Aggregation of MAB Learning Algorithms for OSA

Lilian Besson

Advised by Christophe Moy Émilie Kaufmann

PhD Student Team SCEE, IETR, CentraleSupélec, Rennes & Team SequeL, CRIStAL, Inria, Lille

IEEE WCNC - 16th April 2018

Introduction

- Cognitive Radio (CR) is known for being one of the possible solution to tackle the spectrum scarcity issue
- Opportunistic Spectrum Access (OSA) is a good model for CR problems in licensed bands
- Online learning strategies, mainly using multi-armed bandits (MAB) algorithms, were recently proved to be efficient [Jouini 2010]
- But there is many different MAB algorithms... which one should you choose in practice?

⇒ we propose to use an online learning algorithm to also decide which algorithm to use, to be more robust and adaptive to unknown environments.

Outline

- Opportunistic Spectrum Access
- Multi-Armed Bandits
- MAB algorithms
- Aggregation of MAB algorithms
- Illustration

Please

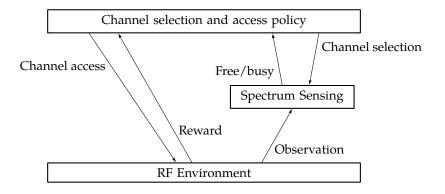
Ask questions at the end if you want!

See our paper HAL.Inria.fr/hal-01705292

1. Opportunistic Spectrum Access

- Spectrum scarcity is a well-known problem
- Different range of solutions...
- Cognitive Radio is one of them
- Opportunistic Spectrum Access is a kind of cognitive radio

Communication & interaction model



- \blacksquare Primary users are occupying K radio channels
- Secondary users can sense and exploit free channels: want to explore the channels, and learn to exploit the best one
- Discrete time for everything $t \ge 1, t \in \mathbb{N}$

2. Multi-Armed Bandits

Model

- Again $K \ge 2$ resources (e.g., channels), called **arms**
- Each time slot t = 1, ..., T, you must choose one arm, denoted $A(t) \in \{1, ..., K\}$
- You receive some reward $r(t) \sim \nu_k$ when playing k = A(t)
- **Goal:** maximize your sum reward $\sum_{t=1}^{T} r(t)$
- Hypothesis: rewards are stochastic, of mean μ_k . *E.g.*, Bernoulli

Why is it famous?

Simple but good model for exploration/exploitation dilemma.

3. MAB algorithms

- Main idea: index $I_k(t)$ to approximate the quality of arm k
- First example: *UCB algorithm*
- Second example: *Thompson Sampling*

3.1 Multi-Armed Bandit algorithms

Often index based

- Keep index $I_k(t) \in \mathbb{R}$ for each arm k = 1, ..., K
- Always play $A(t) = \arg \max I_k(t)$
- $I_k(t)$ should represent belief of the *quality* of arm k at time t

Example: "Follow the Leader"

- $X_k(t) := \sum_{s < t} r(s) \mathbf{1}(A(s) = k)$ sum reward from arm k
- $N_k(t) := \sum_{s < t} \mathbf{1}(A(s) = k)$ number of samples of arm k
- And use $I_k(t) = \hat{\mu}_k(t) := \frac{X_k(t)}{N_k(t)}$.

Upper Confidence Bounds algorithm (UCB)

■ Instead of using $I_k(t) = \frac{X_k(t)}{N_k(t)}$, add an exploration term

$$I_k(t) = \frac{X_k(t)}{N_k(t)} + \sqrt{\frac{\alpha \log(t)}{2N_k(t)}}$$

Parameter α : tradeoff exploration vs exploitation

- Small α : focus more on **exploitation**
- **Large** α : focus more on **exploration**

Problem: how to choose "the good α " for a certain problem?

Thompson sampling (TS)

- Choose an initial belief on μ_k (uniform) and a prior p^t (e.g., a Beta prior on [0,1])
- At each time, update the prior p^{t+1} from p^t using Bayes theorem
- And use $I_k(t) \sim p^t$ as random index

Example with Beta prior, for binary rewards

- $p^t = \text{Beta}(1 + \text{nb successes}, 1 + \text{nb failures}).$
- Mean of $p^t = \frac{1+X_k(t)}{2+N_k(t)} \simeq \hat{\mu}_k(t)$.

How to choose "the good prior" for a certain problem?

4. Aggregation of MAB algorithms

Problem

- How to choose which algorithm to use?
- But also... Why commit to one only algorithm?

Solutions

- Offline benchmarks?
- Or online selections from a pool of algorithms?

\hookrightarrow Aggregation?

Not a new idea, studied from the 90s in the ML community.

Also use online learning to select the best algorithm!

4.1 Basic idea for online aggregation

If you have A_1, \ldots, A_N different algorithms

- At time t = 0, start with a uniform distribution π^0 on $\{1, \dots, N\}$ (to represent the **trust** in each algorithm)
- At time t, choose $a^t \sim \pi^t$, then play with \mathcal{A}_{a^t}
- Compute next distribution π^{t+1} from π^t :
 - increase $\pi_{a^t}^{t+1}$ if choosing \mathcal{A}_{a^t} gave a good reward
 - or decrease it otherwise

Problems

- **1** How to increase $\pi_{a^t}^{t+1}$?
- What information should we give to which algorithms?

4.2 Overview of the *Exp4* aggregation algorithm

For rewards in $r(t) \in [-1, 1]$.

- Use π^t to choose randomly the algorithm to trust, $a^t \sim \pi^t$
- Play its decision, $A_{aggr}(t) = A_{a^t}(t)$, receive reward r(t)
- lacksquare And give feedback of observed reward r(t) only to this one
- Increase or decrease $\pi_{a^t}^t$ using an exponential weight:

$$\pi_{a^t}^{t+1} := \pi_{a^t}^t \times \exp\left(\eta_t \times \frac{r(t)}{\pi_{a^t}^t}\right).$$

- Renormalize π^{t+1} to keep a distribution on $\{1, \dots, N\}$
- Use a sequence of decreasing *learning rate* $\eta_t = \frac{\log(N)}{t \times K}$ (cooling scheme, $\eta_t \to 0$ for $t \to \infty$)

Use an unbiased estimate of the rewards

Using directly r(t) to update trust probability yields a biased estimator

- So we use instead $\hat{r}(t) = r(t)/\pi_a^t$ if we trusted algorithm \mathcal{A}_a
- This way

$$\mathbb{E}[\hat{r}(t)] = \sum_{a=1}^{N} \mathbb{P}(a^t = a) \mathbb{E}[r(t)/\pi_a^t]$$
$$= \mathbb{E}[r(t)] \sum_{a=1}^{N} \frac{\mathbb{P}(a^t = a)}{\pi_a^t} = \mathbb{E}[r(t)]$$

4.3 Our Aggregator aggregation algorithm

Improves on *Exp4* by the following ideas:

- First let each algorithm vote for its decision A_1^t, \dots, A_N^t
- Choose arm $A_{\mathrm{aggr}}(t) \sim p_j^{t+1} := \sum\limits_{a=1}^N \pi_a^t \mathbf{1}(A_a^t = j)$
- Update trust for each of the trusted algorithm, not only one (*i.e.*, if $A_a^t = A_{\text{aggr}}^t$) \hookrightarrow faster convergence
- Give feedback of reward r(t) to each algorithm! (and not only the one trusted at time t) \hookrightarrow each algorithm have more data to learn from

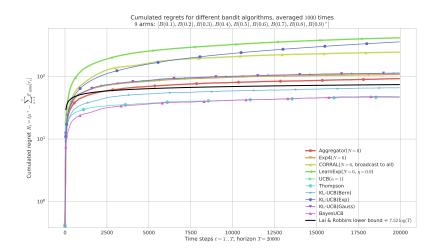
5. Some illustrations

- Artificial simulations of stochastic bandit problems
- Bernoulli bandits but not only
- Pool of different algorithms (UCB, Thompson Sampling etc)
- Compared with other state-of-the-art algorithms for expert aggregation (Exp4, CORRAL, LearnExp)
- What is plotted it the *regret* for problem of means μ_1, \ldots, μ_K :

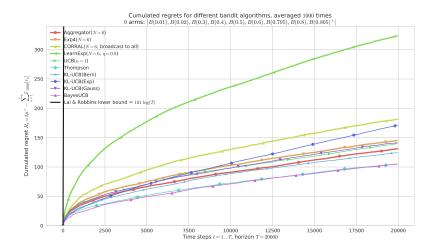
$$R_T^{\mu}(\mathcal{A}) = \max_k(T\mu_k) - \sum_{t=1}^T \mathbb{E}[r(t)]$$

- Regret is known to be lower-bounded by $C(\mu) \log(T)$
- and upper-bounded by $C'(\mu) \log(T)$ for efficient algorithms

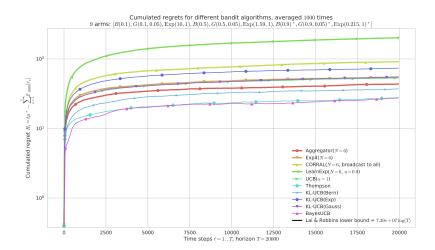
On a simple Bernoulli problem



On a "hard" Bernoulli problem



On a mixed problem



6. Conclusion 6.1. Summary

Conclusion (1/2)

- Online learning can be a powerful tool for Cognitive Radio, and many other real-world applications
- Many formulation exist, a simple one is the Multi-Armed Bandit
- Many algorithms exist, to tackle different situations
- It's hard to know before hand which algorithm is efficient for a certain problem...
- Online learning can also be used to select on the run which algorithm to prefer, for a specific situation!

Conclusion (2/2)

- Our algorithm Aggregator is efficient and easy to implement
- For N algorithms A_1, \ldots, A_N , it costs $\mathcal{O}(N)$ memory, and $\mathcal{O}(N)$ extra computation time at each time step
- For stochastic bandit problem, it outperforms empirically the other state-of-the-arts (Exp4, CORRAL, LearnExp).

See our paper

HAL.Inria.fr/hal-01705292

See our code for experimenting with bandit algorithms

Python library, open source at SMPyBandits.GitHub.io

Thanks for listening!