq C \sqrt{T}
\end{aligned}
$$

\Longrightarrow problem-independent square-root regret bound $\mathcal{R}_{\nu}($ algo,$T)=\mathcal{O}(\sqrt{T})$.

Best Possible Regret? Lower Bounds

The Lai and Robbins lower bound

Context: a parametric bandit model where each arm is parameterized by its mean $\boldsymbol{\nu}=\left(\nu_{\mu_{1}}, \ldots, \nu_{\mu_{K}}\right), \mu_{a} \in \mathcal{I}$.

$$
\text { distributions } \boldsymbol{\nu} \Leftrightarrow \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right) \text { means }
$$

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\operatorname{kl}\left(\mu, \mu^{\prime}\right):=\mathrm{KL}\left(\nu_{\mu}, \nu_{\mu^{\prime}}\right)=\mathbb{E}_{X \sim \nu_{\mu}}\left[\log \frac{d \nu_{\mu}}{d \nu_{\mu^{\prime}}}(X)\right]
$$

Theorem

For uniformly efficient algorithms $\left(\mathcal{R}_{\mu}(\mathcal{A}, T)=o\left(T^{\alpha}\right)\right.$ for all $\alpha \in(0,1)$ and $\left.\boldsymbol{\mu} \in \mathcal{I}^{K}\right)$,

$$
\mu_{a}<\mu_{\star} \Longrightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\mu}\left[N_{a}(T)\right]}{\log T} \geq \frac{1}{\mathrm{kl}\left(\mu_{a}, \mu_{\star}\right)} .
$$

The Lai and Robbins lower bound

Context: a parametric bandit model where each arm is parameterized by its mean $\boldsymbol{\nu}=\left(\nu_{\mu_{1}}, \ldots, \nu_{\mu_{K}}\right), \mu_{a} \in \mathcal{I}$.

$$
\text { distributions } \boldsymbol{\nu} \Leftrightarrow \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right) \text { means }
$$

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\operatorname{kl}\left(\mu, \mu^{\prime}\right):=\frac{\left(\mu-\mu^{\prime}\right)^{2}}{2 \sigma^{2}} \quad\left(\text { Gaussian bandits with variance } \sigma^{2}\right)
$$

Theorem

For uniformly efficient algorithms $\left(\mathcal{R}_{\mu}(\mathcal{A}, T)=o\left(T^{\alpha}\right)\right.$ for all $\alpha \in(0,1)$ and $\left.\boldsymbol{\mu} \in \mathcal{I}^{K}\right)$,

$$
\mu_{\mathrm{a}}<\mu_{\star} \Longrightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\mu}\left[N_{\mathrm{a}}(T)\right]}{\log T} \geq \frac{1}{\mathrm{kl}\left(\mu_{\mathrm{a}}, \mu_{\star}\right)}
$$

The Lai and Robbins lower bound

Context: a parametric bandit model where each arm is parameterized by its mean $\boldsymbol{\nu}=\left(\nu_{\mu_{1}}, \ldots, \nu_{\mu_{K}}\right), \mu_{a} \in \mathcal{I}$.

$$
\text { distributions } \boldsymbol{\nu} \Leftrightarrow \boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right) \text { means }
$$

Key tool: Kullback-Leibler divergence.

Kullback-Leibler divergence

$$
\operatorname{kl}\left(\mu, \mu^{\prime}\right):=\mu \log \left(\frac{\mu}{\mu^{\prime}}\right)+(1-\mu) \log \left(\frac{1-\mu}{1-\mu^{\prime}}\right) \quad \text { (Bernoulli bandits) }
$$

Theorem

For uniformly efficient algorithms $\left(\mathcal{R}_{\mu}(\mathcal{A}, T)=o\left(T^{\alpha}\right)\right.$ for all $\alpha \in(0,1)$ and $\boldsymbol{\mu} \in \mathcal{I}^{K}$),

$$
\mu_{a}<\mu_{\star} \Longrightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\mu}\left[N_{a}(T)\right]}{\log T} \geq \frac{1}{\operatorname{kl}\left(\mu_{a}, \mu_{\star}\right)} .
$$

Some room for better algorithms?

- For two-armed Gaussian bandits, ETC satisfies

$$
\mathcal{R}_{\nu}(\mathrm{ETC}, T) \lesssim \frac{4 \sigma^{2}}{\Delta} \log \left(T \Delta^{2}\right)=\mathcal{O}\left(\frac{1}{\Delta} \log (T)\right),
$$

with $\Delta=\left|\mu_{1}-\mu_{2}\right|$.

- The Lai and Robbins' lower bound yields, for large values of T,

$$
\mathcal{R}_{\nu}(\mathcal{A}, T) \gtrsim \frac{2 \sigma^{2}}{\Delta} \log \left(T \Delta^{2}\right)=\Omega\left(\frac{1}{\Delta} \log (T)\right)
$$

as $\operatorname{kl}\left(\mu_{1}, \mu_{2}\right)=\frac{\left(\mu_{1}-\mu_{2}\right)^{2}}{2 \sigma^{2}}$.
\Longrightarrow Explore-Then-Commit is not asymptotically optimal.

Mixing Exploration and EXPLOITATION

A simple strategy: ε-greedy

The ε-greedy rule [Sutton and Barton, 98] is the simplest way to alternate exploration and exploitation.

ع-greedy strategy

At round t,

- with probability ε

$$
A_{t} \sim \mathcal{U}(\{1, \ldots, K\})
$$

- with probability $1-\varepsilon$

$$
A_{t}=\underset{a=1, \ldots, K}{\operatorname{argmax}} \widehat{\mu}_{a}(t) .
$$

$$
\Delta_{\min }=\min _{a: \mu_{a}<\mu_{\star}} \Delta_{a} .
$$

A simple strategy: ε-greedy

A simple fix: make ε decreasing!

ε_{t}-greedy strategy

At round t,

- with probability $\varepsilon_{t}:=\min \left(1, \frac{K}{d^{2} t}\right)$
probability \searrow with t

$$
A_{t} \sim \mathcal{U}(\{1, \ldots, K\})
$$

- with probability $1-\varepsilon_{t}$

$$
A_{t}=\underset{a=1, \ldots, K}{\operatorname{argmax}} \widehat{\mu}_{a}(t-1) .
$$

Theorem

$$
\text { If } 0<d \leq \Delta_{\min }, \mathcal{R}_{\nu}\left(\varepsilon_{t}-\text { greedy }, T\right)=\mathcal{O}\left(\frac{1}{d^{2}} K \log (T)\right)
$$

\Longrightarrow requires the knowledge of a lower bound on $\Delta_{\text {min }}$.

The Optimism Principle

Upper Confidence Bounds Algorithms

The optimism principle

Step 1: construct a set of statistically plausible models

- For each arm a, build a confidence interval $\mathcal{I}_{a}(t)$ on the mean μ_{a} :

$$
\begin{aligned}
& \quad \mathcal{I}_{a}(t)=\left[\mathrm{LCB}_{a}(t), \mathrm{UCB}_{a}(t)\right] \\
& \mathrm{LCB}=\text { Lower Confidence Bound } \\
& \mathrm{UCB}=\text { Upper Confidence Bound }
\end{aligned}
$$

Figure: Confidence intervals on the means after t rounds

The optimism principle

Step 2: act as if the best possible model were the true model ("optimism in face of uncertainty")

Figure: Confidence intervals on the means after t rounds

$$
\text { Optimistic bandit model }=\underset{\mu \in \mathcal{C}(t)}{\operatorname{argmax}} \max _{a=1, \ldots, K} \mu_{a}
$$

- That is, select

$$
A_{t+1}=\underset{a=1, \ldots, K}{\operatorname{argmax}} \mathrm{UCB}_{a}(t) .
$$

Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB (α)

How to build confidence intervals?

We need $\mathrm{UCB}_{a}(t)$ such that

$$
\mathbb{P}\left(\mu_{\mathrm{a}} \leq \mathrm{UCB}_{a}(t)\right) \gtrsim 1-1 / t
$$

\Longrightarrow tool: concentration inequalities
Example: rewards are σ^{2} sub-Gaussian

$$
\begin{equation*}
\mathbb{E}[Z]=\mu \quad \text { and } \quad \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \leq e^{\lambda^{2} \sigma^{2} / 2} \tag{1}
\end{equation*}
$$

Hoeffding inequality

Z_{i} i.i.d. satisfying (1). For all (fixed) $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s} \geq \mu+x\right) \leq e^{-s x^{2} /\left(2 \sigma^{2}\right)}
$$

- ν_{a} bounded in $[0,1]: 1 / 4$ sub-Gaussian
- $\nu_{a}=\mathcal{N}\left(\mu_{a}, \sigma^{2}\right): \sigma^{2}$ sub-Gaussian

How to build confidence intervals?

We need $\mathrm{UCB}_{a}(t)$ such that

$$
\mathbb{P}\left(\mu_{\mathrm{a}} \leq \mathrm{UCB}_{a}(t)\right) \gtrsim 1-1 / t
$$

\Longrightarrow tool: concentration inequalities
Example: rewards are σ^{2} sub-Gaussian

$$
\begin{equation*}
\mathbb{E}[Z]=\mu \quad \text { and } \quad \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \leq e^{\lambda^{2} \sigma^{2} / 2} \tag{1}
\end{equation*}
$$

Hoeffding inequality

Z_{i} i.i.d. satisfying (1). For all (fixed) $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s} \leq \mu-x\right) \leq e^{-s x^{2} /\left(2 \sigma^{2}\right)}
$$

- ν_{a} bounded in $[0,1]: 1 / 4$ sub-Gaussian
- $\nu_{a}=\mathcal{N}\left(\mu_{a}, \sigma^{2}\right): \sigma^{2}$ sub-Gaussian

How to build confidence intervals?

We need $\mathrm{UCB}_{a}(t)$ such that

$$
\mathbb{P}\left(\mu_{a} \leq \operatorname{UCB}_{a}(t)\right) \gtrsim 1-1 / t
$$

\Longrightarrow tool: concentration inequalities
Example: rewards are σ^{2} sub-Gaussian

$$
\begin{equation*}
\mathbb{E}[Z]=\mu \quad \text { and } \quad \mathbb{E}\left[e^{\lambda(Z-\mu)}\right] \leq e^{\lambda^{2} \sigma^{2} / 2} \tag{1}
\end{equation*}
$$

Hoeffding inequality

Z_{i} i.i.d. satisfying (1). For all (fixed) $s \geq 1$

$$
\mathbb{P}\left(\frac{Z_{1}+\cdots+Z_{s}}{s} \leq \mu-x\right) \leq e^{-s x^{2} /\left(2 \sigma^{2}\right)}
$$

\. Cannot be used directly in a bandit model as the number of observations s from each arm is random!

Lilian Besson \& Émilie Kaufmann - Introduction to Multi-Armed Bandits

How to build confidence intervals?

- $N_{a}(t)=\sum_{s=1}^{t} \mathbb{1}_{\left(A_{s}=a\right)}$ number of selections of a after t rounds
- $\hat{\mu}_{a, s}=\frac{1}{s} \sum_{k=1}^{s} Y_{a, k}$ average of the first s observations from arm a
- $\widehat{\mu}_{a}(t)=\widehat{\mu}_{a, N_{a}(t)}$ empirical estimate of μ_{a} after t rounds

Hoeffding inequality + union bound

$$
\mathbb{P}\left(\mu_{a} \leq \widehat{\mu}_{a}(t)+\sigma \sqrt{\frac{\alpha \log (t)}{N_{a}(t)}}\right) \geq 1-\frac{1}{t^{\frac{\alpha}{2}-1}}
$$

How to build confidence intervals?

- $N_{a}(t)=\sum_{s=1}^{t} \mathbb{1}_{\left(A_{s}=a\right)}$ number of selections of a after t rounds
- $\hat{\mu}_{\mathrm{a}, \mathrm{s}}=\frac{1}{s} \sum_{k=1}^{s} Y_{a, k}$ average of the first s observations from arm a
- $\widehat{\mu}_{a}(t)=\widehat{\mu}_{a, N_{a}(t)}$ empirical estimate of μ_{a} after t rounds

Hoeffding inequality + union bound

$$
\mathbb{P}\left(\mu_{a} \leq \widehat{\mu}_{a}(t)+\sigma \sqrt{\frac{\alpha \log (t)}{N_{a}(t)}}\right) \geq 1-\frac{1}{t^{\frac{\alpha}{2}-1}}
$$

Proof.

$$
\begin{aligned}
& \mathbb{P}\left(\mu_{a}>\widehat{\mu}_{a}(t)+\sigma \sqrt{\frac{\alpha \log (t)}{N_{a}(t)}}\right) \leq \mathbb{P}\left(\exists s \leq t: \mu_{a}>\widehat{\mu}_{a, s}+\sigma \sqrt{\frac{\alpha \log (t)}{s}}\right) \\
& \leq \sum_{s=1}^{t} \mathbb{P}\left(\widehat{\mu}_{a, s}<\mu_{a}-\sigma \sqrt{\frac{\alpha \log (t)}{s}}\right) \leq \sum_{s=1}^{t} \frac{1}{t^{\alpha / 2}}=\frac{1}{t^{\alpha / 2-1}} .
\end{aligned}
$$

A first UCB algorithm

$\mathrm{UCB}(\alpha)$ selects $A_{t+1}=\operatorname{argmax}_{a} \mathrm{UCB}_{\mathrm{a}}(t)$ where

$$
\mathrm{UCB}_{a}(t)=\underbrace{\widehat{\mu}_{a}(t)}_{\text {exploitation term }}+\underbrace{\sqrt{\frac{\alpha \log (t)}{N_{a}(t)}}}_{\text {exploration bonus }} .
$$

- this form of UCB was first proposed for Gaussian rewards [Katehakis and Robbins, 95]
- popularized by [Auer et al. 02] for bounded rewards: UCB1, for $\alpha=2$
\hookrightarrow see the next talk at 4 pm !
- the analysis was $\operatorname{UCB}(\alpha)$ was further refined to hold for $\alpha>1 / 2$ in that case [Bubeck, 11, Cappé et al. 13]

A UCB algorithm in action

Optimistic Algorithms

Building Confidence Intervals

Analysis of UCB(α)

Regret of $\operatorname{UCB}(\alpha)$ for bounded rewards

Theorem

$\operatorname{UCB}(\alpha)$ with parameter $\alpha=2$ satisfies

$$
\mathcal{R}_{\nu}(\mathrm{UCB1}, T) \leq 8\left(\sum_{a: \mu_{a}<\mu_{\star}} \frac{1}{\Delta_{a}}\right) \log (T)+\left(1+\frac{\pi^{2}}{3}\right)\left(\sum_{a=1}^{K} \Delta_{a}\right) .
$$

Theorem

For every $\alpha>1$ and every sub-optimal arm a, there exists a constant $C_{\alpha}>0$ such that $\mathbb{E}_{\mu}\left[N_{a}(T)\right] \leq \frac{4 \alpha}{\left(\mu_{\star}-\mu_{a}\right)^{2}} \log (T)+C_{\alpha}$.

It follows that

$$
\mathcal{R}_{\nu}(\mathrm{UCB}(\alpha), T) \leq 4 \alpha\left(\sum_{a: \mu_{\mathrm{a}}<\mu_{\star}} \frac{1}{\Delta_{a}}\right) \log (T)+K C_{\alpha} .
$$

Intermediate Summary

- Several ways to solve the exploration/exploitation trade-off
- Explore-Then-Commit
- ε-greedy
- Upper Confidence Bound algorithms
- Good concentration inequalities are crucial to build good UCB algorithms!
- Performance lower bounds motivate the design of (optimal) algorithms

A BAYESIAN LOOK AT THE MAB MODEL

Bayesian Bandits

Two points of view

Bayes-UCB

Thompson Sampling

Historical perspective

1952 Robbins, formulation of the MAB problem

1985 Lai and Robbins: lower bound, first asymptotically optimal algorithm

1987 Lai, asymptotic regret of kl-UCB
1995 Agrawal, UCB algorithms
1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
2002 Auer et al: UCB1 with finite-time regret bound
2009 UCB-V, MOSS...

2011,13 Cappé et al: finite-time regret bound for kl-UCB

1933 Thompson: a Bayesian mechanism for clinical trials
1952 Robbins, formulation of the MAB problem
1956 Bradt et al, Bellman: optimal solution of a Bayesian MAB problem
1979 Gittins: first Bayesian index policy
1985 Lai and Robbins: lower bound, first asymptocally optimal algorithm
1985 Berry and Fristedt: Bandit Problems, a survey on the Bayesian MAB
1987 Lai, asymptotic regret of kl-UCB + study of its Bayesian regret
1995 Agrawal, UCB algorithms
1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
2002 Auer et al: UCB1 with finite-time regret bound
2009 UCB-V, MOSS...
2010 Thompson Sampling is re-discovered
2011,13 Cappé et al: finite-time regret bound for kl-UCB
2012,13 Thompson Sampling is asymptotically optimal

$$
\nu_{\mu}=\left(\nu^{\mu_{1}}, \ldots, \nu^{\mu_{K}}\right) \in(\mathcal{P})^{K} .
$$

- Two probabilistic models two points of view!

Frequentist model	Bayesian model
μ_{1}, \ldots, μ_{K}	μ_{1}, \ldots, μ_{K} drawn from a
unknown parameters	prior distribution : $\mu_{a} \sim \pi_{a}$
arm a: $\left(Y_{a, s}\right)_{s} \stackrel{\text { i.i.d. }}{\sim} \nu^{\mu_{a}}$	arm a: $\left(Y_{a, s}\right)_{s} \mid \boldsymbol{\mu} \stackrel{\text { i.i.d. }}{\sim} \nu^{\mu_{a}}$

- The regret can be computed in each case

Frequentist Regret (regret)

$$
\mathcal{R}_{\mu}(\mathcal{A}, T)=\mathbb{E}_{\mu}\left[\sum_{t=1}^{T}\left(\mu_{\star}-\mu_{A_{t}}\right)\right]
$$

- Two types of tools to build bandit algorithms:

Frequentist tools

MLE estimators of the means Confidence Intervals

Bayesian tools

Posterior distributions

$$
\pi_{a}^{t}=\mathcal{L}\left(\mu_{a} \mid Y_{a, 1}, \ldots, Y_{a, N_{a}(t)}\right)
$$

Example: Bernoulli bandits

Bernoulli bandit model $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{K}\right)$

- Bayesian view: μ_{1}, \ldots, μ_{K} are random variables prior distribution: $\quad \mu_{a} \sim \mathcal{U}([0,1])$
\Longrightarrow posterior distribution:

$$
\begin{aligned}
\pi_{a}(t) & =\mathcal{L}\left(\mu_{a} \mid R_{1}, \ldots, R_{t}\right) \\
& =\operatorname{Beta}(\underbrace{S_{a}(t)}_{\text {\#ones }}+1, \underbrace{N_{a}(t)-S_{a}(t)}_{\text {\#zeros }}+1)
\end{aligned}
$$

$S_{a}(t)=\sum_{s=1}^{t} R_{s} \mathbb{1}_{\left(A_{s}=a\right)}$ sum of the rewards from arm a

A Bayesian bandit algorithm exploits the posterior distributions of the means to decide which arm to select.

Bayesian Bandits

Two points of view

Bayes-UCB

Thompson Sampling

The Bayes-UCB algorithm

- $\Pi_{0}=\left(\pi_{1}(0), \ldots, \pi_{K}(0)\right)$ be a prior distribution over $\left(\mu_{1}, \ldots, \mu_{K}\right)$
- $\Pi_{t}=\left(\pi_{1}(t), \ldots, \pi_{K}(t)\right)$ be the posterior distribution over the means $\left(\mu_{1}, \ldots, \mu_{K}\right)$ after t observations

The Bayes-UCB algorithm chooses at time t

$$
A_{t+1}=\underset{a=1, \ldots, K}{\operatorname{argmax}} Q\left(1-\frac{1}{t(\log t)^{c}}, \pi_{a}(t)\right)
$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π.

The Bayes-UCB algorithm

- $\Pi_{0}=\left(\pi_{1}(0), \ldots, \pi_{K}(0)\right)$ be a prior distribution over $\left(\mu_{1}, \ldots, \mu_{K}\right)$
- $\Pi_{t}=\left(\pi_{1}(t), \ldots, \pi_{K}(t)\right)$ be the posterior distribution over the means $\left(\mu_{1}, \ldots, \mu_{K}\right)$ after t observations

The Bayes-UCB algorithm chooses at time t

$$
A_{t+1}=\underset{a=1, \ldots, K}{\operatorname{argmax}} Q\left(1-\frac{1}{t(\log t)^{c}}, \pi_{a}(t)\right)
$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π.

Bernoulli reward with uniform prior:

- $\pi_{a}(0) \stackrel{\text { i.i.d }}{\sim} \mathcal{U}([0,1])=\operatorname{Beta}(1,1)$
- $\pi_{a}(t)=\operatorname{Beta}\left(S_{a}(t)+1, N_{a}(t)-S_{a}(t)+1\right)$

The Bayes-UCB algorithm

- $\Pi_{0}=\left(\pi_{1}(0), \ldots, \pi_{K}(0)\right)$ be a prior distribution over $\left(\mu_{1}, \ldots, \mu_{K}\right)$
- $\Pi_{t}=\left(\pi_{1}(t), \ldots, \pi_{K}(t)\right)$ be the posterior distribution over the means $\left(\mu_{1}, \ldots, \mu_{K}\right)$ after t observations

The Bayes-UCB algorithm chooses at time t

$$
A_{t+1}=\underset{a=1, \ldots, K}{\operatorname{argmax}} Q\left(1-\frac{1}{t(\log t)^{c}}, \pi_{a}(t)\right)
$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π.

Gaussian rewards with Gaussian prior:

- $\pi_{a}(0) \stackrel{i . i . d}{\sim} \mathcal{N}\left(0, \kappa^{2}\right)$
$-\pi_{a}(t)=\mathcal{N}\left(\frac{S_{a}(t)}{N_{a}(t)+\sigma^{2} / \kappa^{2}}, \frac{\sigma^{2}}{N_{a}(t)+\sigma^{2} / \kappa^{2}}\right)$

Bayes UCB in action

Theoretical results in the Bernoulli case

- Bayes-UCB is asymptotically optimal for Bernoulli rewards

Theorem

Let $\varepsilon>0$. The Bayes-UCB algorithm using a uniform prior over the arms and parameter $c \geq 5$ satisfies

$$
\mathbb{E}_{\mu}\left[N_{a}(T)\right] \leq \frac{1+\varepsilon}{\mathrm{kl}\left(\mu_{a}, \mu_{\star}\right)} \log (T)+o_{\varepsilon, c}(\log (T))
$$

Bayesian Bandits

Insights from the Optimal Solution

Bayes-UCB

Thompson Sampling

Historical perspective

1933 Thompson: in the context of clinical trial, the allocation of a treatment should be some increasing function of its posterior probability to be optimal

2010 Thompson Sampling rediscovered under different names
Bayesian Learning Automaton [Granmo, 2010]
Randomized probability matching [Scott, 2010]
2011 An empirical evaluation of Thompson Sampling: an efficient algorithm, beyond simple bandit models
[Li and Chapelle, 2011]
2012 First (logarithmic) regret bound for Thompson Sampling [Agrawal and Goyal, 2012]
2012 Thompson Sampling is asymptotically optimal for Bernoulli bandits [K., Korda and Munos, 2012][Agrawal and Goyal, 2013]
2013- Many successful uses of Thompson Sampling beyond Bernoulli bandits (contextual bandits, reinforcement learning)

Thompson Sampling

Two equivalent interpretations:

- "select an arm at random according to its probability of being the best"
- "draw a possible bandit model from the posterior distribution and act optimally in this sampled model"
\neq optimistic

Thompson Sampling: a randomized Bayesian algorithm

$$
\left\{\begin{array}{l}
\forall a \in\{1 . . K\}, \quad \theta_{a}(t) \sim \pi_{a}(t) \\
A_{t+1}=\underset{a=1 \ldots K}{\operatorname{argmax}} \theta_{a}(t) .
\end{array}\right.
$$

Thompson Sampling is asymptotically optimal

Problem-dependent regret

$$
\forall \varepsilon>0, \quad \mathbb{E}_{\mu}\left[N_{\mathrm{a}}(T)\right] \leq \frac{1+\varepsilon}{\mathrm{kl}\left(\mu_{\mathrm{a}}, \mu_{\star}\right)} \log (T)+o_{\mu, \varepsilon}(\log (T)) .
$$

This results holds:

- for Bernoulli bandits, with a uniform prior [K. Korda, Munos 12][Agrawal and Goyal 13]
- for Gaussian bandits, with Gaussian prior[Agrawal and Goyal 17]
- for exponential family bandits, with Jeffrey's prior [Korda et al. 13]

Problem-independent regret

For Bernoulli and Gaussian bandits, Thompson Sampling satisfies

$$
\mathcal{R}_{\mu}(\mathrm{TS}, T)=O(\sqrt{K T \log (T)})
$$

- Thompson Sampling is also asymptotically optimal for Gaussian with unknown mean and variance [Honda and Takemura, 14]

Understanding Thompson Sampling

- a key ingredient in the analysis of [K. Korda and Munos 12]

Proposition

There exists constants $b=b(\mu) \in(0,1)$ and $C_{b}<\infty$ such that

$$
\sum_{t=1}^{\infty} \mathbb{P}\left(N_{1}(t) \leq t^{b}\right) \leq C_{b}
$$

$\left\{N_{1}(t) \leq t^{b}\right\}=\left\{\right.$ there exists a time range of length at least $t^{1-b}-1$ with no draw of arm 1$\}$

Bayesian versus Frequentist algorithms

- Short horizon, $T=1000$ (average over $N=10000$ runs)

$K=2$ Bernoulli arms $\mu_{1}=0.2, \mu_{2}=0.25$

Bayesian versus Frequentist algorithms

- Long horizon, $T=20000$ (average over $N=50000$ runs)

$$
\begin{gathered}
K=10 \text { Bernoulli arms bandit problem } \\
\boldsymbol{\mu}=\left[\begin{array}{lllll}
0.1 & 0.05 & 0.05 & 0.05 & 0.02 \\
0.02 & 0.02 & 0.01 & 0.01 & 0.01
\end{array}\right]
\end{gathered}
$$

Other Bandit Models

Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits

Many other bandits models and problems

Most famous extensions:

- (centralized) multiple-actions
\hookrightarrow Implemented in our library SMPyBandits!

Many other bandits models and problems

Most famous extensions:

- (centralized) multiple-actions
- multiple choice : choose $m \in\{2, \ldots, K-1\}$ arms (fixed size)

Many other bandits models and problems

Most famous extensions:

- (centralized) multiple-actions
- multiple choice : choose $m \in\{2, \ldots, K-1\}$ arms (fixed size)
- combinatorial : choose a subset of arms $S \subset\{1, \ldots, K\}$ (large space)
\hookrightarrow Implemented in our library SMPyBandits!

Many other bandits models and problems

Most famous extensions:

- (centralized) multiple-actions
- multiple choice : choose $m \in\{2, \ldots, K-1\}$ arms (fixed size)
- combinatorial : choose a subset of arms $S \subset\{1, \ldots, K\}$ (large space)
- non stationary
\hookrightarrow Implemented in our library SMPyBandits!

Many other bandits models and problems

Most famous extensions:

- (centralized) multiple-actions
- multiple choice : choose $m \in\{2, \ldots, K-1\}$ arms (fixed size)
- combinatorial : choose a subset of arms $S \subset\{1, \ldots, K\}$ (large space)
- non stationary
- piece-wise stationary / abruptly changing
\hookrightarrow Implemented in our library SMPyBandits!

Many other bandits models and problems

Most famous extensions:

- (centralized) multiple-actions
- multiple choice : choose $m \in\{2, \ldots, K-1\}$ arms (fixed size)
- combinatorial : choose a subset of arms $S \subset\{1, \ldots, K\}$ (large space)
- non stationary
- piece-wise stationary / abruptly changing
- slowly-varying
\hookrightarrow Implemented in our library SMPyBandits!

Many other bandits models and problems

Most famous extensions:

- (centralized) multiple-actions
- multiple choice : choose $m \in\{2, \ldots, K-1\}$ arms (fixed size)
- combinatorial : choose a subset of arms $S \subset\{1, \ldots, K\}$ (large space)
- non stationary
- piece-wise stationary / abruptly changing
- slowly-varying
- adversarial...
\hookrightarrow Implemented in our library SMPyBandits!

Many other bandits models and problems

Most famous extensions:

- (centralized) multiple-actions
- multiple choice : choose $m \in\{2, \ldots, K-1\}$ arms (fixed size)
- combinatorial : choose a subset of arms $S \subset\{1, \ldots, K\}$ (large space)
- non stationary
- piece-wise stationary / abruptly changing
- slowly-varying
- adversarial...
- (decentralized) collaborative/communicating bandits over a graph
\hookrightarrow Implemented in our library SMPyBandits!

Many other bandits models and problems

Most famous extensions:

- (centralized) multiple-actions
- multiple choice : choose $m \in\{2, \ldots, K-1\}$ arms (fixed size)
- combinatorial : choose a subset of arms $S \subset\{1, \ldots, K\}$ (large space)
- non stationary
- piece-wise stationary / abruptly changing
- slowly-varying
- adversarial...
- (decentralized) collaborative/communicating bandits over a graph
- (decentralized) non communicating multi-player bandits
\hookrightarrow Implemented in our library SMPyBandits!

Many other bandits models and problems

And many more extensions...

- non stochastic, Markov models rested/restless
- best arm identification (vs reward maximization)
- fixed budget setting
- fixed confidence setting
- PAC (probably approximately correct) algorithms
- bandits with (differential) privacy constraints
- for some applications (content recommendation)
- contextual bandits : observe a reward and a context $\left(C_{t} \in \mathbb{R}^{d}\right)$
- cascading bandits
- delayed feedback bandits
- structured bandits (low-rank, many-armed, Lipschitz etc)
- \mathcal{X}-armed, continuous-armed bandits

Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits

Piece-wise stationary bandits

Stationary MAB problems

Arm a gives rewards sampled from the same distribution for any time step

$$
\forall t, r_{a}(t) \stackrel{\text { iid }}{\sim} \nu_{a}=\mathcal{B}\left(\mu_{a}\right) .
$$

Stationary MAB problems

Arm a gives rewards sampled from the same distribution for any time step

$$
\forall t, r_{a}(t) \stackrel{\text { iid }}{\sim} \nu_{a}=\mathcal{B}\left(\mu_{a}\right) .
$$

Non stationary MAB problems?

(possibly) different distributions for any time step !

$$
\forall t, r_{a}(t) \stackrel{\mathrm{iid}}{\sim} \nu_{a}(t)=\mathcal{B}\left(\mu_{a}(t)\right)
$$

\Longrightarrow harder problem! And very hard if $\mu_{\mathrm{a}}(t)$ can change at any step!

Stationary MAB problems

Arm a gives rewards sampled from the same distribution for any time step

$$
\forall t, r_{a}(t) \stackrel{\text { iid }}{\sim} \nu_{a}=\mathcal{B}\left(\mu_{a}\right) .
$$

Non stationary MAB problems?

(possibly) different distributions for any time step!

$$
\forall t, r_{a}(t) \stackrel{\mathrm{iid}}{\sim} \nu_{a}(t)=\mathcal{B}\left(\mu_{a}(t)\right)
$$

\Longrightarrow harder problem! And very hard if $\mu_{\mathrm{a}}(t)$ can change at any step!

Piece-wise stationary problems!

\hookrightarrow the litterature usually focuses on the easier case, when there are at most $Y_{T}=o(\sqrt{T})$ intervals, on which the means are all stationary.

Example of a piece-wise stationary MAB

We plots the means $\mu_{1}(t), \mu_{2}(t), \mu_{3}(t)$ of $K=3$ arms. There are $Y_{T}=4$ break-points and 5 sequences between $t=1$ and $t=T=5000$:

Regret for piece-wise stationary bandits

The "oracle" algorithm plays the (unknown) best arm $k^{*}(t)=\operatorname{argmax} \mu_{k}(t)$ (which changes between the $Y_{T} \geq 1$ stationary sequences)

$$
\mathcal{R}(\mathcal{A}, T)=\mathbb{E}\left[\sum_{t=1}^{T} r_{k^{*}(t)}(t)\right]-\sum_{t=1}^{T} \mathbb{E}[r(t)]=\left(\sum_{t=1}^{T} \max _{k} \mu_{k}(t)\right)-\sum_{t=1}^{T} \mathbb{E}[r(t)] .
$$

Regret for piece-wise stationary bandits

The "oracle" algorithm plays the (unknown) best arm $k^{*}(t)=\operatorname{argmax} \mu_{k}(t)$ (which changes between the $Y_{T} \geq 1$ stationary sequences)
$\mathcal{R}(\mathcal{A}, T)=\mathbb{E}\left[\sum_{t=1}^{T} r_{k^{*}(t)}(t)\right]-\sum_{t=1}^{T} \mathbb{E}[r(t)]=\left(\sum_{t=1}^{T} \max _{k} \mu_{k}(t)\right)-\sum_{t=1}^{T} \mathbb{E}[r(t)]$.

Typical regimes for piece-wise stationary bandits

- The lower-bound is $\mathcal{R}(\mathcal{A}, T) \geq \Omega\left(\sqrt{K T Y_{T}}\right)$
- Currently, state-of-the-art algorithms \mathcal{A} obtain
- $\mathcal{R}(\mathcal{A}, T) \leq \mathcal{O}\left(K \sqrt{T Y_{T} \log (T)}\right)$ if T and Y_{T} are known
- $\mathcal{R}(\mathcal{A}, T) \leq \mathcal{O}\left(K Y_{T} \sqrt{T \log (T)}\right)$ if T and Y_{T} are unknown
- \hookrightarrow our algorithm kIUCB index + BGLR detector is state-of-the-art! [Besson and Kaufmann, 19] arXiv:1902.01575

Idea: combine a good bandit algorithm with an break-point detector

kIUCB + BGLR achieves the best performance (among non-oracle)!

Other Bandit Models

Many different extensions

Piece-wise stationary bandits

Multi-player bandits

Multi-players bandits: setup

M players playing the same K-armed bandit $\quad(2 \leq M \leq K)$
At round t :

- player m selects $A_{m, t}$; then observes $X_{A_{m, t}, t}$
- and receives the reward

$$
X_{m, t}=\left\{\begin{array}{cl}
X_{A_{m, t}, t} & \text { if no other player chose the same arm } \\
0 & \text { else }(=\text { collision })
\end{array}\right.
$$

Goal:

- maximize centralized rewards $\sum_{m=1}^{M} \sum_{t=1}^{T} X_{m, t}$
- without communication between players
- trade off : exploration / exploitation / and collisions !

Cognitive radio: (OSA) sensing, attempt of transmission if no PU, possible collisions with other SUs
\hookrightarrow see the next talk at 4 pm !

Multi-players bandits: algorithms

Idea: combine a good bandit algorithm with an orthogonalization strategy (collision avoidance protocol)

Example: UCB1 $+\rho^{\text {rand }}$. At round t each player

- has a stored rank $R_{m, t} \in\{1, \ldots, M\}$
- selects the arm that has the $R_{m, t^{-}}$largest UCB
- if a collision occurs, draws a new rank $R_{m, t+1} \sim \mathcal{U}(\{1, \ldots, M\})$
- any index policy may be used in place of UCB1
- their proof was wrong...
- Early references: [Liu and Zhao, 10] [Anandkumar et al., 11]

Multi-players bandits: algorithms

Idea: combine a good bandit algorithm with an orthogonalization strategy (collision avoidance protocol)

Example: our algorithm kIUCB index + MC-TopM rule

- more complicated behavior (musical chair game)
- we obtain a $\mathcal{R}(\mathcal{A}, T)=\mathcal{O}\left(M^{3} \frac{1}{\Delta_{M}^{2}} \log (T)\right)$ regret upper bound
- lower bound is $\mathcal{R}(\mathcal{A}, T)=\Omega\left(M \frac{1}{\Delta_{M}^{2}} \log (T)\right)$
- order optimal, not asymptotically optimal
- Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]

Multi-players bandits: algorithms

Idea: combine a good bandit algorithm with an orthogonalization strategy (collision avoidance protocol)

Example: our algorithm kIUCB index + MC-TopM rule

- Recent references: [Besson and Kaufmann, 18] [Boursier et al, 19]

Remarks:

- number of players M has to be known
\Longrightarrow but it is possible to estimate it on the run
- does not handle an evolving number of devices (entering/leaving the network)
- is it a fair orthogonalization rule?
- could players use the collision indicators to communicate? (yes!)

Results on a multi-player MAB problem

Multi-players $M=6$: Cumulated centralized regret, averaged 40 times 9 arms: $\left[B(0.01), B(0.01), B(0.01), B(0.1)^{*}, B(0.12)^{*}, B(0.14)^{*}, B(0.16)^{*}, B(0.18)^{*}, B(0.2)^{*}\right]$

For $M=6$ objects, our strategy (MC-TopM) largely outperform SIC-MMAB and $\rho^{\text {rand }}$. MCTopM + kIUCB achieves the best performance (among decentralized algorithms) !

Lilian Besson \& Émilie Kaufmann - Introduction to Multi-Armed Bandits

SUMMARY

Take-home messages

Now you are aware of:

- several methods for facing an exploration/exploitation dilemma
- notably two powerful classes of methods
- optimistic "UCB" algorithms
- Bayesian approaches, mostly Thompson Sampling
\Longrightarrow And you can learn more about more complex bandit problems and Reinforcement Learning!

Take-home messages

You also saw a bunch of important tools:

- performance lower bounds, guiding the design of algorithms
- Kullback-Leibler divergence to measure deviations
- applications of self-normalized concentration inequalities
- Bayesian tools...

And we presented many extensions of the single-player stationary MAB model.

Where to know more?

Check out the

"The Bandit Book"

by Tor Lattimore and Csaba Szepesvári
Cambridge University Press, 2019.
\hookrightarrow tor-lattimore.com/downloads/book/book.pdf

Where to know more?

Reach me (or Émilie Kaufmann) out by email, if you have questions

Lilian. Besson @ Inria.fr \hookrightarrow perso.crans.org/besson/

Emilie.Kaufmann @ Univ-Lille.fr
\hookrightarrow chercheurs.lille.inria.fr/ekaufman

Where to know more?

Experiment with bandits by yourself!

Interactive demo on this web-page
\hookrightarrow perso.crans.org/besson/phd/MAB_interactive_demo/

Use our Python library for simulations of MAB problems SMPyBandits \hookrightarrow SMPyBandits. GitHub.io \& GitHub.com/SMPyBandits

- Install with \$ pip install SMPyBandits
- Free and open-source (MIT license)
- Easy to set up your own bandit experiments, add new algorithms etc.

SMPyBandits.GitHub.io

Search docs

CONTENIS:
SMPyBandits
SMPyBandits modules
How to run the code?
List of research publications using
Lilian Besson's SMPyBandits
project
Policy aggregation algorithms
Multi-players simulation
environment
Doubling Trick for Multi-Armed Bandits
Structure and Sparsity of
Stochastic Multi-Armed Bandits
Non-Stationary Stochastic MultiArmed Bandits
Short documentation of the API

* TODO

Some illustrations for this project
Jupyter Notebooks by Naereen @ GitHub
List of notebooks for SMPyBandits
A note on execution times, speed
and profiling
UML diagrams
logs files

Welcome to SMPyBandits documentation!

Open-Source Python package for Single- and Multi-Players multi-armed Bandits algorithms

A research framework for Single and Multi-Players Multi-Arms Bandits (MAB) Algorithms: UCB, KL-UCB, Thompson and many more for single-players, and MCTopM \& RandTopM. MusicalChair, ALOHA, MEGA, rhoRand for multi-players simulations. It runs on Python 2 and 3 , and is publically released as an open-source software under the MIT License.

0 Note

See more on the GitHub page for this project: https://github.com/SMPyBandits/SMPyBandits/. The project is also hosted on Inria GForge, and the documentation can be seen online at https://smpybandits.github.io/ or http://http://banditslilian.gforge.inria.fr/ or https://smpybandits.readthedocs.io/. website ip

This repository contains the code of my numerical environment, written in Python, in order to perform numerical simulations on single-player and multi-players Multi-Armed Bandits (MAB) algorithms.

I (Lilian Besson) have started my PhD in October 2016, and this is a part of my on going research since December 2016

How to cite this work?

If you use this package for your own work, please consider citing it with this piece of BibTeX:

```
8misc{SMPyBandits,
    title = {{SMPyBandits: an Open-Source Research Framework for S
    author = {Lilian Besson},
    year = {2018},
    url = {https://github.com/SMPyBandits/SMPyBandits/},
    howpublished = {Online at: \url{GitHub,com/SMPyBandits/SMPyBandi
    note = {Code at https://github.com/SMPyBandits/SMPyBandits/,
}
```


Conclusion

Thanks for your attention!

Questions \& Discussion ?

Conclusion

Thanks for your attention !

Questions \& Discussion ?

\hookrightarrow Break and then next talk by Christophe Moy "Decentralized Spectrum Learning for loT"

Climatic crisis

(c) Jeph Jacques, 2015, QuestionableContent.net/view.php?comic=3074

We are scientists.
Goals: inform ourselves, think, find, communicate!

- Inform ourselves of the causes and consequences of climatic crisis,
- Think of the all the problems, at political, local and individual scales,
- Find simple solutions !
\Longrightarrow Aim at sobriety: transports, tourism, clothing, food, computations, fighting smoking, etc.
- Communicate our awareness, and our actions !
- My PhD thesis (Lilian Besson)
"Multi-players Bandit Algorithms for Internet of Things Networks"
\hookrightarrow perso.crans.org/besson/phd/
\hookrightarrow GitHub.com/Naereen/phd-thesis/
- Our Python library for simulations of MAB problems, SMPyBandits \hookrightarrow SMPyBandits.GitHub.io
- "The Bandit Book", by Tor Lattimore and Csaba Szepesvari \hookrightarrow tor-lattimore.com/downloads/book/book.pdf
- "Introduction to Multi-Armed Bandits", by Alex Slivkins \hookrightarrow arXiv.org/abs/1904.07272

References (1/6)

- W.R. Thompson (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika.
- H. Robbins (1952). Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society.
- Bradt, R., Johnson, S., and Karlin, S. (1956). On sequential designs for maximizing the sum of n observations. Annals of Mathematical Statistics.
- R. Bellman (1956). A problem in the sequential design of experiments. The indian journal of statistics.
- Gittins, J. (1979). Bandit processes and dynamic allocation indices. Journal of the Royal Statistical Society.
- Berry, D. and Fristedt, B. Bandit Problems (1985). Sequential allocation of experiments. Chapman and Hall.
- Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics.
- Lai, T. (1987). Adaptive treatment allocation and the multi-armed bandit problem. Annals of Statistics.

References

- Agrawal, R. (1995). Sample mean based index policies with $\mathcal{O}(\log n)$ regret for the multi-armed bandit problem. Advances in Applied Probability.
- Katehakis, M. and Robbins, H. (1995). Sequential choice from several populations. Proceedings of the National Academy of Science.
- Burnetas, A. and Katehakis, M. (1996). Optimal adaptive policies for sequential allocation problems. Advances in Applied Mathematics.
- Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. Machine Learning.
- Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. (2002). The nonstochastic multiarmed bandit problem. SIAM Journal of Computing.
- Burnetas, A. and Katehakis, M. (2003). Asymptotic Bayes Analysis for the finite horizon one armed bandit problem. Probability in the Engineering and Informational Sciences.
- Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning and Games. Cambridge University Press.
- Audibert, J-Y., Munos, R. and Szepesvari, C. (2009). Exploration-exploitation trade-off using varianceestimates in multi-armed bandits. Theoretical Computer Science.

References

- Audibert, J.-Y. and Bubeck, S. (2010). Regret Bounds and Minimax Policies under Partial Monitoring. Journal of Machine Learning Research.
- Li, L., Chu, W., Langford, J. and Shapire, R. (2010). A Contextual-Bandit Approach to Personalized News Article Recommendation. WWW.
- Honda, J. and Takemura, A. (2010). An Asymptotically Optimal Bandit Algorithm for Bounded Support Models. COLT.
- Bubeck, S. (2010). Jeux de bandits et fondation du clustering. PhD thesis, Université de Lille 1.
- A. Anandkumar, N. Michael, A. K. Tang, and S. Agrawal (2011). Distributed algorithms for learning and cognitive medium access with logarithmic regret. IEEE Journal on Selected Areas in Communications
- Garivier, A. and Cappé, O. (2011). The KL-UCB algorithm for bounded stochastic bandits and beyond. COLT.
- Maillard, O.-A., Munos, R., and Stoltz, G. (2011). A Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler Divergences. COLT.
- Chapelle, O. and Li, L. (2011). An empirical evaluation of Thompson Sampling. NIPS.

Lilian Besson \& Émilie Kaufmann - Introduction to Multi-Armed Bandits

References (4/6)

- E. Kaufmann, O. Cappé, A. Garivier (2012). On Bayesian Upper Confidence Bounds for Bandits Problems. AISTATS.
- Agrawal, S. and Goyal, N. (2012). Analysis of Thompson Sampling for the multi-armed bandit problem. COLT.
- E. Kaufmann, N. Korda, R. Munos (2012), Thompson Sampling : an Asymptotically Optimal Finite-Time Analysis. Algorithmic Learning Theory.
- Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Fondations and Trends in Machine Learning.
- Agrawal, S. and Goyal, N. (2013). Further Optimal Regret Bounds for Thompson Sampling. AISTATS.
- O. Cappé, A. Garivier, O-A. Maillard, R. Munos, and G. Stoltz (2013). Kullback-Leibler upper confidence bounds for optimal sequential allocation. Annals of Statistics.
- Korda, N., Kaufmann, E., and Munos, R. (2013). Thompson Sampling for 1-dimensional Exponential family bandits. NIPS.

References (5/6)

- Honda, J. and Takemura, A. (2014). Optimality of Thompson Sampling for Gaussian Bandits depends on priors. AISTATS.
- Baransi, Maillard, Mannor (2014). Sub-sampling for multi-armed bandits. ECML.
- Honda, J. and Takemura, A. (2015). Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards. JMLR.
- Kaufmann, E., Cappé O. and Garivier, A. (2016). On the complexity of best arm identification in multi-armed bandit problems. JMLR
- Lattimore, T. (2016). Regret Analysis of the Finite-Horizon Gittins Index Strategy for Multi-Armed Bandits. COLT.
- Garivier, A., Kaufmann, E. and Lattimore, T. (2016). On Explore-Then-Commit strategies. NIPS.
- E.Kaufmann (2017), On Bayesian index policies for sequential resource allocation. Annals of Statistics.
- Agrawal, S. and Goyal, N. (2017). Near-Optimal Regret Bounds for Thompson Sampling. Journal of ACM.

References (6/6)

- Maillard, O-A (2017). Boundary Crossing for General Exponential Families. Algorithmic Learning Theory.
- Besson, L., Kaufmann E. (2018). Multi-Player Bandits Revisited. Algorithmic Learning Theory.
- Cowan, W., Honda, J. and Katehakis, M.N. (2018). Normal Bandits of Unknown Means and Variances. JMLR.
- Garivier,A. and Ménard, P. and Stoltz, G. (2018). Explore first, exploite next: the true shape of regret in bandit problems, Mathematics of Operations Research
- Garivier, A. and Hadiji, H. and Ménard, P. and Stoltz, G. (2018). KL-UCB-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints. arXiv: 1805.05071.
- Besson, L., Kaufmann E. (2019). The Generalized Likelihood Ratio Test meets kIUCB: an Improved Algorithm for Piece-Wise Non-Stationary Bandits. Algorithmic Learning Theory. arXiv: 1902.01575.

