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1. Introduction and motivation 1.a. Objective

Motivation

We control some communicating devices, they want to access to an access point.

Insert them in a crowded wireless network.
With a protocol slotted in both time and frequency.

Goal
Maintain a good Quality of Service.
With no centralized control as it costs network overhead.

How?
Devices can choose a different radio channel at each time
→֒ learn the best one with sequential algorithm!
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1. Introduction and motivation 1.b. Outline and references

Outline and reference

2 Our model: 3 different feedback levels
3 Regret lower bound

5 Two new multi-player decentralized algorithms
6 Upper bounds on regret for MCTopM
7 Experimental results

This is based on our latest article:

“Multi-Player Bandits Models Revisited”, Besson & Kaufmann.
arXiv:1711.02317
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2. Our model: 3 different feedback level 2.a. Our model

Our model

K radio channels (e.g., 10) (known)
Discrete and synchronized time t ≥ 1. Every time frame t is:

Figure 1: Protocol in time and frequency, with an Acknowledgement.

Dynamic device = dynamic radio reconfiguration

It decides each time the channel it uses to send each packet.
It can implement a simple decision algorithm.
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2. Our model: 3 different feedback level 2.b. With or without sensing

Our model
“Easy” case

M ≤ K devices always communicate and try to access the network,
independently without centralized supervision,
Background traffic is i.i.d..

Two variants : with or without sensing

1 With sensing: Device first senses for presence of Primary Users (background
traffic), then use Ack to detect collisions.

Model the “classical” Opportunistic Spectrum Access problem. Not exactly suited
for Internet of Things, but can model ZigBee, and can be analyzed mathematically...
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Our model
“Easy” case

M ≤ K devices always communicate and try to access the network,
independently without centralized supervision,
Background traffic is i.i.d..

Two variants : with or without sensing

1 With sensing: Device first senses for presence of Primary Users (background
traffic), then use Ack to detect collisions.

Model the “classical” Opportunistic Spectrum Access problem. Not exactly suited
for Internet of Things, but can model ZigBee, and can be analyzed mathematically...

2 Without sensing: same background traffic, but cannot sense, so only Ack is
used. More suited for “IoT” networks like LoRa or SigFox (Harder to analyze
mathematically.)
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2. Our model: 3 different feedback level 2.c. Background traffic, and rewards

Background traffic, and rewards

i.i.d. background traffic

K channels, modeled as Bernoulli (0/1) distributions of mean µk =
background traffic from Primary Users, bothering the dynamic devices,
M devices, each uses channel Aj(t) ∈ {1, . . . , K} at time t.

Rewards

rj(t) := YAj(t),t × ✶(Cj(t)) = ✶(uplink & Ack)

with sensing information ∀k, Yk,t
iid
∼ Bern(µk) ∈ {0, 1},

collision for device j : Cj(t) = ✶(alone on arm Aj(t)).
→֒ combined binary reward but not from two Bernoulli!
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2. Our model: 3 different feedback level 2.d. Different feedback levels

3 feedback levels

rj(t) := YAj(t),t × ✶(Cj(t))

1 “Full feedback”: observe both YAj(t),t and Cj(t) separately,
→֒ Not realistic enough, we don’t focus on it.

✶
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→֒ Not realistic enough, we don’t focus on it.

2 “Sensing”: first observe YAj(t),t, then Cj(t) only if YAj(t),t 6= 0,
→֒ Models licensed protocols (ex. ZigBee), our main focus.

3 “No sensing”: observe only the combined YAj(t),t × ✶(Cj(t)),
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2. Our model: 3 different feedback level 2.d. Different feedback levels

3 feedback levels

rj(t) := YAj(t),t × ✶(Cj(t))

1 “Full feedback”: observe both YAj(t),t and Cj(t) separately,
→֒ Not realistic enough, we don’t focus on it.

2 “Sensing”: first observe YAj(t),t, then Cj(t) only if YAj(t),t 6= 0,
→֒ Models licensed protocols (ex. ZigBee), our main focus.

3 “No sensing”: observe only the combined YAj(t),t × ✶(Cj(t)),
→֒ Unlicensed protocols (ex. LoRaWAN), harder to analyze !

But all consider the same instantaneous reward rj(t).
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2. Our model: 3 different feedback level 2.e. Goal

Goal
Problem

Goal : minimize packet loss ratio (= maximize nb of received Ack) in a finite-space
discrete-time Decision Making Problem.
Solution ? Multi-Armed Bandit algorithms, decentralized and used
independently by each dynamic device.
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2. Our model: 3 different feedback level 2.e. Goal

Goal
Problem

Goal : minimize packet loss ratio (= maximize nb of received Ack) in a finite-space
discrete-time Decision Making Problem.
Solution ? Multi-Armed Bandit algorithms, decentralized and used
independently by each dynamic device.

Decentralized reinforcement learning optimization!

Max transmission rate ≡ max cumulated rewards max
algorithm A

T∑
t=1

M∑
j=1

rj(t).

Each player wants to maximize its cumulated reward,
With no central control, and no exchange of information,
Only possible if : each player converges to one of the M best arms,
orthogonally (without collisions).
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2. Our model: 3 different feedback level 2.f. Centralized regret

Centralized regret
A measure of success

Not the network throughput or collision probability,
We study the centralized (expected) regret:

RT (µ, M, ρ) :=

(
M∑

k=1

µ∗

k

)
T − Eµ




T∑

t=1

M∑

j=1

rj(t)



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

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Two directions of analysis

Clearly RT = O(T ), but we want a sub-linear regret, as small as possible!
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Two directions of analysis

Clearly RT = O(T ), but we want a sub-linear regret, as small as possible!
How good a decentralized algorithm can be in this setting?
→֒ Lower Bound on regret, for any algorithm !
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2. Our model: 3 different feedback level 2.f. Centralized regret

Centralized regret
A measure of success

Not the network throughput or collision probability,
We study the centralized (expected) regret:

RT (µ, M, ρ) :=

(
M∑

k=1

µ∗

k

)
T − Eµ




T∑

t=1

M∑

j=1

rj(t)




Two directions of analysis

Clearly RT = O(T ), but we want a sub-linear regret, as small as possible!
How good a decentralized algorithm can be in this setting?
→֒ Lower Bound on regret, for any algorithm !
How good is my decentralized algorithm in this setting?
→֒ Upper Bound on regret, for one algorithm !
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3. Lower bound

Lower bound

1 Decomposition of regret in 3 terms,

2 Asymptotic lower bound of one term,

3 And for regret,

4 Sketch of proof,

5 Illustration.
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3. Lower bound 3.a. Lower bound on regret

Decomposition on regret
Decomposition

For any algorithm, decentralized or not, we have
RT (µ, M, ρ) =

∑

k∈M -worst

(µ∗

M − µk)Eµ[Tk(T )]

+
∑

k∈M -best

(µk − µ∗

M ) (T − Eµ[Tk(T )]) +

K∑

k=1

µkEµ[Ck(T )].

Small regret can be attained if. . .
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3. Lower bound 3.a. Lower bound on regret

Lower bound on regret
Lower bound
For any algorithm, decentralized or not, we have

RT (µ, M, ρ) ≥
∑

k∈M -worst

(µ∗

M − µk)Eµ[Tk(T )]

Small regret can be attained if. . .
1 Devices can quickly identify the bad arms M -worst, and not play them too

much (number of sub-optimal selections),
2 Devices can quickly identify the best arms, and most surely play them (number

of optimal non-selections),
3 Devices can use orthogonal channels (number of collisions).
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3. Lower bound 3.a. Lower bound on regret

Asymptotic Lower Bound on regret I

Theorem 1 [Besson & Kaufmann, 2017]
Sub-optimal arms selections are lower bounded asymptotically,

∀ player j, bad arm k, lim inf
T →+∞

Eµ[T j
k (T )]

log T
≥

1

kl(µk, µ∗

M)
,

Where kl(x, y) := x log( x

y
) + (1 − x) log( 1−x

1−y
) is the binary Kullback-Leibler divergence.

Proof: using technical information theory tools (Kullback-Leibler divergence,
change of distributions). Ref: [Garivier et al, 2016]
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3. Lower bound 3.a. Lower bound on regret

Asymptotic Lower Bound on regret II

Theorem 2 [Besson & Kaufmann, 2017]
For any uniformly efficient decentralized policy, and any non-degenerated problem µ,

lim inf
T →+∞

RT (µ, M, ρ)

log(T )
≥ M ×


 ∑

k∈M -worst

(µ∗

M − µk)

kl(µk, µ∗

M )


 .
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3. Lower bound 3.a. Lower bound on regret

Asymptotic Lower Bound on regret II

Theorem 2 [Besson & Kaufmann, 2017]
For any uniformly efficient decentralized policy, and any non-degenerated problem µ,

lim inf
T →+∞

RT (µ, M, ρ)

log(T )
≥ M ×


 ∑

k∈M -worst

(µ∗

M − µk)

kl(µk, µ∗

M )


 .

Remarks
The centralized multiple-play lower bound is the same without the M
multiplicative factor. . . Ref: [Anantharam et al, 1987]

→֒ “price of non-coordination” = M = nb of player?
Improved state-of-the-art lower bound, but still not perfect: collisions should
also be controlled!
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Illustration of the Lower Bound on regret

0 2000 4000 6000 8000 10000
Time steps t=1. . T, horizon T=10000, 6 players: 6×  RhoRand-KLUCB
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Multi-players M=6 : Cumulated centralized regret, averaged 1000 times
9 arms: [B(0.1), B(0.2), B(0.3), B(0.4) ∗ , B(0.5) ∗ , B(0.6) ∗ , B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

Cumulated centralized regret
(a) term: Pulls of 3 suboptimal arms (lower-bounded)
(b) term: Non-pulls of 6 optimal arms
(c) term: Weighted count of collisions
Our lower-bound = 48.8 log(t)

Anandkumar et al.'s lower-bound = 15 log(t)

Centralized lower-bound = 8.14 log(t)

Figure 2: Any such lower bound is very asymptotic, usually not satisfied for small horizons. We
can see the importance of the collisions!



4. Single-player MAB algorithms : UCB1 , kl-UCB

Single-player MAB algorithms

1 Index-based MAB deterministic policies,

2 Upper Confidence Bound algorithm : UCB1,

3 Kullback-Leibler UCB algorithm : kl-UCB.
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4. Single-player MAB algorithms : UCB1 , kl-UCB 4.a. Upper Confidence Bound algorithm : UCB1

Upper Confidence Bound algorithm (UCB1)
1 For the first K steps (t = 1, . . . , K), try each channel once.
2 Then for the next steps t > K :

T j
k (t) :=

t∑
s=1

✶(Aj(s) = k) selections of channel k,

Sj
k(t) :=

t∑
s=1

Yk(s)✶(Aj(s) = k) sum of sensing information.
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Upper Confidence Bound algorithm (UCB1)
1 For the first K steps (t = 1, . . . , K), try each channel once.
2 Then for the next steps t > K :

T j
k (t) :=

t∑
s=1

✶(Aj(s) = k) selections of channel k,

Sj
k(t) :=

t∑
s=1

Yk(s)✶(Aj(s) = k) sum of sensing information.

Compute the index gj
k(t) :=

Sj
k(t)

T j
k (t)︸ ︷︷ ︸

Empirical Mean µ̂k(t)

+

√√√√ log(t)

2 T j
k (t)

,

︸ ︷︷ ︸
Upper Confidence Bound
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4. Single-player MAB algorithms : UCB1 , kl-UCB 4.a. Upper Confidence Bound algorithm : UCB1

Upper Confidence Bound algorithm (UCB1)
1 For the first K steps (t = 1, . . . , K), try each channel once.
2 Then for the next steps t > K :

T j
k (t) :=

t∑
s=1

✶(Aj(s) = k) selections of channel k,

Sj
k(t) :=

t∑
s=1

Yk(s)✶(Aj(s) = k) sum of sensing information.

Compute the index gj
k(t) :=

Sj
k(t)

T j
k (t)︸ ︷︷ ︸

Empirical Mean µ̂k(t)

+

√√√√ log(t)

2 T j
k (t)

,

︸ ︷︷ ︸
Upper Confidence Bound

Choose channel Aj(t) = arg max
k

gj
k(t),

Update T j
k (t + 1) and Sj

k(t + 1).

References: [Lai & Robbins, 1985], [Auer et al, 2002], [Bubeck & Cesa-Bianchi, 2012]
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4. Single-player MAB algorithms : UCB1 , kl-UCB 4.b. Kullback-Leibler UCB algorithm : kl-UCB

Kullback-Leibler UCB algorithm (kl-UCB)

1 For the first K steps (t = 1, . . . , K), try each channel once.
2 Then for the next steps t > K :

T j
k (t) :=

t∑
s=1

✶(Aj(s) = k) selections of channel k,

Sj
k(t) :=

t∑
s=1

Yk(s)✶(Aj(s) = k) sum of sensing information.

Compute the index gj
k(t) := sup

q∈[a,b]

{
q : kl

(
S

j

k
(t)

T
j

k
(t)

, q

)
≤ log(t)

T
j

k
(t)

}
,

Choose channel Aj(t) = arg max
k

gj
k(t),

Update T j
k (t + 1) and Sj

k(t + 1).
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4. Single-player MAB algorithms : UCB1 , kl-UCB 4.b. Kullback-Leibler UCB algorithm : kl-UCB

Kullback-Leibler UCB algorithm (kl-UCB)

1 For the first K steps (t = 1, . . . , K), try each channel once.
2 Then for the next steps t > K :

T j
k (t) :=

t∑
s=1

✶(Aj(s) = k) selections of channel k,

Sj
k(t) :=

t∑
s=1

Yk(s)✶(Aj(s) = k) sum of sensing information.

Compute the index gj
k(t) := sup

q∈[a,b]

{
q : kl

(
S

j

k
(t)

T
j

k
(t)

, q

)
≤ log(t)

T
j

k
(t)

}
,

Choose channel Aj(t) = arg max
k

gj
k(t),

Update T j
k (t + 1) and Sj

k(t + 1).

Why bother? kl-UCB is more efficient than UCB1, and asymptotically optimal for
single-player stochastic bandit. References: [Garivier & Cappé, 2011], [Cappé & Garivier & Maillard & Munos & Stoltz, 2013]
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5. Multi-player decentralized algorithms

Multi-player decentralized algorithms

1 Common building blocks of previous algorithms,

2 First proposal: RandTopM,

3 Second proposal: MCTopM,

4 Algorithm and illustration.
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5. Multi-player decentralized algorithms 5.a. State-of-the-art MP algorithms

Algorithms for this easier model

Building blocks : separate the two aspects
1 MAB policy to learn the best arms (use sensing YAj(t),t),
2 Orthogonalization scheme to avoid collisions (use collision indicators Cj(t)).
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Many different proposals for decentralized learning policies

“State-of-the-art”: RhoRand policy and variants, [Anandkumar et al, 2011]
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5. Multi-player decentralized algorithms 5.a. State-of-the-art MP algorithms

Algorithms for this easier model

Building blocks : separate the two aspects
1 MAB policy to learn the best arms (use sensing YAj(t),t),
2 Orthogonalization scheme to avoid collisions (use collision indicators Cj(t)).

Many different proposals for decentralized learning policies

“State-of-the-art”: RhoRand policy and variants, [Anandkumar et al, 2011]

Recent approaches: MEGA and Musical Chair. [Avner & Mannor, 2015], [Shamir et al, 2016]

Our proposals: [Besson & Kaufmann, 2017]

RandTopM and MCTopM are sort of mixes between RhoRand and Musical Chair,
using UCB or more efficient index policies (kl-UCB).
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5. Multi-player decentralized algorithms 5.b. RandTopM algorithm

A first decentralized algorithm (naive)

1 Let Aj(1) ∼ U({1, . . . , K}) and Cj(1) = False

2 for t = 1, . . . , T − 1 do

3 if Aj(t) /∈ M̂ j(t) or Cj(t) then

4 Aj(t + 1) ∼ U
(
M̂ j(t)

)
// randomly switch

5 else
6 Aj(t + 1) = Aj(t) // stays on the same arm

7 end

8 Play arm Aj(t + 1), get new observations (sensing and collision),

9 Compute the indices gj
k(t + 1) and set M̂ j(t + 1) for next step.

10 end

Algorithm 1: A first decentralized learning policy (for a fixed underlying index policy gj).
The set M̂ j(t) is the M best arms according to indexes gj(t).
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5. Multi-player decentralized algorithms 5.b. RandTopM algorithm

RandTopM algorithm
1 Let Aj(1) ∼ U({1, . . . , K}) and Cj(1) = False

2 for t = 1, . . . , T − 1 do

3 if Aj(t) /∈ M̂ j(t) then
4 if Cj(t) then // collision

5 Aj(t + 1) ∼ U
(
M̂ j(t)

)
// randomly switch

6 else // aim arm with smaller UCB at t − 1

7 Aj(t + 1) ∼ U
(
M̂ j(t) ∩

{
k : gj

k(t − 1) ≤ gj

Aj(t)(t − 1)
})

8 end

9 else
10 Aj(t + 1) = Aj(t) // stays on the same arm

11 end

12 Play arm Aj(t + 1), get new observations (sensing and collision),

13 Compute the indices gj
k(t + 1) and set M̂ j(t + 1) for next step.

14 end
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MCTopM algorithm
1 Let Aj(1) ∼ U({1, . . . , K}) and Cj(1) = False and sj(1) = False

2 for t = 1, . . . , T − 1 do

3 if Aj(t) /∈ M̂ j(t) then // transition (3) or (5)

4 Aj(t + 1) ∼ U
(
M̂ j(t) ∩

{
k : gj

k(t − 1) ≤ gj

Aj(t)(t − 1)
})

// not empty

5 sj(t + 1) = False // aim arm with smaller UCB at t − 1

6 else if Cj(t) and sj(t) then // collision and not fixed

7 Aj(t + 1) ∼ U
(
M̂ j(t)

)
// transition (2)

8 sj(t + 1) = False

9 else // transition (1) or (4)
10 Aj(t + 1) = Aj(t) // stay on the previous arm

11 sj(t + 1) = True // become or stay fixed on a “chair”

12 end

13 Play arm Aj(t + 1), get new observations (sensing and collision),

14 Compute the indices gj
k(t + 1) and set M̂ j(t + 1) for next step.

15 end



5. Multi-player decentralized algorithms 5.c. MCTopM algorithm

MCTopM algorithm

(0) Start t = 0

Not fixed, sj(t)Fixed, sj(t)

(1) Cj(t), Aj(t) ∈ M̂ j(t)

(2)

Cj(t), Aj(t) ∈ M̂ j(t)

(3) Aj(t) /∈ M̂ j(t)

(4)

Aj(t) ∈ M̂ j(t)

(5) Aj(t) /∈ M̂ j(t)
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6. Regret upper bound

Regret upper bound

1 Theorems,

2 Remarks,

3 Idea of the proof.
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6. Regret upper bound 6.a. Theorem for MCTopM with kl-UCB

Regret upper bound for MCTopM

Theorem 3 [Besson & Kaufmann, 2017]
One term is controlled by the two others:

∑

k∈M -best

(µk−µ∗

M ) (T − Eµ[Tk(T )]) ≤ (µ∗

1−µ∗

M )


 ∑

k∈M -worst

Eµ[Tk(T )] +
∑

k∈M -best

Eµ[Ck(T )]




So only need to work on both sub-optimal selections and collisions.
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6. Regret upper bound 6.a. Theorem for MCTopM with kl-UCB

Regret upper bound for MCTopM

Theorem 3 [Besson & Kaufmann, 2017]
One term is controlled by the two others:

∑

k∈M -best

(µk−µ∗

M ) (T − Eµ[Tk(T )]) ≤ (µ∗

1−µ∗

M )


 ∑

k∈M -worst

Eµ[Tk(T )] +
∑

k∈M -best

Eµ[Ck(T )]




So only need to work on both sub-optimal selections and collisions.

Theorem 4 [Besson & Kaufmann, 2017]
If all M players use MCTopM with kl-UCB:

∀µ, ∃GM,µ, RT (µ, M, ρ) ≤ GM,µ log(T ) + o(log T ) .
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6. Regret upper bound 6.a. Theorem for MCTopM with kl-UCB

Regret upper bound for MCTopM

How?
Control both terms, both are logarithmic at finite horizon:

Suboptimal selections with the “classical analysis” on kl-UCB indexes.
Collisions are also controlled with inequalities on the kl-UCB indexes. . .
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6. Regret upper bound 6.a. Theorem for MCTopM with kl-UCB

Regret upper bound for MCTopM

How?
Control both terms, both are logarithmic at finite horizon:

Suboptimal selections with the “classical analysis” on kl-UCB indexes.
Collisions are also controlled with inequalities on the kl-UCB indexes. . .

Remarks
The constant GM,µ scales as M3, way better than RhoRand’s constant scaling
as M

(
2M−1

M

)
,

We also minimize the number of channel switching: interesting as changing arm
costs energy in radio systems,

Lilian Besson (CentraleSupélec & Inria) Multi-Player Bandits Revisited SequeL Seminar - 22/12/17 26 / 41



6. Regret upper bound 6.a. Theorem for MCTopM with kl-UCB

Regret upper bound for MCTopM

How?
Control both terms, both are logarithmic at finite horizon:

Suboptimal selections with the “classical analysis” on kl-UCB indexes.
Collisions are also controlled with inequalities on the kl-UCB indexes. . .

Remarks
The constant GM,µ scales as M3, way better than RhoRand’s constant scaling
as M

(
2M−1

M

)
,

We also minimize the number of channel switching: interesting as changing arm
costs energy in radio systems,
For the suboptimal selections, we match our lower bound !
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6. Regret upper bound 6.b. Sketch of the proof

Sketch of the proof

1 Bound the expected number of collisions by M times the number of collisions
for non-sitted players,
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6. Regret upper bound 6.b. Sketch of the proof

Sketch of the proof

1 Bound the expected number of collisions by M times the number of collisions
for non-sitted players,

2 Bound the expected number of transitions of type (3) and (5), by O(log T )
using the kl-UCB indexes and the forced choice of the algorithm:
gj

k(t − 1) ≤ gj
k′(t − 1), and gj

k(t) > gj
k′(t) when switching from k′ to k,
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6. Regret upper bound 6.b. Sketch of the proof

Sketch of the proof

1 Bound the expected number of collisions by M times the number of collisions
for non-sitted players,

2 Bound the expected number of transitions of type (3) and (5), by O(log T )
using the kl-UCB indexes and the forced choice of the algorithm:
gj

k(t − 1) ≤ gj
k′(t − 1), and gj

k(t) > gj
k′(t) when switching from k′ to k,

3 Bound the expected length of a sequence in the non-sitted state by a constant,
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6. Regret upper bound 6.b. Sketch of the proof

Sketch of the proof

1 Bound the expected number of collisions by M times the number of collisions
for non-sitted players,

2 Bound the expected number of transitions of type (3) and (5), by O(log T )
using the kl-UCB indexes and the forced choice of the algorithm:
gj

k(t − 1) ≤ gj
k′(t − 1), and gj

k(t) > gj
k′(t) when switching from k′ to k,

3 Bound the expected length of a sequence in the non-sitted state by a constant,
4 So most of the times (O(T − log T )), players are sitted, and no collision

happens when they are all sitted!

→֒ See our paper for details!
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6. Regret upper bound 6.b. Sketch of the proof

Sketch of the proof

(0) Start t = 0

Not fixed, sj(t)Fixed, sj(t)

(1) Cj(t), Aj(t) ∈ M̂ j(t)

(2)

Cj(t), Aj(t) ∈ M̂ j(t)

(3) Aj(t) /∈ M̂ j(t)

(4)

Aj(t) ∈ M̂ j(t)

(5) Aj(t) /∈ M̂ j(t)

– Time in sitted state is O(log T ), and collisions are ≤ M collisions in sitted state
=⇒ O(log T ) collisions.
– Suboptimal selections is O(log T ) also as Aj(t + 1) is always selected in M̂ j(t) which is
M -best at least O(T − log T ) (in average).
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7. Experimental results

Experimental results

Experiments on Bernoulli problems µ ∈ [0, 1]K .

1 Illustration of regret for a single problem and M = K,

2 Regret for uniformly sampled problems and M < K,

3 Logarithmic number of collisions,

4 Logarithmic number of arm switches,

5 Fairness?
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Constant regret if M = K
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Multi-players M=9 : Cumulated centralized regret, averaged 200 times
9 arms: [B(0.1) ∗ , B(0.2) ∗ , B(0.3) ∗ , B(0.4) ∗ , B(0.5) ∗ , B(0.6) ∗ , B(0.7) ∗ , B(0.8) ∗ , B(0.9) ∗ ]

9×  RandTopM-KLUCB
9×  MCTopM-KLUCB
9×  Selfish-KLUCB
9×  RhoRand-KLUCB
Our lower-bound = 0 log(t)

Anandkumar et al.'s lower-bound = 0 log(t)

Centralized lower-bound = 0 log(t)

Figure 3: Regret, M = 9 players, K = 9 arms, horizon T = 10000, 200 repetitions. Only
RandTopM and MCTopM achieve constant regret in this saturated case (proved).



Illustration of regret of different algorithms
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Multi-players M=6 : Cumulated centralized regret, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

6×  RandTopM-KLUCB
6×  MCTopM-KLUCB
6×  Selfish-KLUCB
6×  RhoRand-KLUCB

Figure 4: Regret, M = 6 players, K = 9 arms, horizon T = 5000, against 500 problems µ uniformly
sampled in [0, 1]K . Conclusion : RhoRand < RandTopM < Selfish < MCTopM in most cases.



Logarithmic number of collisions
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Multi-players M=6 : Cumulated number of collisions, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

6×  RandTopM-KLUCB
6×  MCTopM-KLUCB
6×  Selfish-KLUCB
6×  RhoRand-KLUCB

Figure 5: Cumulated number of collisions. Also RhoRand < RandTopM < Selfish < MCTopM.



Logarithmic number of arm switches

0 1000 2000 3000 4000 5000
Time steps t=1. . T, horizon T=5000, 

0

200

400

600

800

Cu
m

ul
at

ed
 n

um
be

r o
f s

wi
tc

he
s (

ch
an

ge
s o

f a
rm

s)

Multi-players M=6 : Total cumulated number of switches, averaged 500 times
9 arms: Bayesian MAB, Bernoulli with means on [0, 1]

6×  RandTopM-KLUCB
6×  MCTopM-KLUCB
6×  Selfish-KLUCB
6×  RhoRand-KLUCB

Figure 6: Cumulated number of arm switches. Again RhoRand < RandTopM < Selfish < MCTopM,
but no guarantee for RhoRand.



8. An heuristic, Selfish

An heuristic, Selfish

For the harder feedback model, without sensing.

1 An heuristic,

2 Problems with Selfish,

3 Illustration of failure cases.
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8. An heuristic, Selfish 8.a. Problems with Selfish

Selfish heuristic I

Selfish decentralized approach = device don’t use sensing:

Selfish

Use UCB1 (or kl-UCB) indexes on the (non i.i.d.) rewards rj(t) and not on the
sensing YAj(t)(t). Reference: [Bonnefoi & Besson et al, 2017]

Works fine. . .
More suited to model IoT networks,
Use less information, and don’t know the value of M : we expect Selfish to not
have stronger guarantees.
It works fine in practice!
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8. An heuristic, Selfish 8.a. Problems with Selfish

Selfish heuristic II

But why would it work?

Sensing feedback were i.i.d., so using UCB1 to learn the µk makes sense,
But collisions make the rewards not i.i.d. !
Adversarial algorithms should be more appropriate here,
But empirically, Selfish works much better with kl-UCB than, e.g., Exp3. . .

Works fine. . .

Except. . . when it fails drastically!
In small problems with M and K = 2 or 3, we found small probability of
failures (i.e., linear regret), and this prevents from having a generic upper
bound on regret for Selfish.
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Illustration of failing cases for Selfish

10 15 20 25 30 35
0

20

40

60

80

100

120

6 5 4

2×  RandTopM-KLUCB

0 1000 2000 3000 4000 5000 6000 7000
0

200

400

600

800

1000

17

2×  Selfish-KLUCB

10 15 20 25 30 35 40
0

20

40

60

80

100

120

140

2 1 2 1

2×  MCTopM-KLUCB

10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

2 2

2×  RhoRand-KLUCB

0.0 0.2 0.4 0.6 0.8 1.0
Regret value RT at the end of simulation, for T=5000

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f o
bs

er
va

tio
ns

, 1
00

0 r
ep

et
iti

on
s

Histogram of regrets for different multi-players bandit algorithms
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Figure 7: Regret for M = 2, K = 3, T = 5000, 1000 repetitions and µ = [0.1, 0.5, 0.9]. Axis x is for
regret (different scale for each), and Selfish have a small probability of failure (17/1000 cases of
RT ≫ log T ). The regret for the three other algorithms is very small for this “easy” problem.



9. Conclusion 9.a. Sum-up

Sum-up

Wait, what was the problem ?

MAB algorithms have guarantees for i.i.d. settings,
But here the collisions cancel the i.i.d. hypothesis. . .
Not easy to obtain guarantees in this mixed setting (“game theoretic”
collisions).
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9. Conclusion 9.a. Sum-up

Sum-up

Wait, what was the problem ?

MAB algorithms have guarantees for i.i.d. settings,
But here the collisions cancel the i.i.d. hypothesis. . .
Not easy to obtain guarantees in this mixed setting (“game theoretic”
collisions).

Theoretical results
With sensing (“OSA”), we obtained strong results: a lower bound, and an
order-optimal algorithm,
But without sensing (“IoT”), it is harder. . . our heuristic Selfish usually works
but can fail!
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9. Conclusion 9.b. Future work

Future work

Conclude the Multi-Player OSA analysis

Remove hypothesis that objects know M ,
Allow arrival/departure of objects,
Non-stationarity of background traffic etc.

Lilian Besson (CentraleSupélec & Inria) Multi-Player Bandits Revisited SequeL Seminar - 22/12/17 39 / 41



9. Conclusion 9.b. Future work

Future work

Conclude the Multi-Player OSA analysis

Remove hypothesis that objects know M ,
Allow arrival/departure of objects,
Non-stationarity of background traffic etc.

Extend to more objects M > K

Extend the theoretical analysis to the large-scale IoT model, first with sensing (e.g.,
models ZigBee networks), then without sensing (e.g., LoRaWAN networks).
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9. Conclusion 9.c. Thanks!

Conclusion I

In a wireless network with an i.i.d. background traffic in K channels,
M devices can use both sensing and acknowledgement feedback, to learn the
most free channels and to find orthogonal configurations.

We showed
Decentralized bandit algorithms can solve this problem,
We have a lower bound for any decentralized algorithm,
And we proposed an order-optimal algorithm, based on kl-UCB and an
improved Musical Chair scheme, MCTopM
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9. Conclusion 9.c. Thanks!

Conclusion II
But more work is still needed. . .

Theoretical guarantees are still missing for the “IoT” model (without
sensing), and can be improved (slightly) for the “OSA” model (with sensing).
Maybe study other emission models. . .
Implement and test this on real-world radio devices
→֒ demo (in progress) for the ICT 2018 conference!

Thanks!
Any question or idea ?
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