Multi-Player Bandits Revisited

Decentralized Multi-Player Multi-Arm Bandits

Lilian Besson
Joint work with Émilie Kaufmann

PhD Student
Team SCEE, IETR, CentraleSupélec, Rennes
\& Team SequeL, CRIStAL, Inria, Lille

ALT Conference - 08-04-2018

Motivation

We control some communicating devices, they want to use a wireless access point.

■ Insert them in a crowded wireless network.

- With a protocol slotted in both time and frequency.

Goal

- Maintain a good Quality of Service.

■ With no centralized control as it costs network overhead.

How?

■ Devices can choose a different radio channel at each time \hookrightarrow learn the best one with a sequential algorithm!

Our communication model

K radio channels (e.g., 10). Discrete and synchronized time $t \geq 1$.

Dynamic device $=$ dynamic radio reconfiguration

■ It decides each time the channel it uses to send each packet.

- It can implement a simple decision algorithm.

Our model

"Easy" case

- $M \leq K$ devices always communicate and try to access the network, independently without centralized supervision,
- Background traffic is i.i.d..

Two variants : with or without sensing

(1) With sensing: Device first senses for presence of Primary Users that have strict priority (background traffic), then use Ack to detect collisions.
(2) Without sensing: same background traffic, but cannot sense, so only Ack is used.

Background traffic, and rewards

i.i.d. background traffic

■ K channels, modeled as Bernoulli ($0 / 1$) distributions of mean $\mu_{k}=$ background traffic from Primary Users, bothering the dynamic devices,
■ M devices, each uses channel $A^{j}(t) \in\{1, \ldots, K\}$ at time t.

Rewards

$$
r^{j}(t):=Y_{A^{j}(t), t} \times \mathbb{1}\left(\overline{C^{j}(t)}\right)=\mathbb{1}(\text { uplink \& Ack })
$$

- with sensing information $\forall k, \quad Y_{k, t} \stackrel{\text { iid }}{\sim} \operatorname{Bern}\left(\mu_{k}\right) \in\{0,1\}$,
- collision for device $j: \quad C^{j}(t)=\mathbb{1}$ (alone on arm $A^{j}(t)$). $\hookrightarrow r^{j}(t)$ combined binary reward but not from two Bernoulli!

3 feedback levels

$$
r^{j}(t):=Y_{A^{j}(t), t} \times \mathbb{1}\left(\overline{C^{j}(t)}\right)
$$

(1) "Full feedback": observe both $Y_{A^{j}(t), t}$ and $C^{j}(t)$ separately, \hookrightarrow Not realistic enough, we don't focus on it.

3 feedback levels

$$
r^{j}(t):=Y_{A^{j}(t), t} \times \mathbb{1}\left(\overline{C^{j}(t)}\right)
$$

(1) "Full feedback": observe both $Y_{A^{j}(t), t}$ and $C^{j}(t)$ separately, \hookrightarrow Not realistic enough, we don't focus on it.
(2. "Sensing": first observe $Y_{A^{j}(t), t}$, then $C^{j}(t)$ only if $Y_{A^{j}(t), t} \neq 0$, \hookrightarrow Models licensed protocols (ex. ZigBee), our main focus.

3 feedback levels

$$
r^{j}(t):=Y_{A^{j}(t), t} \times \mathbb{1}\left(\overline{C^{j}(t)}\right)
$$

(1) "Full feedback": observe both $Y_{A^{j}(t), t}$ and $C^{j}(t)$ separately, \hookrightarrow Not realistic enough, we don't focus on it.
(2. "Sensing": first observe $Y_{A^{j}(t), t}$, then $C^{j}(t)$ only if $Y_{A^{j}(t), t} \neq 0$, \hookrightarrow Models licensed protocols (ex. ZigBee), our main focus.
(3) "No sensing": observe only the combined $Y_{A^{j}(t), t} \times \mathbb{1}\left(\overline{C^{j}(t)}\right)$, \hookrightarrow Unlicensed protocols (ex. LoRaWAN), harder to analyze!

3 feedback levels

$$
r^{j}(t):=Y_{A^{j}(t), t} \times \mathbb{1}\left(\overline{C^{j}(t)}\right)
$$

(1. "Full feedback": observe both $Y_{A^{j}(t), t}$ and $C^{j}(t)$ separately, \hookrightarrow Not realistic enough, we don't focus on it.
(2. "Sensing": first observe $Y_{A^{j}(t), t}$, then $C^{j}(t)$ only if $Y_{A^{j}(t), t} \neq 0$, \hookrightarrow Models licensed protocols (ex. ZigBee), our main focus.
(3 "No sensing": observe only the combined $Y_{A^{j}(t), t} \times \mathbb{1}\left(\overline{C^{j}(t)}\right)$, \hookrightarrow Unlicensed protocols (ex. LoRaWAN), harder to analyze!

But all consider the same instantaneous reward $r^{j}(t)$.

Goal

Goal

- Minimize packet loss ratio
(= maximize nb of received Ack)
- in a finite-space discrete-time Decision Making Problem.

Solution?

Multi-Armed Bandit algorithms

■ decentralized and

- used independently by each dynamic device.

Centralized regret

A measure of success

■ Not the network throughput or collision probability,

- We study the centralized (expected) regret:

$$
R_{T}(\boldsymbol{\mu}, M, \rho):=\left(\sum_{k=1}^{M} \mu_{k}^{*}\right) T-\mathbb{E}_{\mu}\left[\sum_{t=1}^{T} \sum_{j=1}^{M} r^{j}(t)\right] .
$$

Notation: μ_{k}^{*} is the mean of the k-best arm (k-th largest in $\boldsymbol{\mu}$):

- $\mu_{1}^{*}:=\max \boldsymbol{\mu}$,

■ $\mu_{2}^{*}:=\max \boldsymbol{\mu} \backslash\left\{\mu_{1}^{*}\right\}$,

- etc.

Centralized regret

A measure of success

■ Not the network throughput or collision probability,

- We study the centralized (expected) regret:

$$
R_{T}(\boldsymbol{\mu}, M, \rho):=\left(\sum_{k=1}^{M} \mu_{k}^{*}\right) T-\mathbb{E}_{\mu}\left[\sum_{t=1}^{T} \sum_{j=1}^{M} r^{j}(t)\right] .
$$

Two directions of analysis

- How good a decentralized algorithm can be in this setting? \hookrightarrow Lower Bound on the regret, for any algorithm !
■ How good is my decentralized algorithm in this setting?
\hookrightarrow Upper Bound on the regret, for one algorithm !

Lower bound

(1) Decomposition of the regret in 3 terms,
(2) Asymptotic lower bound on one term,
(3) And for the regret.

Decomposition on the regret

Decomposition

For any algorithm, decentralized or not, we have

$$
\begin{aligned}
R_{T}(\boldsymbol{\mu}, M, \rho) & =\sum_{k \in M \text {-worst }}\left(\mu_{M}^{*}-\mu_{k}\right) \mathbb{E}_{\mu}\left[T_{k}(T)\right] \\
& +\sum_{k \in M \text {-best }}\left(\mu_{k}-\mu_{M}^{*}\right)\left(T-\mathbb{E}_{\mu}\left[T_{k}(T)\right]\right)+\sum_{k=1}^{K} \mu_{k} \mathbb{E}_{\mu}\left[\mathcal{C}_{k}(T)\right]
\end{aligned}
$$

Notations for an arm $k \in\{1, \ldots, K\}$:

- $T_{k}^{j}(T):=\sum_{t=1}^{T} \mathbb{1}\left(A^{j}(t)=k\right)$, counts selections by the player $j \in\{1, \ldots, M\}$,
- $T_{k}(T):=\sum_{j=1}^{M} T_{k}^{j}(T)$, counts selections by all M players,
- $\mathcal{C}_{k}(T):=\sum_{t=1}^{T} \mathbb{1}\left(\exists j_{1} \neq j_{2}, A^{j_{1}}(t)=k=A^{j_{2}}(t)\right)$, counts collisions.

Decomposition on the regret

Decomposition

For any algorithm, decentralized or not, we have

$$
\begin{aligned}
R_{T}(\boldsymbol{\mu}, M, \rho) & =\sum_{k \in M \text {-worst }}\left(\mu_{M}^{*}-\mu_{k}\right) \mathbb{E}_{\mu}\left[T_{k}(T)\right] \\
& +\sum_{k \in M \text {-best }}\left(\mu_{k}-\mu_{M}^{*}\right)\left(T-\mathbb{E}_{\mu}\left[T_{k}(T)\right]\right)+\sum_{k=1}^{K} \mu_{k} \mathbb{E}_{\mu}\left[\mathcal{C}_{k}(T)\right]
\end{aligned}
$$

Small regret can be attained if...

(1) Devices can quickly identify the bad arms M-worst, and not play them too much (number of sub-optimal selections),

Decomposition on the regret

Decomposition

For any algorithm, decentralized or not, we have

$$
\begin{aligned}
R_{T}(\boldsymbol{\mu}, M, \rho) & =\sum_{k \in M \text {-worst }}\left(\mu_{M}^{*}-\mu_{k}\right) \mathbb{E}_{\mu}\left[T_{k}(T)\right] \\
& +\sum_{k \in M \text {-best }}\left(\mu_{k}-\mu_{M}^{*}\right)\left(T-\mathbb{E}_{\mu}\left[T_{k}(T)\right]\right)+\sum_{k=1}^{K} \mu_{k} \mathbb{E}_{\mu}\left[\mathcal{C}_{k}(T)\right]
\end{aligned}
$$

Small regret can be attained if...

(1) Devices can quickly identify the bad arms M-worst, and not play them too much (number of sub-optimal selections),
(2) Devices can quickly identify the best arms, and most surely play them (number of optimal non-selections),

Decomposition on the regret

Decomposition

For any algorithm, decentralized or not, we have

$$
\begin{aligned}
R_{T}(\boldsymbol{\mu}, M, \rho) & =\sum_{k \in M \text {-worst }}\left(\mu_{M}^{*}-\mu_{k}\right) \mathbb{E}_{\mu}\left[T_{k}(T)\right] \\
& +\sum_{k \in M \text {-best }}\left(\mu_{k}-\mu_{M}^{*}\right)\left(T-\mathbb{E}_{\mu}\left[T_{k}(T)\right]\right)+\sum_{k=1}^{K} \mu_{k} \mathbb{E}_{\mu}\left[\mathcal{C}_{k}(T)\right]
\end{aligned}
$$

Small regret can be attained if...

(1) Devices can quickly identify the bad arms M-worst, and not play them too much (number of sub-optimal selections),
(2) Devices can quickly identify the best arms, and most surely play them (number of optimal non-selections),
(3) Devices can use orthogonal channels (number of collisions).

Lower bound on the regret

Lower bound

For any algorithm, decentralized or not, we have

$$
R_{T}(\boldsymbol{\mu}, M, \rho) \geq \sum_{k \in M \text {-worst }}\left(\mu_{M}^{*}-\mu_{k}\right) \mathbb{E}_{\mu}\left[T_{k}(T)\right]
$$

Asymptotic lower bound on the regret I

Theorem 1

Sub-optimal arms selections are lower bounded asymptotically,
\forall player j, bad arm $k, \quad \liminf _{T \rightarrow+\infty} \frac{\mathbb{E}_{\mu}\left[T_{k}^{j}(T)\right]}{\log T} \geq \frac{1}{\operatorname{kl}\left(\mu_{k}, \mu_{M}^{*}\right)}$,

Where $\operatorname{kl}(x, y):=\mathcal{K} \mathcal{L}(\mathcal{B}(x), \mathcal{B}(y))=x \log \left(\frac{x}{y}\right)+(1-x) \log \left(\frac{1-x}{1-y}\right)$ is the binary KL divergence.

Proof: using classical information theory tools (Kullback-Leibler divergence, change of distributions)...

Asymptotic lower bound on the regret II

Theorem 2

[Besson \& Kaufmann, 2018]

For any uniformly efficient decentralized policy, and any non-degenerated problem μ,

$$
\liminf _{T \rightarrow+\infty} \frac{R_{T}(\boldsymbol{\mu}, M, \rho)}{\log (T)} \geq M \times\left(\sum_{k \in M \text {-worst }} \frac{\left(\mu_{M}^{*}-\mu_{k}\right)}{\mathrm{kl}\left(\mu_{k}, \mu_{M}^{*}\right)}\right) .
$$

Asymptotic lower bound on the regret II

Theorem 2

[Besson \& Kaufmann, 2018]

For any uniformly efficient decentralized policy, and any non-degenerated problem μ,

$$
\liminf _{T \rightarrow+\infty} \frac{R_{T}(\boldsymbol{\mu}, M, \rho)}{\log (T)} \geq M \times\left(\sum_{k \in M \text {-worst }} \frac{\left(\mu_{M}^{*}-\mu_{k}\right)}{\mathrm{kl}\left(\mu_{k}, \mu_{M}^{*}\right)}\right) .
$$

Remarks

- The centralized multiple-play lower bound is the same without the M multiplicative factor...
\hookrightarrow "price of non-coordination" $=M=$ nb of player?
- Improved state-of-the-art lower bound, but still not perfect: collisions should also be controlled!

Kullback-Leibler UCB algorithm (kl-UCB)

(1) For the first K steps $(t=1, \ldots, K)$, try each channel once.
(2) Then for the next steps $t>K$:

- $T_{k}^{j}(t):=\sum_{s=1}^{t} \mathbb{1}\left(A^{j}(s)=k\right)$ selections of channel k,
- $S_{k}^{j}(t):=\sum_{s=1}^{t} Y_{k}(s) \mathbb{1}\left(A^{j}(s)=k\right)$ sum of sensing information.
- Compute $\mathrm{UCB}_{k}^{j}(t)$, Upper Confidence Bound on mean μ_{k}

$$
\mathrm{UCB}_{k}^{j}(t):=\sup _{q \in[a, b]}\left\{q: \mathrm{kl}\left(\frac{S_{k}^{j}(t)}{T_{k}^{j}(t)}, q\right) \leq \frac{\log (t)}{T_{k}^{j}(t)}\right\}, \text { Ref: [Garivier \& Cappé, 2011] }
$$

- Choose channel $A^{j}(t)=\underset{k}{\arg \max } \mathrm{UCB}_{k}^{j}(t)$,
- Update $T_{k}^{j}(t+1)$ and $S_{k}^{j}(t+1)$.
$\mathrm{kl}-\mathrm{UCB}$ is asymptotically optimal for 1-player Bernoulli stochastic bandit.

Multi-player decentralized algorithms

(1) Common building blocks of previous algorithms,
(2) One of our proposal: the MCTopM algorithm.

Algorithms for this easier model

Building blocks: separate the two aspects

(1) MAB policy to learn the best arms (use sensing $Y_{A^{j}(t), t}$),
(2) Orthogonalization scheme to avoid collisions (use collision indicators $C^{j}(t)$).

Many different proposals for decentralized learning policies

■ "State-of-the-art": RhoRand

- Recent: MEGA and Musical Chair.

Algorithms for this easier model

Building blocks: separate the two aspects
(1) MAB policy to learn the best arms (use sensing $Y_{A^{j}(t), t}$),
(2) Orthogonalization scheme to avoid collisions (use collision indicators $C^{j}(t)$).

Many different proposals for decentralized learning policies

- "State-of-the-art": RhoRand
- Recent: MEGA and Musical Chair. Ref [Averer \& Mammor 2015), [Shamir etal, 206]

Our contributions:

Two new orthogonalization scheme inspired by RhoRand and Musical Chair, combined with the use of kl-UCB indices.

Ideas for the MCTopM algorithm

■ Based on sensing information, each user j keeps $\mathrm{UCB}_{k}^{j}(t)$ for each arm k,
■ Use it to estimate the M best arms:

$$
\widehat{M^{j}}(t)=\left\{\text { arms with } M \text { largest } \mathrm{UCB}_{k}^{j}(t)\right\} .
$$

Two ideas:

- Always pick an arm $A^{j}(t) \in \widehat{M^{j}}(t)$,
- Try not to switch arm too often.

Introduce a fixed state $s^{j}(t)$:
Ref: [Shamir et al, 2016] first non fixed, then fix when happy about an arm and no collision.

MCTopM algorithm

${ }_{1}$ Let $A^{j}(1) \sim \mathcal{U}(\{1, \ldots, K\})$ and $C^{j}(1)=$ False and $s^{j}(1)=$ Non fixed
2 for $t=1, \ldots, T-1$ do

3	if $A^{j}(t) \notin \widehat{M^{j}}(t)$ then
4	$A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap\left\{k: \operatorname{UCB}_{k}^{j}(t-1) \leq \operatorname{UCB}_{A^{j}(t)}^{j}(t-1)\right\}\right) \quad$ // not

$$
s^{j}(t+1)=\text { Non fixed } \quad / / \text { arm with smaller index at } t-1
$$

MCTopM algorithm

${ }_{1}$ Let $A^{j}(1) \sim \mathcal{U}(\{1, \ldots, K\})$ and $C^{j}(1)=$ False and $s^{j}(1)=$ Non fixed
2 for $t=1, \ldots, T-1$ do

3	if $A^{j}(t) \notin \widehat{M^{j}}(t)$ then
4	$\quad / /$ transition (3)
${ }^{3}$	or (5)
$A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap\left\{k: \operatorname{UCB}_{k}^{j}(t-1) \leq \operatorname{UCB}_{A^{j}(t)}^{j}(t-1)\right\}\right) \quad$ // not	

$s^{j}(t+1)=$ Non fixed

MCTopM algorithm

1 Let $A^{j}(1) \sim \mathcal{U}(\{1, \ldots, K\})$ and $C^{j}(1)=$ False and $s^{j}(1)=$ Non fixed

$$
2 \text { for } t=1, \ldots, T-1 \text { do }
$$

3 if $A^{j}(t) \notin \widehat{M^{j}}(t)$ then $\quad / /$ transition (3) or (5) $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap\left\{k: \mathrm{UCB}_{k}^{j}(t-1) \leq \mathrm{UCB}_{A^{j}(t)}^{j}(t-1)\right\}\right) \quad / / \operatorname{not}$ empty $s^{j}(t+1)=$ Non fixed $\quad / /$ arm with smaller index at $t-1$ else if $C^{j}(t)$ and $s^{j}(t)=$ Non fixed then // collision and not fixed $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t)\right) \quad / /$ transition (2)
$s^{j}(t+1)=$ Non fixed

else

// transition (1) or (4) $A^{j}(t+1)=A^{j}(t) \quad / /$ stay on the previous arm $s^{j}(t+1)=$ Fixed // become or stay fixed on a "chair"

end

MCTopM algorithm

1 Let $A^{j}(1) \sim \mathcal{U}(\{1, \ldots, K\})$ and $C^{j}(1)=$ False and $s^{j}(1)=$ Non fixed
2 for $t=1, \ldots, T-1$ do
$3 \quad$ if $A^{j}(t) \notin \widehat{M^{j}}(t)$ then $\quad / /$ transition (3) or (5)
4 $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap\left\{k: \operatorname{UCB}_{k}^{j}(t-1) \leq \mathrm{UCB}_{A^{j}(t)}^{j}(t-1)\right\}\right) \quad / / \operatorname{not}$ empty $s^{j}(t+1)=$ Non fixed $\quad / /$ arm with smaller index at $t-1$ else if $C^{j}(t)$ and $s^{j}(t)=$ Non fixed then // collision and not fixed $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t)\right) \quad / /$ transition (2) $s^{j}(t+1)=$ Non fixed
else // transition (1) or (4) $A^{j}(t+1)=A^{j}(t) \quad / /$ stay on the previous arm $s^{j}(t+1)=$ Fixed // become or stay fixed on a "chair" end
Play arm $A^{j}(t+1)$, get new observations (sensing and collision),
Compute the indices $\mathrm{UCB}_{k}^{j}(t+1)$ and set $\widehat{M^{j}}(t+1)$ for next step.
15 end

MCTopM algorithm illustrated, step by step

(0) Start $t=0$

MCTopM algorithm illustrated, step by step

MCTopM algorithm illustrated, step by step

MCTopM algorithm illustrated, step by step

(3) $A^{j}(t) \notin \widehat{M^{j}}(t)$

MCTopM algorithm illustrated, step by step

(3) $A^{j}(t) \notin \widehat{M^{j}}(t)$

MCTopM algorithm illustrated, step by step

(3) $A^{j}(t) \notin \widehat{M^{j}}(t)$

MCTopM algorithm illustrated, step by step

Regret upper bound

(1) Theorem,
(2) Remarks.

Regret upper bound for MCTopM

Theorem 3

One term is controlled by the two others:

$$
\begin{aligned}
& \sum_{k \in M \text {-best }}\left(\mu_{k}-\mu_{M}^{*}\right)\left(T-\mathbb{E}_{\mu}\left[T_{k}(T)\right]\right) \\
& \quad \leq\left(\mu_{1}^{*}-\mu_{M}^{*}\right)\left(\sum_{k \in M \text {-worst }} \mathbb{E}_{\mu}\left[T_{k}(T)\right]+\sum_{k \in M \text {-best }} \mathbb{E}_{\mu}\left[C_{k}(T)\right]\right)
\end{aligned}
$$

So only need to work on both sub-optimal selections and collisions.

Regret upper bound for MCTopM

Theorem 3

One term is controlled by the two others:

$$
\begin{aligned}
& \sum_{k \in M \text {-best }}\left(\mu_{k}-\mu_{M}^{*}\right)\left(T-\mathbb{E}_{\mu}\left[T_{k}(T)\right]\right) \\
& \quad \leq\left(\mu_{1}^{*}-\mu_{M}^{*}\right)\left(\sum_{k \in M \text {-worst }} \mathbb{E}_{\mu}\left[T_{k}(T)\right]+\sum_{k \in M \text {-best }} \mathbb{E}_{\mu}\left[C_{k}(T)\right]\right)
\end{aligned}
$$

So only need to work on both sub-optimal selections and collisions.

Theorem 4 [Besson \& Kaufmann, 2018]

If all M players use MCTopM with kl-UCB:

$$
\forall \boldsymbol{\mu}, \exists G_{M, \boldsymbol{\mu}}, \quad R_{T}(\boldsymbol{\mu}, M, \rho) \leq G_{M, \mu} \times \log (T)+o(\log T)
$$

Regret upper bound for MCTopM

How?

Control both terms, both are logarithmic at finite horizon:
■ Suboptimal selections with the "classical analysis" on kl-UCB indexes.

- Collisions are also controlled with inequalities on the kl-UCB indexes...

Regret upper bound for MCTopM

How?

Control both terms, both are logarithmic at finite horizon:
■ Suboptimal selections with the "classical analysis" on kl-UCB indexes.
■ Collisions are also controlled with inequalities on the kl-UCB indexes...

Remarks

■ The constant $G_{M, \mu}$ scales as M^{3}, way better than RhoRand's constant scaling as $M^{2}\binom{2 M-1}{M}$,

- We also minimize the number of channel switching: interesting as changing arm costs energy in radio systems,
■ For the suboptimal selections, we match our lower bound !

Experimental results

Experiments on Bernoulli problems $\boldsymbol{\mu} \in[0,1]^{K}$.

Illustration of the regret lower bound

Figure 1: Any such lower bound is very asymptotic, usually not satisfied for small horizons. We can see the importance of the collisions!

Constant regret if $M=K$

Multi-players $M=9$: Cumulated centralized regret, averaged 200 times 9 arms: $\left[B(0.1)^{*}, B(0.2)^{*}, B(0.3)^{*}, B(0.4)^{*}, B(0.5)^{*}, B(0.6)^{*}, B(0.7)^{*}, B(0.8)^{*}, B(0.9)^{*}\right]$

Figure 2: Regret, $M=9$ players, $K=9$ arms, horizon $T=10000,200$ repetitions. Only RandTopM and MCTopM achieve constant regret in this saturated case (proved).

Illustration of the regret of different algorithms

Multi-players $M=6$: Cumulated centralized regret, averaged 500 times 9 arms: Bayesian MAB, Bernoulli with means on $[0,1]$

Figure 3: Regret, $M=6$ players, $K=9$ arms, horizon $T=5000$, against 500 problems $\boldsymbol{\mu}$ uniformly sampled in $[0,1]^{K}$. Conclusion : RhoRand < RandTopM < Selfish < MCTopM in most cases.

Logarithmic number of collisions

Figure 4: Cumulated number of collisions. Also RhoRand $<$ RandTopM $<$ Selfish < MCTopM.

Logarithmic number of arm switches

Multi-players $M=6$: Total cumulated number of switches, averaged 500 times 9 arms: Bayesian MAB, Bernoulli with means on $[0,1]$

Figure 5: Cumulated number of arm switches. Again RhoRand < RandTopM < Selfish < MCTopM, but no guarantee for RhoRand. Bonus result: logarithmic arm switches for our algorithms!

Sum up

■ In a wireless network with an i.i.d. background traffic in K channels,

- M devices can use both sensing and acknowledgement feedback, to learn the most free channels and to find orthogonal configurations.

We showed

- Decentralized bandit algorithms can solve this problem,
- We have a lower bound for any decentralized algorithm,
- And we proposed an order-optimal algorithm, based on $\mathrm{kl}-\mathrm{UCB}$ and an improved Musical Chair scheme, MCTopM.

Future works

■ Remove hypothesis that objects know M ?

- Allow arrival/departure of objects?

■ Non-stationarity of background traffic?

Future works

■ Remove hypothesis that objects know M ?

- Allow arrival/departure of objects?

■ Non-stationarity of background traffic?

■ Extend to more objects (i.e., when $M>K$) "Large-scale" IoT model, with (e.g., ZigBee networks), or without sensing (e.g., LoRaWAN networks).
\hookrightarrow objects should no longer communicate at every time step!

Future works

■ Remove hypothesis that objects know M ?

- Allow arrival/departure of objects?

■ Non-stationarity of background traffic?

■ Extend to more objects (i.e., when $M>K$) "Large-scale" IoT model, with (e.g., ZigBee networks), or without sensing (e.g., LoRaWAN networks).
\hookrightarrow objects should no longer communicate at every time step!

- Maybe study other emission models?

■ Implement and test this on real-world radio devices?
\hookrightarrow Yes! Demo presented at the ICT 2018 conference! (Saint-Malo, France)

Thanks!

Thanks! :

Any question?

Appendix

- Proof of the regret upper bound,
- Illustration of the proof,

■ An heuristic for the "IoT" case (no sensing): the Selfish algorithm,

- Success and failures case for Selfish.

Sketch of the proof

(1) Bound the expected number of collisions by M times the number of collisions for non-fixed players,

Sketch of the proof

(1) Bound the expected number of collisions by M times the number of collisions for non-fixed players,
(2) Bound the expected number of transitions of type (3) and (5), by $\mathcal{O}(\log T)$ using the kl-UCB indexes and the forced choice of the algorithm:
$\mathrm{UCB}_{k}^{j}(t-1) \leq \mathrm{UCB}_{k^{\prime}}^{j}(t-1)$, and $\mathrm{UCB}_{k}^{j}(t)>\mathrm{UCB}_{k^{\prime}}^{j}(t)$ when switching from k^{\prime} to k,

Sketch of the proof

(1) Bound the expected number of collisions by M times the number of collisions for non-fixed players,
(2) Bound the expected number of transitions of type (3) and (5), by $\mathcal{O}(\log T)$ using the kl-UCB indexes and the forced choice of the algorithm:
$\mathrm{UCB}_{k}^{j}(t-1) \leq \mathrm{UCB}_{k^{\prime}}^{j}(t-1)$, and $\mathrm{UCB}_{k}^{j}(t)>\mathrm{UCB}_{k^{\prime}}^{j}(t)$ when switching from k^{\prime} to k,
(3) Bound the expected length of a sequence in the non-fixed state by a constant,

Sketch of the proof

(1) Bound the expected number of collisions by M times the number of collisions for non-fixed players,
(2) Bound the expected number of transitions of type (3) and (5), by $\mathcal{O}(\log T)$ using the kl-UCB indexes and the forced choice of the algorithm:
$\mathrm{UCB}_{k}^{j}(t-1) \leq \mathrm{UCB}_{k^{\prime}}^{j}(t-1)$, and $\mathrm{UCB}_{k}^{j}(t)>\mathrm{UCB}_{k^{\prime}}^{j}(t)$ when switching from k^{\prime} to k,
(3) Bound the expected length of a sequence in the non-fixed state by a constant,
4. So most of the times $(\mathcal{O}(T-\log T))$, players are fixed, and no collision happens when they are all fixed!
\hookrightarrow See our paper for details!

Illustration of the proof

- Time in fixed state is $\mathcal{O}(\log T)$, and collisions are $\leq M$ collisions in fixed state $\Longrightarrow \mathcal{O}(\log T)$ collisions.
- Suboptimal selections is $\mathcal{O}(\log T)$ also as $A^{j}(t+1)$ is always selected in $\widehat{M^{j}}(t)$ which is M-best at least $\mathcal{O}(T-\log T)$ (in average).

An heuristic, Selfish

For the harder feedback model, without sensing.
(1) An heuristic,
(2) Problems with Selfish,
(3) Illustration of failure cases.

Selfish heuristic I

Selfish decentralized approach = device don't use sensing:

Selfish

Use UCB_{1} (or kl-UCB) indexes on the (non i.i.d.) rewards $r^{j}(t)$ and not on the sensing $Y_{A^{j}(t)}(t)$.

Works fine...

- More suited to model IoT networks,

■ Use less information, and don't know the value of M : we expect Selfish to not have stronger guarantees.

- It works fine in practice!

Selfish heuristic II

But why would it work?

■ Sensing feedback were i.i.d., so using UCB_{1} to learn the μ_{k} makes sense,

- But collisions make the rewards not i.i.d. !

■ Adversarial algorithms should be more appropriate here,
■ But empirically, Selfish works much better with kl-UCB than, e.g., Exp3...

Works fine...

■ Except... when it fails drastically! $)$
■ In small problems with M and $K=2$ or 3 , we found small probability of failures (i.e., linear regret), and this prevents from having a generic upper bound on the regret for Selfish.

Illustration of failing cases for Selfish

Histogram of regrets for different multi-players bandit algorithms 3 arms: $\left[B(0.1), B(0.5)^{*}, B(0.9)^{*}\right]$

Figure 6: Regret for $M=2, K=3, T=5000,1000$ repetitions and $\boldsymbol{\mu}=[0.1,0.5,0.9]$. Axis x is for regret (different scale for each), and Selfish have a small probability of failure ($17 / 1000$ cases of $R_{T} \gg \log T$). The regret for the three other algorithms is very small for this "easy" problem.

