MAB Learning in IoT Networks
 Learning helps even in non-stationary settings!

Lilian Besson Rémi Bonnefoi
 Christophe Moy Émilie Kaufmann Jacques Palicot

PhD Student in France
Team SCEE, IETR, CentraleSupélec, Rennes
\& Team SequeL, CRIStAL, Inria, Lille

20-21 Sept - CROWNCOM 2017

We want

A lot of IoT devices want to access to a gateway of base station.

- Insert them in a possibly crowded wireless network.
- With a protocol slotted in time and frequency.
- Each device has a low duty cycle (a few message per day).

Goal

- Maintain a good Quality of Service.

■ Without centralized supervision!

How?

$■$ Use learning algorithms: devices will learn on which frequency they should talk!

Experimental setting

Simulation parameters

- $N_{c}=10$ channels,

■ $S+D=10000$ devices in total,
■ $p=10^{-3}$ probability of emission,
\square horizon $=10^{5}$ time slots ($\simeq 100$ messages / device),

- The proportion of dynamic devices $D /(S+D)$ varies,

■ Various settings for $\left(S_{1}, \ldots, S_{N_{c}}\right)$ static devices repartition.

What do we show

■ After a short learning time, MAB algorithm are almost as efficient as the oracle solution.

- Never worse than the naive solution.
- Thompson sampling is even more efficient than UCB.

Dependence on $D /(S+D)$

Figure 4: Almost optimal, for any proportion of dynamic devices, after a short learning time. Up-to 16% gain over the naive approach!

