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1. Motivations

IoT networks are interesting and will be more and more present,

More and more IoT objects

⟹ networks will be more and more occupied

But...
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1. Motivations

IoT networks are interesting and will be more and more present,

More and more IoT objects

⟹ networks will be more and more occupied

But...

Heterogeneous spectrum occupancy in most IoT networks standards

Maybe IoT objects can improve their communication by learning to access the network more

efficiently (e.g., by using the less occupied spectrum channel)

Simple but efficient learning algorithm can give great improvements in terms of successful

communication rates

⟹ can fit more objects in the existing IoT networks  !
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2. System model

Wireless network

In ISM band, centered at 433.5 MHz (in Europe)

K = 4 (or more) orthogonal channels

 

One gateway, many IoT devices

One gateway, handling different objects

Communications with ALOHA protocol with retransmission

Objects send data for 1s in one channel, wait for an acknowledgement for 1s in same channel, 

use Ack as feedback: success / failure
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Transmission and retransmission model

Each object communicates from time to time (e.g., every 10 s) 

⟺ probability p of transmission at every time (Bernoulli process)

Retransmit at most M  times if first transmission failed 

(until Ack is received)

Retransmissions can use a different channel that the one used for first transmission

Retransmissions happen after a random back-off time 

back-off time ∼ U(0, ⋯ ,M − 1)

The goal of each object

Is to maximize its successful communication rates 

⟺ maximize its number of received Ack.
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Do we need learning for transmission? Yes!

First hypothesis

The surrounding traffic is not uniformly occupying the K  channels.

Consequence

Then it is always sub-optimal to use a (naive) uniformly random channel access

⟹ we can use online machine learning to let each IoT device learn, on its own and in an

automatic and decentralized way, which channel is the best one (= less occupied) in its current

environment.

Learning is actually needed to achieve (close to) optimal performance.
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Do we need learning for retransmission?

Second hypothesis

Imagine a set of IoT devices learned to transmit efficiently 

(in the most free channel), in one IoT network.

Question

Then if two devices collide, do they have a higher probability of colliding again 

if retransmissions happen in the same channel ?
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Mathematical intution and illustration

Consider one IoT device and one channel, we consider two probabilities:

p  : suffering a collision at first transmission,

p  : collision at the first retransmission (if it uses the same channel).

 

In an example network with...

a small transmission probability p = 10 ,

from N = 50 to N = 400 IoT devices,

 

⟹ we ran simulations showing that 

p  can be more than twice of p  (from 5% to 15%!)

c

c1
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Do we need learning for retransmission?

Yes we do!

Consequence

Then if two devices collide, they have a higher probability of colliding again if retransmissions

happen in the same channel

⟹ we can also use online machine learning to let each IoT device learn, on its own and in an

automatic and decentralized way, which channel is the best one (= less occupied) 

to retransmit a packet which failed due to a collision.

Learning is again needed to achieve (close to) optimal performance.
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3. Multi-Armed Bandits (MAB)

 

3.1. Model

3.2. Algorithms
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3.1. Multi-Armed Bandits Model

K ≥ 2 resources (e.g., channels), called arms

Each time slot t = 1, … ,T , you must choose one arm, denoted C(t) ∈ {1, … ,K}

You receive some reward r(t) ∼ ν  when playing k = C(t)

Goal: maximize your sum reward r(t), or expected E[r(t)]

Hypothesis: rewards are stochastic, of mean μ . 

Example: Bernoulli distributions.

Why is it famous?

Simple but good model for exploration/exploitation dilemma.

k

t=1
∑
T

t=1
∑
T

k
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3.2. Multi-Armed Bandits Algorithms

Often "index based"

Keep index U (t) ∈ R for each arm k = 1, … ,K

Always use channel C(t) = arg maxU (t)

U (t) should represent our belief of the quality of arm k at time t

Example: "Follow the Leader"

X (t) := r(s)1(A(s) = k) sum reward from arm k

N (t) := 1(A(s) = k) number of samples of arm k

And use U (t) = (t) := .

k

k

k

k
s<t

∑

k
s<t

∑

k μ̂k N (t)k

X (t)k
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Upper Confidence Bounds algorithm (UCB)

Instead of using U (t) = , add an exploration term

U (t) = +

Parameter α: tradeoff exploration vs exploitation

Small α: focus more on exploitation,

Large α: focus more on exploration,

Typically α = 1 works fine empirically and theoretically.

k N (t)k

X (t)k

k
N (t)k

X (t)k √ α
N (t)k

log(t)
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Upper Confidence Bounds algorithm (UCB)
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4. We Study Different Heuristics (5)

They all use one UCB algorithm to decide the channel to use for first transmissions of any

message

They use different approaches for retransmissions:

"Only UCB": use same UCB for retransmissions,

"Random": uniformly random retransmissions,

"UCB": use another UCB  for retransmissions 

(no matter the channel for first transmission),

"K-UCB": use K  different UCB  for retransmission after a first transmission on channel 

j ∈ {1, ⋯ ,K},

"Delayed UCB": use another UCB  for retransmissions, but launched after a delay Δ.

r

j

d
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4.. Only UCB

Use the same UCB to decide the channel to use for any transmissions, regardless if it's a first

transmission or a retransmission of a message.

Upper-Confidence Bound for Channel Selection in LPWA Networks with Retransmissions

18



4.1. UCB + Random Retransmissions
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4.2. UCB + a single UCB for Retransmissions
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4.3. UCB + K  UCB for Retransmissions
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4.4. UCB + Random Retransmission
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5. Numerical simulations and results

What

We simulate a network,

With many IoT dynamic devices.

 

Why

They implement the UCB learning algorithm to learn to optimize their first transmission of any

uplink packets,

And the different heuristic to (try to) learn to optimize their retransmissions of the packets after

any collision.
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5.1. First experiment

We consider an example network with...

K = 4 channels (e.g., like in LoRa),

M = 5 maximum number of retransmission,

m = 5 maximum back-off interval,

p = 10  transmission probability,

5 = 20 × 10  time slots,

from N = 1000 IoT devices.

Non uniform occupancy of the 4 channels: 

they are occupied 10, 30, 30 and 30% of times (by other IoT networks).

−3

4
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5.2. Second experiment

Non uniform occupancy of the 4 channels: 

they are occupied 40, 30, 20 and 30% of times (by other IoT networks).
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6. Summary (1/3)

Settings

1. For LPWA networks based onan ALOHA protocol 

(slotted both in time and frequency), 

 

2. We presented a retransmission model, 

 

3. Dynamic IoT devices can use simple machine learning algorithms, 

to improve their successful communication rate when accessing the network, 

 

4. We focus on the packet retransmissions upon radio collision, by using simple and low-cost

Multi-Armed Bandit algorithms, like UCB.

Upper-Confidence Bound for Channel Selection in LPWA Networks with Retransmissions

29



6. Summary (2/3)

We presented

Several learning heuristics

that try to learn how to transmit and retransmit in a smarter way, 

 

by using the classical UCB algorithm for channel selection for first transmission: it has a low

memory and computation cost, easy to add on an embedded CPU of an IoT device, 

 

and different ideas based on UCB for the retransmissions upon collisions, that add no

cost/memory overhead.
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6. Summary (3/3)

We showed

Using machine learning for the transmission is needed to achieve optimal performance, and can

lead to significant gain in terms of successful transmission rates (up-to 3% in the example

network).

Using machine learning for the retransmission is also useful, and improves over previous

approach unaware of retransmission.

The proposed heuristics outperform a naive random access scheme.

Surprisingly, the main take-away message is that a simple UCB learning approach, that

retransmit in the same channel, turns out to perform as well as more complicated heuristics.
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6. Future works

Implement our proposed approach in a real-world demo 

For instance using USRP boards.

Study a real IoT LPWAN protocol (e.g., LoRa)

Explore in LoRa how to use machine learning (e.g., Multi-Armed Bandit algorithms) to let IoT

devices learn on their own the best retransmission pattern to follow in a given scenario.
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More ?

 

↪ See our paper: HAL.Inria.fr/hal��2�49824

 Please ask questions !

 

Thanks for listening !
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