Aggregation of MAB Learning Algorithms for OSA

Lilian Besson

Advised by Christophe Moy Émilie Kaufmann

PhD Student
Team SCEE, IETR, CentraleSupélec, Rennes
\& Team SequeL, CRIStAL, Inria, Lille

IEEE WCNC - 16th April 2018

Introduction

- Cognitive Radio (CR) is known for being one of the possible solution to tackle the spectrum scarcity issue
■ Opportunistic Spectrum Access (OSA) is a good model for CR problems in licensed bands
■ Online learning strategies, mainly using multi-armed bandits (MAB) algorithms, were recently proved to be efficient [Jouini 2010]
■ But there is many different MAB algorithms... which one should you choose in practice?
\Longrightarrow we propose to use an online learning algorithm to also decide which algorithm to use, to be more robust and adaptive to unknown environments.

Outline

(1) Opportunistic Spectrum Access
(2) Multi-Armed Bandits
(3) MAB algorithms
(1) Aggregation of MAB algorithms
(3) Illustration

Please

Ask questions at the end if you want!
See our paper HAL.Inria.fr/hal-01705292

1. Opportunistic Spectrum Access

■ Spectrum scarcity is a well-known problem
■ Different range of solutions...

- Cognitive Radio is one of them

■ Opportunistic Spectrum Access is a kind of cognitive radio

Communication \& interaction model

■ Primary users are occupying K radio channels
■ Secondary users can sense and exploit free channels: want to explore the channels, and learn to exploit the best one
■ Discrete time for everything $t \geq 1, t \in \mathbb{N}$

2. Multi-Armed Bandits

Model

■ Again $K \geq 2$ resources (e.g., channels), called arms

- Each time slot $t=1, \ldots, T$, you must choose one arm, denoted $A(t) \in\{1, \ldots, K\}$
- You receive some reward $r(t) \sim \nu_{k}$ when playing $k=A(t)$
- Goal: maximize your sum reward $\sum_{t=1}^{T} r(t)$

■ Hypothesis: rewards are stochastic, of mean μ_{k}. E.g., Bernoulli

Why is it famous?

Simple but good model for exploration/exploitation dilemma.

3. MAB algorithms

■ Main idea: index $I_{k}(t)$ to approximate the quality of arm k

- First example: UCB algorithm

■ Second example: Thompson Sampling

3.1 Multi-Armed Bandit algorithms

Often index based

■ Keep index $I_{k}(t) \in \mathbb{R}$ for each $\operatorname{arm} k=1, \ldots, K$

- Always play $A(t)=\arg \max I_{k}(t)$
- $I_{k}(t)$ should represent belief of the quality of arm k at time t

Example: "Follow the Leader"

■ $X_{k}(t):=\sum_{s<t} r(s) \mathbf{1}(A(s)=k)$ sum reward from arm k

- $N_{k}(t):=\sum_{s<t} \mathbf{1}(A(s)=k)$ number of samples of arm k

■ And use $I_{k}(t)=\hat{\mu}_{k}(t):=\frac{X_{k}(t)}{N_{k}(t)}$.

Upper Confidence Bounds algorithm (UCB)

■ Instead of using $I_{k}(t)=\frac{X_{k}(t)}{N_{k}(t)}$, add an exploration term

$$
I_{k}(t)=\frac{X_{k}(t)}{N_{k}(t)}+\sqrt{\frac{\alpha \log (t)}{2 N_{k}(t)}}
$$

Parameter α : tradeoff exploration vs exploitation

- Small α : focus more on exploitation
- Large α : focus more on exploration

Problem: how to choose "the good α " for a certain problem?

Thompson sampling (TS)

■ Choose an initial belief on μ_{k} (uniform) and a prior p^{t} (e.g., a Beta prior on $[0,1]$)

- At each time, update the prior p^{t+1} from p^{t} using Bayes theorem
■ And use $I_{k}(t) \sim p^{t}$ as random index

Example with Beta prior, for binary rewards

■ $p^{t}=\operatorname{Beta}(1+\mathrm{nb}$ successes, $1+\mathrm{nb}$ failures $)$.
\square Mean of $p^{t}=\frac{1+X_{k}(t)}{2+N_{k}(t)} \simeq \hat{\mu}_{k}(t)$.

How to choose "the good prior" for a certain problem?

4. Aggregation of MAB algorithms

Problem

- How to choose which algorithm to use?

■ But also... Why commit to one only algorithm?

Solutions

■ Offline benchmarks?
■ Or online selections from a pool of algorithms?

\hookrightarrow Aggregation?

Not a new idea, studied from the 90s in the ML community.

- Also use online learning to select the best algorithm!

4.1 Basic idea for online aggregation

If you have $\mathcal{A}_{1}, \ldots, \mathcal{A}_{N}$ different algorithms

- At time $t=0$, start with a uniform distribution π^{0} on $\{1, \ldots, N\}$ (to represent the trust in each algorithm)
- At time t, choose $a^{t} \sim \pi^{t}$, then play with $\mathcal{A}_{a^{t}}$
- Compute next distribution π^{t+1} from π^{t} :
- increase $\pi_{a^{t}}^{t+1}$ if choosing $\mathcal{A}_{a^{t}}$ gave a good reward
- or decrease it otherwise

Problems

(1) How to increase $\pi_{a^{t}}^{t+1}$?
(2) What information should we give to which algorithms?

4.2 Overview of the Exp4 aggregation algorithm

For rewards in $r(t) \in[-1,1]$.

■ Use π^{t} to choose randomly the algorithm to trust, $a^{t} \sim \pi^{t}$

- Play its decision, $A_{\text {aggr }}(t)=A_{a^{t}}(t)$, receive reward $r(t)$
- And give feedback of observed reward $r(t)$ only to this one

■ Increase or decrease $\pi_{a^{t}}^{t}$ using an exponential weight:

$$
\pi_{a^{t}}^{t+1}:=\pi_{a^{t}}^{t} \times \exp \left(\eta_{t} \times \frac{r(t)}{\pi_{a^{t}}^{t}}\right)
$$

- Renormalize π^{t+1} to keep a distribution on $\{1, \ldots, N\}$

■ Use a sequence of decreasing learning rate $\eta_{t}=\frac{\log (N)}{t \times K}$ (cooling scheme, $\eta_{t} \rightarrow 0$ for $t \rightarrow \infty$)

Use an unbiased estimate of the rewards

Using directly $r(t)$ to update trust probability yields a biased estimator

■ So we use instead $\hat{r}(t)=r(t) / \pi_{a}^{t}$ if we trusted algorithm \mathcal{A}_{a}

- This way

$$
\begin{aligned}
& \mathbb{E}[\hat{r}(t)]=\sum_{a=1}^{N} \mathbb{P}\left(a^{t}=a\right) \mathbb{E}\left[r(t) / \pi_{a}^{t}\right] \\
& =\mathbb{E}[r(t)] \sum_{a=1}^{N} \frac{\mathbb{P}\left(a^{t}=a\right)}{\pi_{a}^{t}}=\mathbb{E}[r(t)]
\end{aligned}
$$

4.3 Our Aggregator aggregation algorithm

Improves on Exp4 by the following ideas:
■ First let each algorithm vote for its decision $A_{1}^{t}, \ldots, A_{N}^{t}$

- Choose arm $A_{\mathrm{aggr}}(t) \sim p_{j}^{t+1}:=\sum_{a=1}^{N} \pi_{a}^{t} \mathbf{1}\left(A_{a}^{t}=j\right)$

■ Update trust for each of the trusted algorithm, not only one (i.e., if $A_{a}^{t}=A_{\mathrm{aggr}}^{t}$) \hookrightarrow faster convergence

- Give feedback of reward $r(t)$ to each algorithm! (and not only the one trusted at time $t) \hookrightarrow$ each algorithm have more data to learn from

5. Some illustrations

- Artificial simulations of stochastic bandit problems
- Bernoulli bandits but not only

■ Pool of different algorithms (UCB, Thompson Sampling etc)

- Compared with other state-of-the-art algorithms for expert aggregation (Exp4, CORRAL, LearnExp)
- What is plotted it the regret for problem of means μ_{1}, \ldots, μ_{K} :

$$
R_{T}^{\mu}(\mathcal{A})=\max _{k}\left(T \mu_{k}\right)-\sum_{t=1}^{T} \mathbb{E}[r(t)]
$$

■ Regret is known to be lower-bounded by $C(\mu) \log (T)$
■ and upper-bounded by $C^{\prime}(\mu) \log (T)$ for efficient algorithms

On a simple Bernoulli problem

On a "hard" Bernoulli problem

On a mixed problem

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: $\left[B(0.1), G(0.1,0.05), \operatorname{Exp}(10,1), B(0.5), G(0.5,0.05), \operatorname{Exp}(1.59,1), B(0.9)^{*}, G(0.9,0.05)^{*}, \operatorname{Exp}(0.215,1)^{*}\right]$

Conclusion (1/2)

■ Online learning can be a powerful tool for Cognitive Radio, and many other real-world applications
■ Many formulation exist, a simple one is the Multi-Armed Bandit

- Many algorithms exist, to tackle different situations
- It's hard to know before hand which algorithm is efficient for a certain problem...
- Online learning can also be used to select on the run which algorithm to prefer, for a specific situation!

Conclusion (2/2)

■ Our algorithm Aggregator is efficient and easy to implement
$■$ For N algorithms $\mathcal{A}_{1}, \ldots, \mathcal{A}_{N}$, it costs $\mathcal{O}(N)$ memory, and $\mathcal{O}(N)$ extra computation time at each time step
■ For stochastic bandit problem, it outperforms empirically the other state-of-the-arts (Exp4, CORRAL, LearnExp).

See our paper

HAL.Inria.fr/hal-01705292

See our code for experimenting with bandit algorithms
Python library, open source at SMPyBandits.GitHub.io
Thanks for listening!

