MAB Learning in IoT Networks

Learning helps even in non-stationary settings!

Lilian Besson Rémi Bonnefoi Émilie Kaufmann Christophe Moy Jacques Palicot

PhD Student in France Team SCEE, IETR, CentraleSupélec, Rennes & Team SequeL, CRIStAL, Inria, Lille

20-21 Sept - CROWNCOM 2017

We want

A lot of IoT devices want to access to a gateway of base station.

- Insert them in a **crowded wireless network**.
- With a protocol **slotted in time and frequency**.
- Each device has a **low duty cycle** (a few messages per day).

We want

A lot of IoT devices want to access to a gateway of base station.

- Insert them in a **crowded wireless network**.
- With a protocol **slotted in time and frequency**.
- Each device has a **low duty cycle** (a few messages per day).

Goal

- Maintain a good Quality of Service.
- Without centralized supervision!

We want

A lot of IoT devices want to access to a gateway of base station.

- Insert them in a **crowded wireless network**.
- With a protocol **slotted in time and frequency**.
- Each device has a **low duty cycle** (a few messages per day).

Goal

- Maintain a good Quality of Service.
- Without centralized supervision!

How?

Use learning algorithms: devices will learn on which frequency they should talk!

Lilian Besson (CentraleSupélec & Inria)

Outline

- Introduction and motivation
- 2 Model and hypotheses
- Saseline algorithms : to compare against naive and efficient centralized approaches
- Multi-Armed Bandit algorithms : UCB
- Section 2 Constraints Section 2 Constrain
- **6** Perspectives and future works
- Onclusion

Model

• Discrete time $t \ge 1$ and N_c radio channels (*e.g.*, 10)

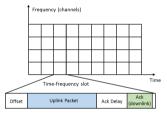


Figure 1: Protocol in time and frequency, with an Acknowledgement.

D dynamic devices try to access the network *independently S* = *S*₁ + ··· + *S*_{Nc} static devices occupy the network : *S*₁, ..., *S*_{Nc} in each channel

Lilian Besson (CentraleSupélec & Inria)

MAB Learning in IoT Networks

(known)

Hypotheses I

Emission model

 Each device has the same *low* emission probability: each step, each device sends a packet with probability *p*. (this gives a duty cycle proportional to 1/*p*)

Background traffic

- Each static device uses only one channel.
- Their repartition is fixed in time.

 \implies Background traffic, bothering the dynamic devices!

Hypotheses II

Dynamic radio reconfiguration

Each dynamic device decides the channel it uses to send every packet.
It has memory and computational capacity to implement basic decision algorithm.

Problem

- Goal : maximize packet loss ratio (= number of received Ack) in a finite-space discrete-time Decision Making Problem.
- Solution ? Multi-Armed Bandit algorithms, decentralized and used independently by each device.

A naive strategy : uniformly random access

- **Uniformly random access**: dynamic devices choose uniformly their channel in the pull of *N_c* channels.
- Natural strategy, dead simple to implement.

A naive strategy : uniformly random access

- **Uniformly random access**: dynamic devices choose uniformly their channel in the pull of *N_c* channels.
- Natural strategy, dead simple to implement.
- Simple analysis, in term of successful transmission probability (for every message from dynamic devices) :

$$\mathbb{P}(\text{success}|\text{sent}) = \sum_{i=1}^{N_c} \underbrace{(1 - p/N_c)^{D-1}}_{\text{No other dynamic device}} \times \underbrace{(1 - p)^{S_i}}_{\text{No static device}} \times \frac{1}{N_c}.$$

A naive strategy : uniformly random access

- **Uniformly random access**: dynamic devices choose uniformly their channel in the pull of *N_c* channels.
- Natural strategy, dead simple to implement.
- Simple analysis, in term of successful transmission probability (for every message from dynamic devices) :

$$\mathbb{P}(\text{success}|\text{sent}) = \sum_{i=1}^{N_c} \underbrace{(1 - p/N_c)^{D-1}}_{\text{No other dynamic device}} \times \underbrace{(1 - p)^{S_i}}_{\text{No static device}} \times \frac{1}{N_c}.$$

 Works fine only if all channels are similarly occupied, but it cannot learn to exploit the best (more free) channels.

Lilian Besson (CentraleSupélec & Inria)

Optimal centralized strategy I

If an oracle can decide to affect D_i dynamic devices to channel i, the successful transmission probability is:

$$\mathbb{P}(\text{success}|\text{sent}) = \sum_{i=1}^{N_c} \underbrace{(1-p)^{D_i-1}}_{D_i-1 \text{ others}} \times \underbrace{(1-p)^{S_i}}_{\text{No static device}} \times \underbrace{D_i/D}_{\text{Sent in channel }i}.$$

• The oracle has to solve this **optimization problem**:

$$\begin{cases} \underset{D_1,\dots,D_{N_c}}{\arg\max} & \sum_{i=1}^{N_c} D_i (1-p)^{S_i+D_i-1} \\ \text{such that} & \sum_{i=1}^{N_c} D_i = D \text{ and } D_i \ge 0, \ \forall 1 \le i \le N_c. \end{cases}$$

• We solved this quasi-convex optimization problem with *Lagrange multipliers*, only numerically.

Lilian Besson (CentraleSupélec & Inria)

Optimal centralized strategy II

Wery good performance, maximizing the transmission rate of all the *D* dynamic devices

But unrealistic

But not achievable in practice: no centralized oracle!

Let see *realistic decentralized approaches*

- $\hookrightarrow \text{Machine Learning } ? \\ \hookrightarrow \text{Reinforcement Learning } ? \\ \land Multi Armod Bandit !$
 - $\hookrightarrow \textit{Multi-Armed Bandit !}$

Multi-Armed Bandit formulation

A dynamic device tries to collect *rewards* when transmitting :

- it transmits following a Bernoulli process (probability *p* of transmitting at each time step τ),
- chooses a channel $A(\tau) \in \{1, \ldots, N_c\}$,
- if Ack (no collision) \implies reward $r_{A(\tau)} = 1$,
- if collision (no Ack) \implies reward $r_{A(\tau)} = 0$.

Multi-Armed Bandit formulation

A dynamic device tries to collect *rewards* when transmitting :

- it transmits following a Bernoulli process (probability *p* of transmitting at each time step *τ*),
- chooses a channel $A(\tau) \in \{1, \ldots, N_c\}$,
- if Ack (no collision) \implies reward $r_{A(\tau)} = 1$,
- if collision (no Ack) \implies reward $r_{A(\tau)} = 0$.

Reinforcement Learning interpretation

Maximize transmission rate \equiv maximize cumulated rewards

$$\max_{\text{algorithm }A} \sum_{\tau=1}^{\text{horizon}} r_{A(\tau)}.$$

Lilian Besson (CentraleSupélec & Inria)

Upper Confidence Bound algorithm (UCB₁)

A dynamic device keeps τ number of sent packets, $T_k(t)$ selections of channel k, $X_k(t)$ successful transmission in channel k.

For the first N_c steps (τ = 1,..., N_c), try each channel *once*.
 Then for the next steps t ≥ N_c:

• Compute the index
$$g_k(\tau) := \underbrace{\frac{X_k(\tau)}{N_k(\tau)}}_{\text{Mean } \widehat{\mu_k}(\tau)} + \underbrace{\sqrt{\frac{\log(\tau)}{2N_k(\tau)}}}_{\text{Upper Confidence Bound}}$$

• Choose channel $A(\tau) = \underset{k}{\arg \max} \underbrace{g_k(\tau)}_{k}$, Upper Confidence Bound
• Update $T_k(\tau + 1)$ and $X_k(\tau + 1)$.

References: [Lai & Robbins, 1985], [Auer et al, 2002], [Bubeck & Cesa-Bianchi, 2012]

Experimental setting

Simulation parameters

- $N_c = 10$ channels,
- S + D = 10000 devices in total,
- $p = 10^{-3}$ probability of emission,
- horizon = 10^5 time slots ($\simeq 100$ messages / device),
- The proportion of dynamic devices D/(S + D) varies,
- Various settings for (S_1, \ldots, S_{N_c}) static devices repartition.

What do we show

- After a short learning time, MAB algorithms are almost as efficient as the oracle solution.
- Never worse than the naive solution.
- Thompson sampling is even more efficient than UCB.

10% of dynamic devices

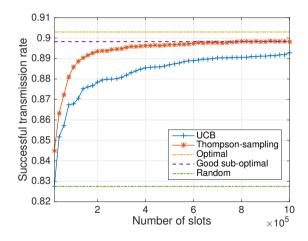


Figure 2: 10% of dynamic devices. 7% of gain.

Lilian Besson (CentraleSupélec & Inria)

30% of dynamic devices

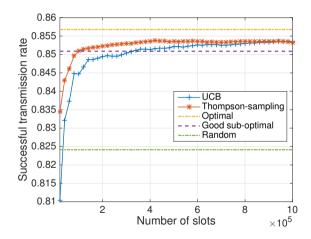


Figure 3: 30% of dynamic devices. 3% of gain but not much is possible.

Lilian Besson (CentraleSupélec & Inria)

Dependence on D/(S+D)

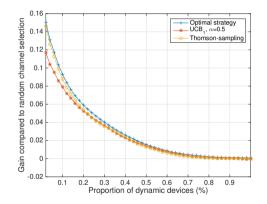


Figure 4: *Almost optimal*, for any proportion of dynamic devices, *after a short learning time*. Up-to 16% gain over the naive approach!

Lilian Besson (CentraleSupélec & Inria)

Perspectives

Theoretical results

- MAB algorithms have performance guarantees for *stochastic settings*,
- But here the collisions cancel the *i.i.d.* hypothesis,
- Not easy to obtain guarantees in this mixed setting (*i.i.d.* emission process, game theoretic collisions).

Perspectives

Theoretical results

- MAB algorithms have performance guarantees for stochastic settings,
- But here the collisions cancel the *i.i.d.* hypothesis,
- Not easy to obtain guarantees in this mixed setting (*i.i.d.* emission process, game theoretic collisions).

Real-world experimental validation ?

Real-world radio experiments will help to validate this.

In progress...

Other direction of future work

- More realistic emission model: maybe driven by number of packets in a whole day, instead of emission probability.
- Validate this on a *larger experimental scale*.

Conclusion

We showed numerically...

- After a learning period, MAB algorithms are as efficient as we could expect.
- Never worse than the naive solution.
- Thompson sampling is even more efficient than UCB.
- Simple algorithms are up-to 16% more efficient than the naive approach, and straightforward to apply.

But more work is still needed...

- Theoretical guarantees are still missing.
- Maybe study **other emission models**.
- And also implement this on **real-world radio devices**.

Thanks! Question?

Thompson Sampling : Bayesian approach

A dynamic device assumes a stochastic hypothesis on the background traffic, modeled as Bernoulli distributions.

- Rewards r_k(τ) are assumed to be *i.i.d.* samples from a Bernoulli distribution Bern(μ_k).
- A binomial Bayesian posterior is kept on the mean availability μ_k : Bin $(1 + X_k(\tau), 1 + N_k(\tau) - X_k(\tau))$.
- Starts with a *uniform* prior : $Bin(1,1) \sim U([0,1])$.
 - Each step $\tau \ge 1$, a sample is drawn from each posterior $i_k(t) \sim \text{Bin}(a_k(\tau), b_k(\tau))$,
 - 2 Choose channel $A(\tau) = \arg \max_{i_k} i_k(\tau)$,
 - **O** Update the posterior after receiving Ack or if collision.

References: [Thompson, 1933], [Kaufmann et al, 2012]