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Introduction
Cognitive Radio (CR) is known for being one of
the possible solution to tackle the spectrum scarcity issue

Opportunistic Spectrum Access (OSA) is a good model
for CR problems in licensed bands

Online learning strategies, mainly using multi-armed bandits (MAB)
algorithms, were recently proved to be efficient  [Jouini 2�1�] 

 But there are many different MAB algorithms…
which one should you choose in practice?

⟹ we propose to use an online learning algorithm to also decide
which algorithm to use, to be more robust and adaptive to unknown
environments.
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 Outline
1. Opportunistic Spectrum Access

2. Multi-Armed Bandits
3. MAB algorithms
4. Aggregation of MAB algorithms
5. Illustration

Please 

Ask questions at the end if you want!
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1. Opportunistic Spectrum Access
Spectrum scarcity is a well-known problem

Different range of solutions…
Cognitive Radio is one of them
Opportunistic Spectrum Access is a kind of cognitive radio
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Communication & interaction model

 Primary users are occupying K  radio channels

 Secondary users can sense and exploit free channels:
want to explore the channels, and learn to exploit the best one

Discrete time for everything t ≥ 1, t ∈ N
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2. Multi-Armed Bandits

Model

Again K ≥ 2 resources (e.g., channels), called arms

Each time slot t = 1,… ,T , you must choose one arm, denoted 
A(t) ∈ {1,… ,K}

You receive some reward r(t) ∼ ν  when playing k = A(t)

Goal: maximize your sum reward r(t), or expected E[r(t)]

Hypothesis: rewards are stochastic, of mean μ . E.g., Bernoulli

Why is it famous?

Simple but good model for exploration/exploitation dilemma.

k

t=1
∑
T

t=1
∑
T

k
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3. MAB algorithms
Main idea: index I (t) to approximate the quality of each arm k

First example: UCB algorithm

Second example: Thompson Sampling

k
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3.1 Multi-Armed Bandit algorithms
Often index based

Keep index I (t) ∈ R for each arm k = 1,… ,K

Always play A(t) = argmax I (t)

I (t) should represent our belief of the quality of arm k at time t

Example: "Follow the Leader"

X (t) := r(s)1(A(s) = k) sum reward from arm k

N (t) := 1(A(s) = k) number of samples of arm k

And use I (t) = (t) := .

k
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3.2 First example of algorithm (22) 
Upper Confidence Bounds algorithm (UCB)

Instead of using I (t) = , add an exploration term

I (t) = +

Parameter α: tradeoff exploration vs exploitation

Small α: focus more on exploitation

Large α: focus more on exploration

 Problem: how to choose "the good α" for a certain problem?

k N (t)k

X (t)k

k
N (t)k

X (t)k √
2N (t)k

α log(t)
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3.3 Second example of algorithm (1933) 
Thompson sampling (TS)

Choose an initial belief on μ  (uniform) and a prior p  (e.g., a Beta
prior on [0, 1])
At each time, update the prior p  from p  using Bayes theorem

And use I (t) ∼ p  as random index

Example with Beta prior, for binary rewards

p = Beta(1 + nb successes, 1 + nb failures).

Mean of p  = ≃ (t).

 How to choose "the good prior" for a certain problem?

k
t

t+1 t

k
t

t

t
2+N (t)k

1+X (t)k μ̂k
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4. Aggregation of MAB algorithms

Problem

How to choose which algorithm to use?
But also… Why commit to one only algorithm?

Solutions

Offline benchmarks?
Or online selections from a pool of algorithms?

↪ Aggregation?

Not a new idea, studied from the 9s in the ML community.

Also use online learning to select the best algorithm!
11



4.1 Basic idea for online aggregation

If you have A ,… ,A  different algorithms

At time t = 0, start with a uniform distribution π  on {1,… ,N}
(to represent the trust in each algorithm)
At time t, choose a ∼ π , then play with A

Compute next distribution π  from π :
increase π  if choosing A  gave a good reward

or decrease it otherwise

Problems

1. How to increase π  ?

2. What information should we give to which algorithms?

1 N
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t t
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t+1 t

at
t+1

at

at
t+1
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4.2 Overview of the Exp4 aggregation algorithm (22)

For rewards in r(t) ∈ [−1, 1].

Use π  to choose randomly the algorithm to trust, a ∼ π

Play its decision, A (t) = A (t), receive reward r(t)

And give feedback of observed reward r(t) only to this one

Increase or decrease π  using an exponential weight:

π := π × exp η × .

Renormalize π  to keep a distribution on {1,… ,N}

Use a sequence of decreasing learning rate η =
(cooling scheme, η → 0 for t→∞)

t t t

aggr at
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Use an unbiased estimate of the rewards

Using directly r(t) to update trust probability yields a biased estimator

So we use instead (t) = r(t)/π  if we trusted algorithm A

This way

E[ (t)] = P(a = a)E[r(t)/π ]

= E[r(t)] = E[r(t)]

r̂ a
t

a

r̂
a=1

∑
N

t
a
t

a=1

∑
N

πa
t

P(a = a)t

Aggregation of MAB Learning Algorithms for OSA | 16th April 217 | By: Lilian Besson 14



4.3 Our Aggregator aggregation algorithm

Improves on Exp4 by the following ideas:

First let each algorithm vote for its decision A ,… ,A

Choose arm A (t) ∼ p := π 1(A = j)

Update trust for each of the trusted algorithm, not only one
(i.e., if A = A )
↪ faster convergence

Give feedback of reward r(t) to each algorithm!
(and not only the one trusted at time t)
↪ each algorithm have more data to learn from

1
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5. Some illustrations
Artificial simulations of stochastic bandit problems

Bernoulli bandits but not only (also Gaussian, Exponential)
Pool of different algorithms (UCB, Thompson Sampling etc)
Compared with other state-of-the-art algorithms for expert
aggregation (Exp4, CORRAL, LearnExp)
What is plotted it the regret for problem of means μ ,… ,μ  :

R (A) = (Tμ ) − E[r(t)]

Regret is known to be lower-bounded by C(μ) log(T )
and upper-bounded by C (μ) log(T ) for efficient algorithms

1 K

T
μ

k
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∑
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′

Aggregation of MAB Learning Algorithms for OSA | 16th April 217 | By: Lilian Besson 16



On a simple Bernoulli problem
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On a "hard" Bernoulli problem
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On a mixed problem
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Conclusion (1/2)
Online learning can be a powerful tool for Cognitive Radio, and
many other real-world applications

Many formulations exist, a simple one is the Multi-Armed Bandit
Many algorithms exist, to tackle different situations
It's hard to know before hand which algorithm is efficient for a
certain problem…

Online learning can also be used to select on the run
which algorithm to prefer, for a specific situation!

Aggregation of MAB Learning Algorithms for OSA | 16th April 217 | By: Lilian Besson 2



Conclusion (2/2)
Our algorithm Aggregator is efficient and easy to implement

For N  algorithms A ,… ,A , it costs O(N) memory,
and O(N) extra computation time at each time step

For stochastic bandit problem, it outperforms empirically
the other state-of-the-arts (Exp4, CORRAL, LearnExp).

See our paper:  HAL.Inria.fr/hal��17�5292 

See our code for experimenting with bandit algorithms

Python library, open source at  SMPyBandits.GitHub.io 

Thanks for listening !

1 N
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