Multi-Player Bandits Revisited Decentralized Multi-Player Multi-Arm Bandits

Lilian Besson Joint work with Émilie Kaufmann

PhD Student Team SCEE, IETR, CentraleSupélec, Rennes & Team SequeL, CRIStAL, Inria, Lille

ALT Conference - 08-04-2018

Motivation

We control some communicating devices, they want to use a wireless access point.

- Insert them in a **crowded wireless network**.
- With a protocol **slotted in both time and frequency**.

Goal

- Maintain a good Quality of Service.
- With no centralized control as it costs network overhead.

How?

■ Devices can choose a different radio channel at each time → learn the best one with a *sequential algorithm*!

Our communication model

K radio channels (*e.g.*, 10). Discrete and synchronized time $t \ge 1$.

Dynamic device = dynamic radio reconfiguration

- It decides each time the channel it uses to send each packet.
- It can implement a simple **decision algorithm**.

Lilian Besson (CentraleSupélec & Inria)

Multi-Player Bandits Revisited

Our model

"Easy" case

- *M* ≤ *K* devices **always communicate** and try to access the network, *independently* without centralized supervision,
- Background traffic is *i.i.d.*.

Two variants : with or without *sensing*

- *With sensing*: Device first senses for presence of Primary Users that have strict priority (background traffic), then use Ack to detect collisions.
- Without sensing: same background traffic, but cannot sense, so only Ack is used.

Background traffic, and rewards

i.i.d. background traffic

- *K* channels, modeled as Bernoulli (0/1) distributions of mean μ_k = background traffic from *Primary Users*, bothering the dynamic devices,
- *M* devices, each uses channel $A^{j}(t) \in \{1, \ldots, K\}$ at time *t*.

Rewards

$$r^{j}(t) := Y_{A^{j}(t),t} \times \mathbb{1}(\overline{C^{j}(t)}) = \mathbb{1}(\operatorname{uplink} \And \operatorname{Ack})$$

with sensing information ∀k, Y_{k,t} ~ Bern(µ_k) ∈ {0,1},
 collision for device j: C^j(t) = 1(alone on arm A^j(t)).
 → r^j(t) combined binary reward but not from two Bernoulli!

$$r^{j}(t) := Y_{A^{j}(t),t} \times \mathbb{1}(\overline{C^{j}(t)})$$

• "Full feedback": observe both $Y_{A^{j}(t),t}$ and $C^{j}(t)$ separately, \hookrightarrow Not realistic enough, we don't focus on it.

$$r^{j}(t) := Y_{A^{j}(t),t} \times \mathbb{1}(\overline{C^{j}(t)})$$

- "Full feedback": observe both $Y_{A^{j}(t),t}$ and $C^{j}(t)$ separately, \hookrightarrow Not realistic enough, we don't focus on it.
- ② "Sensing": first observe $Y_{A^{j}(t),t}$, then $C^{j}(t)$ only if $Y_{A^{j}(t),t} \neq 0$, → Models licensed protocols (ex. ZigBee), our main focus.

$$r^{j}(t) := Y_{A^{j}(t),t} \times \mathbb{1}(\overline{C^{j}(t)})$$

- "Full feedback": observe both $Y_{A^{j}(t),t}$ and $C^{j}(t)$ separately, \hookrightarrow Not realistic enough, we don't focus on it.
- ② "Sensing": first observe $Y_{A^{j}(t),t}$, then $C^{j}(t)$ only if $Y_{A^{j}(t),t} \neq 0$, \hookrightarrow Models licensed protocols (ex. ZigBee), our main focus.
- "No sensing": observe only the combined $Y_{A^{j}(t),t} \times \mathbb{1}(\overline{C^{j}(t)})$, \hookrightarrow Unlicensed protocols (ex. LoRaWAN), harder to analyze !

$$r^{j}(t) := Y_{A^{j}(t),t} \times \mathbb{1}(\overline{C^{j}(t)})$$

- "Full feedback": observe both $Y_{A^j(t),t}$ and $C^j(t)$ separately, \hookrightarrow Not realistic enough, we don't focus on it.
- ② "Sensing": first observe $Y_{A^{j}(t),t}$, then $C^{j}(t)$ only if $Y_{A^{j}(t),t} \neq 0$, \hookrightarrow Models licensed protocols (ex. ZigBee), our main focus.
- "No sensing": observe only the combined $Y_{A^{j}(t),t} \times \mathbb{1}(\overline{C^{j}(t)})$, \hookrightarrow Unlicensed protocols (ex. LoRaWAN), harder to analyze !

But all consider the same instantaneous reward $r^{j}(t)$.

Goal

Goal

- Minimize packet loss ratio
 - (= maximize nb of received Ack)
- in a finite-space discrete-time Decision Making Problem.

Solution ?

Multi-Armed Bandit algorithms

- decentralized and
- used **independently** by each dynamic device.

Centralized regret

A measure of success

- Not the network throughput or collision probability,
- We study the **centralized** (expected) **regret**:

$$R_T(\boldsymbol{\mu}, M, \rho) := \left(\sum_{k=1}^M \boldsymbol{\mu}_k^*\right) T - \mathbb{E}_{\boldsymbol{\mu}} \left[\sum_{t=1}^T \sum_{j=1}^M r^j(t)\right]$$

Notation: μ_k^* is the mean of the *k*-best arm (*k*-th largest in μ):

•
$$\mu_1^* := \max \mu$$
,
• $\mu_2^* := \max \mu \setminus {\{\mu_1^*\}}$,
• etc.

Ref: [Lai & Robbins, 1985], [Liu & Zhao, 2009], [Anandkumar et al, 2010]

Centralized regret

A measure of success

- Not the network throughput or collision probability,
- We study the centralized (expected) regret:

$$R_T(\boldsymbol{\mu}, M, \rho) := \left(\sum_{k=1}^M \mu_k^*\right) T - \mathbb{E}_{\boldsymbol{\mu}} \left[\sum_{t=1}^T \sum_{j=1}^M r^j(t)\right]$$

Two directions of analysis

- How good a decentralized algorithm can be in this setting?
 - \hookrightarrow **Lower Bound** on the regret, for **any** algorithm !
- *How good is my decentralized algorithm in this setting?*
 - \hookrightarrow **Upper Bound** on the regret, for **one** algorithm !

Lower bound

- Decomposition of the regret in 3 terms,
- Asymptotic lower bound on one term,
- 3 And for the regret.

Decomposition

For any algorithm, decentralized or not, we have

$$R_T(\boldsymbol{\mu}, M, \rho) = \sum_{k \in M \text{-worst}} (\mu_M^* - \mu_k) \mathbb{E}_{\boldsymbol{\mu}}[T_k(T)]$$

+
$$\sum_{k \in M \text{-best}} (\mu_k - \mu_M^*) \left(T - \mathbb{E}_{\boldsymbol{\mu}}[T_k(T)]\right) + \sum_{k=1}^K \mu_k \mathbb{E}_{\boldsymbol{\mu}}[\mathcal{C}_k(T)].$$

Notations for an arm $k \in \{1, \ldots, K\}$:

- $T_k^j(T) := \sum_{t=1}^T \mathbb{1}(A^j(t) = k)$, counts selections by the player $j \in \{1, \dots, M\}$,
- $T_k(T) := \sum_{j=1}^M T_k^j(T)$, counts selections by all *M* players,
- $\mathcal{C}_k(T) := \sum_{t=1}^T \mathbb{1}(\exists j_1 \neq j_2, A^{j_1}(t) = k = A^{j_2}(t))$, counts collisions.

Decomposition

F

For any algorithm, decentralized or not, we have

$$R_T(\boldsymbol{\mu}, M, \rho) = \sum_{k \in M \text{-worst}} (\mu_M^* - \mu_k) \mathbb{E}_{\boldsymbol{\mu}}[T_k(T)]$$

+
$$\sum_{k \in M \text{-best}} (\mu_k - \mu_M^*) \left(T - \mathbb{E}_{\boldsymbol{\mu}}[T_k(T)]\right) + \sum_{k=1}^K \mu_k \mathbb{E}_{\boldsymbol{\mu}}[\mathcal{C}_k(T)].$$

Small regret can be attained if...

Devices can quickly identify the bad arms *M*-worst, and not play them too much (*number of sub-optimal selections*),

Decomposition

For any algorithm, decentralized or not, we have

$$R_T(\boldsymbol{\mu}, M, \rho) = \sum_{k \in M\text{-worst}} (\mu_M^* - \mu_k) \mathbb{E}_{\boldsymbol{\mu}}[T_k(T)]$$

+
$$\sum_{k \in M\text{-best}} (\mu_k - \mu_M^*) \left(T - \mathbb{E}_{\boldsymbol{\mu}}[T_k(T)]\right) + \sum_{k=1}^K \mu_k \mathbb{E}_{\boldsymbol{\mu}}[\mathcal{C}_k(T)].$$

Small regret can be attained if...

- Devices can quickly identify the bad arms *M*-worst, and not play them too much (*number of sub-optimal selections*),
- Devices can quickly identify the best arms, and most surely play them (*number of optimal non-selections*),

Decomposition

For any algorithm, decentralized or not, we have

$$R_T(\boldsymbol{\mu}, M, \rho) = \sum_{k \in M \text{-worst}} (\mu_M^* - \mu_k) \mathbb{E}_{\boldsymbol{\mu}}[T_k(T)]$$

+
$$\sum_{k \in M \text{-best}} (\mu_k - \mu_M^*) \left(T - \mathbb{E}_{\boldsymbol{\mu}}[T_k(T)]\right) + \sum_{k=1}^K \mu_k \mathbb{E}_{\boldsymbol{\mu}}[\mathcal{C}_k(T)].$$

Small regret can be attained if...

- Devices can quickly identify the bad arms *M*-worst, and not play them too much (*number of sub-optimal selections*),
- Devices can quickly identify the best arms, and most surely play them (*number of optimal non-selections*),
- Oevices can use orthogonal channels (*number of collisions*).

Lower bound on the regret

Lower bound

For any algorithm, decentralized or not, we have

$$R_T(\boldsymbol{\mu}, M, \rho) \geq \sum (\mu_M^* - \mu_k) \mathbb{E}_{\boldsymbol{\mu}}[T_k(T)]$$

 $k \in M$ -worst

Asymptotic lower bound on the regret I

Theorem 1

[Besson & Kaufmann, 2018]

Sub-optimal arms selections are lower bounded asymptotically,

 \forall player *j*, bad arm *k*,

$$\liminf_{T \to +\infty} \frac{\mathbb{E}_{\mu}[T_k^*(T)]}{\log T} \ge \frac{1}{\mathrm{kl}(\mu_k, \mu_M^*)},$$

 π [ani(an)]

Where $kl(x, y) := \mathcal{KL}(\mathcal{B}(x), \mathcal{B}(y)) = x \log(\frac{x}{y}) + (1-x) \log(\frac{1-x}{1-y})$ is the binary KL divergence.

 $T \rightarrow$

Proof: using classical information theory tools (Kullback-Leibler divergence, change of distributions)... Ref: [Garivier et al, 2016]

Asymptotic lower bound on the regret II

Theorem 2

[Besson & Kaufmann, 2018]

For any uniformly efficient decentralized policy, and any non-degenerated problem μ ,

$$\liminf_{T \to +\infty} \frac{R_T(\boldsymbol{\mu}, M, \rho)}{\log(T)} \ge M \times \left(\sum_{k \in M \text{-worst}} \frac{(\mu_M^* - \mu_k)}{\mathrm{kl}(\mu_k, \mu_M^*)} \right)$$

Asymptotic lower bound on the regret II

Theorem 2

[Besson & Kaufmann, 2018]

For any uniformly efficient decentralized policy, and any non-degenerated problem μ ,

$$\liminf_{T \to +\infty} \frac{R_T(\boldsymbol{\mu}, M, \rho)}{\log(T)} \ge M \times \left(\sum_{k \in M \text{-worst}} \frac{(\mu_M^* - \mu_k)}{\mathrm{kl}(\mu_k, \mu_M^*)} \right)$$

Remarks

The centralized *multiple-play* lower bound is the same without the *M* multiplicative factor...
Ref: [Anantharam et al, 1987]

 \hookrightarrow "price of non-coordination" = M = nb of player?

Improved state-of-the-art lower bound, but still not perfect: collisions should also be controlled!

Kullback-Leibler UCB algorithm (kl-UCB)

- For the first *K* steps (t = 1, ..., K), try each channel *once*.
- **2** Then for the next steps t > K:

•
$$T_k^j(t) := \sum_{s=1}^t \mathbb{1}(A^j(s) = k)$$
 selections of channel k ,

- $S_k^j(t) := \sum_{s=1}^{l} Y_k(s) \mathbb{1}(A^j(s) = k)$ sum of sensing information.
- Compute UCB^j_k(t), Upper Confidence Bound on mean μ_k UCB^j_k(t) := $\sup_{q \in [a,b]} \left\{ q : \operatorname{kl}\left(\frac{S^j_k(t)}{T^j_k(t)}, q\right) \leq \frac{\log(t)}{T^j_k(t)} \right\}$, Ref: [Garivier & Cappé, 2011]
- Choose channel $A^{j}(t) = \arg \max \operatorname{UCB}_{k}^{j}(t)$,
- Update $T_k^j(t+1)$ and $S_k^j(t+1)$.

kl-UCB is asymptotically optimal for 1-player Bernoulli stochastic bandit.

Ref: [Cappé et al, 2013]

Multi-player decentralized algorithms

- Ocommon building blocks of previous algorithms,
- **②** One of our proposal: the MCTopM algorithm.

Algorithms for this easier model

Building blocks: separate the two aspects

- **() MAB policy** to learn the best arms (use sensing $Y_{A^{j}(t),t}$),
- Orthogonalization scheme to avoid collisions (use collision indicators C^j(t)).

Many different proposals for decentralized learning policies

- "State-of-the-art": RhoRand
 - **Recent:** MEGA and Musical Chair.

Ref: [Anandkumar et al, 2011]

Ref: [Avner & Mannor, 2015], [Shamir et al, 2016]

Algorithms for this easier model

Building blocks: separate the two aspects

- **() MAB policy** to learn the best arms (use sensing $Y_{A^{j}(t),t}$),
- Orthogonalization scheme to avoid collisions (use collision indicators C^j(t)).

Many different proposals for decentralized learning policies

- "State-of-the-art": RhoRand
- **Recent:** MEGA and Musical Chair.

Ref: [Anandkumar et al, 2011]

Ref: [Avner & Mannor, 2015], [Shamir et al, 2016]

Our contributions:

[Besson & Kaufmann, 2018]

Two new orthogonalization scheme inspired by RhoRand and Musical Chair, combined with the use of kl-UCB indices.

Ideas for the MCTopM algorithm

- Based on sensing information, each user j keeps $UCB_k^j(t)$ for each arm k,
- Use it to estimate the *M* best arms:

$$\widehat{M^{j}}(t) = \{ \text{arms with } M \text{ largest } \mathrm{UCB}_{k}^{j}(t) \}.$$

Two ideas:

Always pick an arm A^j(t) ∈ M^j(t),
 Try not to switch arm too often.

Ref: [Anandkumar et al, 2011]

Introduce a **fixed state** $s^{j}(t)$: first non fixed, then fix when happy about an arm and no collision.

1 Let $A^{j}(1) \sim \mathcal{U}(\{1, \dots, K\})$ and $C^{j}(1) = \text{False and } s^{j}(1) = \text{Non fixed}$ 2 for $t = 1, \dots, T-1$ do 3 if $A^{j}(t) \notin \widehat{M^{j}}(t)$ then // transition (3) or (5) 4 $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap \left\{k : \text{UCB}_{k}^{j}(t-1) \leq \text{UCB}_{A^{j}(t)}^{j}(t-1)\right\}\right)$ // not empty 5 $s^{j}(t+1) = \text{Non fixed}$ // arm with smaller index at t-1

1 Let $A^{j}(1) \sim \mathcal{U}(\{1, \ldots, K\})$ and $C^{j}(1) =$ False and $s^{j}(1) =$ Non fixed 2 for t = 1, ..., T - 1 do if $A^{j}(t) \notin \widehat{M^{j}}(t)$ then // transition (3) or (5)3 $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap \left\{k : \mathrm{UCB}_{k}^{j}(t-1) \leq \mathrm{UCB}_{A^{j}(t)}^{j}(t-1)\right\}\right) / / \mathrm{not}$ 4 emptv $s^{j}(t+1) =$ Non fixed // arm with smaller index at t-15 else if $C^{j}(t)$ and $s^{j}(t) = Non$ fixed then // collision and not fixed 6 $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t)\right)$ // transition (2)7 $s^{j}(t+1) =$ Non fixed 8

1 Let $A^j(1) \sim \mathcal{U}(\{1, \ldots, K\})$ and $C^j(1) =$ False and $s^j(1) =$ Non fixed 2 for t = 1, ..., T - 1 do if $A^{j}(t) \notin \widehat{M^{j}}(t)$ then // transition (3) or (5)3 $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap \left\{k: \mathrm{UCB}_{k}^{j}(t-1) \leq \mathrm{UCB}_{A^{j}(t)}^{j}(t-1)\right\}\right) \quad // \text{ not}$ 4 emptv $s^{j}(t+1) = \text{Non fixed}$ // arm with smaller index at t-15 else if $C^{j}(t)$ and $s^{j}(t) = Non$ fixed then // collision and not fixed 6 $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t)\right)$ // transition (2)7 $s^{j}(t+1) =$ Non fixed 8 else // transition (1) or (4)9 $A^j(t+1) = A^j(t)$ // stay on the previous arm 10 $s^{j}(t+1) =$ Fixed // become or stay fixed on a "chair" 11 end 12

1 Let $A^j(1) \sim \mathcal{U}(\{1, \ldots, K\})$ and $C^j(1) =$ False and $s^j(1) =$ Non fixed 2 for t = 1, ..., T - 1 do if $A^{j}(t) \notin \widehat{M^{j}}(t)$ then // transition (3) or (5)3 $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t) \cap \left\{k : \mathrm{UCB}_{k}^{j}(t-1) \leq \mathrm{UCB}_{A^{j}(t)}^{j}(t-1)\right\}\right) \quad // \text{ not}$ 4 emptv $s^{j}(t+1) =$ Non fixed // arm with smaller index at t-15 else if $C^{j}(t)$ and $s^{j}(t) = Non$ fixed then // collision and not fixed 6 $A^{j}(t+1) \sim \mathcal{U}\left(\widehat{M^{j}}(t)\right)$ // transition (2)7 $s^{j}(t+1) =$ Non fixed 8 else // transition (1) or (4)9 $A^j(t+1) = A^j(t)$ // stay on the previous arm 10 $s^{j}(t+1) =$ Fixed // become or stay fixed on a "chair" 11 end 12 Play arm $A^{j}(t + 1)$, get new observations (sensing and collision), 13 Compute the indices $UCB_k^j(t+1)$ and set $\widehat{M^j}(t+1)$ for next step. 14 15 end

(0) Start t = 0

MCTopM algorithm illustrated, step by step

Regret upper bound

1 Theorem,

Remarks.

Theorem 3

 $k \in J$

Besson & Kaufmann, 2018]

One term is controlled by the two others:

$$\sum_{M\text{-best}} (\mu_k - \mu_M^*) \left(T - \mathbb{E}_{\mu}[T_k(T)] \right)$$
$$\leq (\mu_1^* - \mu_M^*) \left(\sum_{k \in M\text{-worst}} \mathbb{E}_{\mu}[T_k(T)] + \sum_{k \in M\text{-best}} \mathbb{E}_{\mu}[C_k(T)] \right)$$

So only need to work on both sub-optimal selections and collisions.

Theorem 3

 $k \in I$

[Besson & Kaufmann, 2018]

One term is controlled by the two others:

$$\sum_{M\text{-best}} (\mu_k - \mu_M^*) \left(T - \mathbb{E}_{\mu}[T_k(T)]\right)$$
$$\leq (\mu_1^* - \mu_M^*) \left(\sum_{k \in M\text{-worst}} \mathbb{E}_{\mu}[T_k(T)] + \sum_{k \in M\text{-best}} \mathbb{E}_{\mu}[C_k(T)]\right)$$

So only need to work on both sub-optimal selections and collisions.

Theorem 4

[Besson & Kaufmann, 2018]

If all M players use MCTopM with kl-UCB:

$$\forall \boldsymbol{\mu}, \exists G_{M,\boldsymbol{\mu}}, \quad R_T(\boldsymbol{\mu}, M, \rho) \leq G_{M,\boldsymbol{\mu}} \times \log(T) + o(\log T).$$

20/30

How?

Control both terms, both are logarithmic at finite horizon:

- Suboptimal selections with the "classical analysis" on kl-UCB indexes.
- Collisions are also controlled with inequalities on the kl-UCB indexes...

How?

Control both terms, both are logarithmic at finite horizon:

- Suboptimal selections with the "classical analysis" on kl-UCB indexes.
- Collisions are also controlled with inequalities on the kl-UCB indexes...

Remarks

- The constant $G_{M,\mu}$ scales as M^3 , way better than RhoRand's constant scaling as $M^2\binom{2M-1}{M}$,
- We also *minimize the number of channel switching*: interesting as changing arm costs energy in radio systems,
- For the suboptimal selections, we *match our lower bound* !

Experimental results

Experiments on Bernoulli problems $\boldsymbol{\mu} \in [0, 1]^K$.

Illustration of the regret lower bound

Figure 1: Any such lower bound is very asymptotic, usually not satisfied for small horizons. We can see the importance of the collisions!

Constant regret if M = K

Figure 2: Regret, M = 9 players, K = 9 arms, horizon T = 10000, 200 repetitions. Only RandTopM and MCTopM achieve constant regret in this saturated case (proved).

Illustration of the regret of different algorithms

Figure 3: Regret, M = 6 players, K = 9 arms, horizon T = 5000, against 500 problems μ uniformly sampled in $[0, 1]^K$. Conclusion : RhoRand < RandTopM < Selfish < MCTopM in most cases.

Logarithmic number of collisions

Figure 4: Cumulated number of collisions. Also RhoRand < RandTopM < Selfish < MCTopM.

Logarithmic number of arm switches

Figure 5: Cumulated number of arm switches. Again RhoRand < RandTopM < Selfish < MCTopM, but no guarantee for RhoRand. *Bonus* result: logarithmic arm switches for our algorithms!

Sum up

- In a wireless network with an *i.i.d.* background traffic in K channels,
- *M* devices can use both sensing and acknowledgement feedback, to learn the most free channels and to find orthogonal configurations.

We showed

- Decentralized bandit algorithms can solve this problem,
- We have a lower bound for any decentralized algorithm,
- And we proposed an order-optimal algorithm, based on kl-UCB and an improved Musical Chair scheme, MCTopM.

Future works

- Remove hypothesis that objects know *M*?
- Allow arrival/departure of objects?
- Non-stationarity of background traffic?

Future works

- Remove hypothesis that objects know *M*?
- Allow arrival/departure of objects?
- Non-stationarity of background traffic?
- Extend to more objects (*i.e.*, when M > K)
 "Large-scale" IoT model, with (*e.g.*, ZigBee networks), or without sensing (*e.g.*, LoRaWAN networks).
 - \hookrightarrow objects should no longer communicate at every time step!

Future works

- Remove hypothesis that objects know *M*?
- Allow arrival/departure of objects?
- Non-stationarity of background traffic?
- Extend to more objects (*i.e.*, when M > K)
 "Large-scale" IoT model, with (*e.g.*, ZigBee networks), or without sensing (*e.g.*, LoRaWAN networks).
 - \hookrightarrow objects should no longer communicate at every time step!
- Maybe study **other emission models**?
- Implement and test this on real-world radio devices?
 → Yes! Demo presented at the ICT 2018 conference! (Saint-Malo, France)

Thanks!

Thanks! 🙂

Any question?

Appendix

- Proof of the regret upper bound,
- Illustration of the proof,
- An heuristic for the "IoT" case (no sensing): the Selfish algorithm,
- Success and failures case for Selfish.

 Bound the expected number of collisions by *M* times the number of collisions for non-fixed players,

- Bound the expected number of collisions by *M* times the number of collisions for non-fixed players,
- Bound the expected number of transitions of type (3) and (5), by O(log T) using the kl-UCB indexes and the forced choice of the algorithm:

 $\operatorname{UCB}_{k}^{j}(t-1) \leq \operatorname{UCB}_{k'}^{j}(t-1), \text{ and } \operatorname{UCB}_{k}^{j}(t) > \operatorname{UCB}_{k'}^{j}(t)$ when switching from k' to k,

- Bound the expected number of collisions by *M* times the number of collisions for non-fixed players,
- Bound the expected number of transitions of type (3) and (5), by O(log *T*) using the kl-UCB indexes and the forced choice of the algorithm:

 $\operatorname{UCB}_{k}^{j}(t-1) \leq \operatorname{UCB}_{k'}^{j}(t-1), \text{ and } \operatorname{UCB}_{k}^{j}(t) > \operatorname{UCB}_{k'}^{j}(t)$ when switching from k' to k,

 Bound the expected length of a sequence in the non-fixed state by a constant,

- Bound the expected number of collisions by *M* times the number of collisions for non-fixed players,
- Bound the expected number of transitions of type (3) and (5), by O(log *T*) using the kl-UCB indexes and the forced choice of the algorithm:

 $\operatorname{UCB}_{k}^{j}(t-1) \leq \operatorname{UCB}_{k'}^{j}(t-1), \text{ and } \operatorname{UCB}_{k}^{j}(t) > \operatorname{UCB}_{k'}^{j}(t)$ when switching from k' to k,

- Bound the expected length of a sequence in the non-fixed state by a constant,
- So most of the times ($\mathcal{O}(T \log T)$), players are fixed, and no collision happens when they are all fixed!

$$\hookrightarrow$$
 See our paper for details!

Illustration of the proof

- Time in fixed state is $\mathcal{O}(\log T)$, and collisions are $\leq M$ collisions in fixed state $\implies \mathcal{O}(\log T)$ collisions. - Suboptimal selections is $\mathcal{O}(\log T)$ also as $A^j(t+1)$ is always selected in $\widehat{M^j}(t)$ which is *M*-best at least $\mathcal{O}(T - \log T)$ (in average).

An heuristic, Selfish

For the harder feedback model, without sensing.

An heuristic,

- Problems with Selfish,
- Illustration of failure cases.

Selfish heuristic I

Selfish decentralized approach = device don't use sensing:

Selfish

Use UCB₁ (or kl-UCB) indexes on the (non *i.i.d.*) rewards $r^{j}(t)$ and not on the sensing $Y_{A^{j}(t)}(t)$. Ref: [Bonnefoi & Besson et al, 2017]

Works fine...

- More suited to model IoT networks,
- Use less information, and don't know the value of *M*: we expect Selfish to not have stronger guarantees.
- It works fine in practice!

Selfish heuristic II

But why would it work?

- Sensing feedback were *i.i.d.*, so using UCB₁ to learn the μ_k makes sense,
- But collisions make the rewards not *i.i.d.* !
- Adversarial algorithms should be more appropriate here,
- But empirically, Selfish works much better with kl-UCB than, *e.g.*, Exp3...

Works fine...

- Except... when it fails drastically! 🔅
- In small problems with *M* and *K* = 2 or 3, we found small probability of failures (*i.e.*, linear regret), and this prevents from having a generic upper bound on the regret for Selfish.

Illustration of failing cases for Selfish

Histogram of regrets for different multi-players bandit algorithms 3 arms: $[B(0.1), B(0.5)^*, B(0.9)^*]$

Figure 6: Regret for M = 2, K = 3, T = 5000, 1000 repetitions and $\mu = [0.1, 0.5, 0.9]$. Axis *x* is for regret (different scale for each), and Selfish have a small probability of failure (17/1000 cases of $R_T \gg \log T$). The regret for the three other algorithms is very small for this "easy" problem.