IEEE WCNC: « Aggregation of Multi-Armed Bandits Learning Algorithms for Opportunistic Spectrum Access »

- **Date**: 16th of April 2018
- **Who**: Lilian Besson 🌸, PhD Student in France, co-advised by Christophe Moy @ CentraleSupélec & IETR, Rennes and Émilie Kaufmann @ Inria, Lille

See our paper HAL.Inria.fr/hal-01705292
Introduction

- Cognitive Radio (CR) is known for being one of the possible solution to tackle the spectrum scarcity issue

- Opportunistic Spectrum Access (OSA) is a good model for CR problems in **licensed bands**

- Online learning strategies, mainly using multi-armed bandits (MAB) algorithms, were recently proved to be efficient [Jouini 2010]

- 🌟 But there is many different MAB algorithms… which one should you choose in practice?

→ we propose to use an online learning algorithm to also decide which algorithm to use, to be more robust and adaptive to unknown environments.
Outline [15 min]

1. Opportunistic Spectrum Access [3 min]
2. Multi-Armed Bandits [2 min]
3. MAB algorithms [3 min]
4. Aggregation of MAB algorithms [3 min]
5. Illustration [3 min]

Please 🙋

Ask questions at the end if you want!
1. Opportunistic Spectrum Access

- Spectrum scarcity is a well-known problem
- Different range of solutions…
- Cognitive Radio is one of them
- Opportunistic Spectrum Access is a kind of cognitive radio
Communication & interaction model

- Primary users are occupying K radio channels
- Secondary users can sense and exploit free channels: want to explore the channels, and learn to exploit the best one
- Discrete time for everything $t \geq 1$, $t \in \mathbb{N}$
2. Multi-Armed Bandits [2 min]

Model

- Again $K \geq 2$ resources (e.g., channels), called arms
- Each time slot $t = 1, \ldots, T$, you must choose one arm, denoted $A(t) \in \{1, \ldots, K\}$
- You receive some reward $r(t) \sim \nu_k$ when playing $k = A(t)$
- **Goal:** maximize your sum reward $\sum_{t=1}^{T} r(t)$
- Hypothesis: rewards are stochastic, of mean μ_k. E.g., Bernoulli

Why is it famous?

Simple but good model for exploration/exploitation dilemma.
3. MAB algorithms [3 min]

- Main idea: index $I_k(t)$ to approximate the quality of each arm k
- First example: UCB algorithm
- Second example: Thompson Sampling
3.1 Multi-Armed Bandit algorithms

Often index based

- Keep index $I_k(t) \in \mathbb{R}$ for each arm $k = 1, \ldots, K$
- Always play $A(t) = \text{arg max } I_k(t)$
- $I_k(t)$ should represent our belief of the quality of arm k at time t

Example: "Follow the Leader"

- $X_k(t) := \sum_{s<t} r(s) 1(A(s) = k)$ sum reward from arm k
- $N_k(t) := \sum_{s<t} 1(A(s) = k)$ number of samples of arm k
- And use $I_k(t) = \hat{\mu}_k(t) := \frac{X_k(t)}{N_k(t)}$.
3.2 First example of algorithm

Upper Confidence Bounds algorithm (UCB)

- Instead of using $I_k(t) = \frac{X_k(t)}{N_k(t)}$, add an exploration term

$$I_k(t) = \frac{X_k(t)}{N_k(t)} + \sqrt{\frac{\alpha \log(t)}{2N_k(t)}}$$

Parameter α: tradeoff exploration vs exploitation

- Small α: focus more on exploitation
- Large α: focus more on exploration

💥 **Problem: how to choose "the good $\alpha" for a certain problem?**
3.3 Second example of algorithm

Thompson sampling (TS)

- Choose an initial belief on μ_k (uniform) and a prior p^t (e.g., a Beta prior on $[0, 1]$)
- At each time, update the prior p^{t+1} from p^t using Bayes theorem
- And use $I_k(t) \sim p^t$ as random index

Example with Beta prior, for binary rewards

- $p^t = \text{Beta}(1 + \text{nb successes}, 1 + \text{nb failures})$.
- Mean of $p^t = \frac{1+X_k(t)}{2+N_k(t)} \sim \hat{\mu}_k(t)$.

🌟 How to choose "the good prior" for a certain problem?
4. Aggregation of MAB algorithms [3 min]

Problem

- How to choose which algorithm to use?
- But also... Why commit to one only algorithm?

Solutions

- Offline benchmarks?
- Or online selections from a pool of algorithms?

→ Aggregation?

Not a new idea, studied from the 90s in the ML community.

- Also use online learning to select the best algorithm!
4.1 Basic idea for online aggregation

If you have \(\mathcal{A}_1, \ldots, \mathcal{A}_N \) different algorithms

- At time \(t = 0 \), start with a uniform distribution \(\pi^0 \) on \(\{1, \ldots, N\} \) (to represent the trust in each algorithm)
- At time \(t \), choose \(a^t \sim \pi^t \), then play with \(\mathcal{A}_{a^t} \)
- Compute next distribution \(\pi^{t+1} \) from \(\pi^t \):
 - increase \(\pi_{a^t}^{t+1} \) if choosing \(\mathcal{A}_{a^t} \) gave a good reward
 - or decrease it otherwise

Problems

1. How to increase \(\pi_{a^t}^{t+1} \) ?
2. What information should we give to which algorithms?
4.2 Overview of the \textit{Exp4} aggregation algorithm

For rewards in $r(t) \in [-1, 1]$.

- Use π^t to choose randomly the algorithm to trust, $a^t \sim \pi^t$
- Play its decision, $A_{\text{aggr}}(t) = A_{a^t}(t)$, receive reward $r(t)$
- And give feedback of observed reward $r(t)$ only to this one
- Increase or decrease $\pi_{a^t}^t$ using an exponential weight:

$$
\pi_{a^t}^{t+1} := \pi_{a^t}^t \times \exp \left(\eta_t \times \frac{r(t)}{\pi_{a^t}^t} \right).
$$

- Renormalize π^{t+1} to keep a distribution on $\{1, \ldots, N\}$
- Use a sequence of decreasing learning rate $\eta_t = \frac{\log(N)}{t \times K}$

(cooling scheme, $\eta_t \to 0$ for $t \to \infty$)
Use an unbiased estimate of the rewards

Using directly $r(t)$ to update trust probability yields a biased estimator

- So we use instead $\hat{r}(t) = \frac{r(t)}{\pi^t}$ if we trusted algorithm A_a
- This way

$$\mathbb{E}[\hat{r}(t)] = \sum_{a=1}^{N} \mathbb{P}(a^t = a) \mathbb{E}[r(t)/\pi^t_a]$$

$$= \mathbb{E}[r(t)] \sum_{a=1}^{N} \frac{\mathbb{P}(a^t = a)}{\pi^t_a} = \mathbb{E}[r(t)]$$
4.3 Our Aggregator aggregation algorithm

Improves on Exp4 by the following ideas:

- First let each algorithm vote for its decision A^t_1, \ldots, A^t_N

- Choose arm $A^{\text{aggr}}(t) \sim p^{t+1}_j := \sum_{a=1}^N \pi^t_a 1(A^t_a = j)$

- Update trust for each of the trusted algorithm, not only one
 (i.e., if $A^t_a = A^t_{\text{aggr}}$)
 \rightarrow faster convergence

- Give feedback of reward $r(t)$ to each algorithm!
 (and not only the one trusted at time t)
 \rightarrow each algorithm have more data to learn from
5. Some illustrations [3 min]

- Artificial simulations of stochastic bandit problems
- Bernoulli bandits but not only
- Pool of different algorithms (UCB, Thompson Sampling etc)
- Compared with other state-of-the-art algorithms for expert aggregation (Exp4, CORRAL, LearnExp)
- What is plotted it the regret for problem of means μ_1, \ldots, μ_K:

\[
R_T^\mu(A) = \max_k (T \mu_k) - \sum_{t=1}^{T} \mathbb{E}[r(t)]
\]

- Regret is known to be lower-bounded by $C(\mu) \log(T)$
- and upper-bounded by $C'(\mu) \log(T)$ for efficient algorithms
On a simple Bernoulli problem

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: \(B(0.1), B(0.2), B(0.3), B(0.4), B(0.5), B(0.6), B(0.7), B(0.8), B(0.9) \)
On a "hard" Bernoulli problem

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: \([B(0.01), B(0.02), B(0.3), B(0.4), B(0.5), B(0.6), B(0.795), B(0.8), B(0.805)]^*\)

Lai & Robbins lower bound = \(101 \log(T)\)
On a mixed problem

Cumulated regrets for different bandit algorithms, averaged 1000 times
9 arms: \([B(0,1), G(0,1,0.05), \text{Exp}(10,1), B(0.5), G(0.5,0.05), \text{Exp}(1.5,1), B(0.9)^*, G(0.9,0.06)^*, \text{Exp}(0.215,1)^*] \)
Conclusion (1/2)

- Online learning can be a powerful tool for Cognitive Radio, and many other real-world applications
- Many formulation exist, a simple one is the Multi-Armed Bandit
- Many algorithms exist, to tackle different situations
- It's hard to know beforehand which algorithm is efficient for a certain problem...
- Online learning can also be used to select *on the run* which algorithm to prefer, for a specific situation!
Conclusion (2/2)

- Our algorithm **Aggregator** is efficient and easy to implement.
- For N algorithms A_1, \ldots, A_N, it costs $O(N)$ memory, and $O(N)$ extra computation time at each time step.
- For stochastic bandit problem, it outperforms empirically the other state-of-the-arts (Exp4, CORRAL, LearnExp).

See our paper

HAL.Inria.fr/hal-01705292

See our code for experimenting with bandit algorithms

Python library, open source at SMPyBandits.GitHub.io

Thanks for listening!