MAB Learning in IoT Networks
Decentralized Multi-Player Multi-Arm Bandits

Lilian Besson
Advised by Christophe Moy Émilie Kaufmann

PhD Student
Team SCEE, IETR, CentraleSupélec, Rennes
& Team SequeL, CRIStAL, Inria, Lille

SCEE Seminar - 23 November 2017
Motivation: *Internet of Things* problem

A *lot* of IoT devices want to access to a single base station.

- Insert them in a possibly *crowded wireless network*.
- With a protocol *slotted in both time and frequency*.
- Each device has a *low duty cycle* (a few messages per day).
Motivation: *Internet of Things* problem

A lot of IoT devices want to access to a single base station.

- Insert them in a possibly crowded wireless network.
- With a protocol slotted in both time and frequency.
- Each device has a low duty cycle (a few messages per day).

Goal

- Maintain a good Quality of Service.
- **Without** centralized supervision!
Motivation: *Internet of Things* problem

A *lot* of IoT devices want to access to a single base station.

- Insert them in a possibly *crowded wireless network*.
- With a protocol *slotted in both time and frequency*.
- Each device has a *low duty cycle* (a few messages per day).

Goal

- Maintain a *good Quality of Service*.
- *Without* centralized supervision!

How?

- Use *learning algorithms*: devices will learn frequencies they should talk on!
Outline and references

1. Introduction and motivation
2. Model and hypotheses
3. Baseline algorithms: to compare against naive and efficient centralized approaches
4. Two Multi-Armed Bandit algorithms: UCB, TS
5. Experimental results
6. An easier model with theoretical results
7. Perspectives and future works

Main references are my recent articles (on HAL):

- *Multi-Armed Bandit Learning in IoT Networks and non-stationary settings*, Bonnefoi, Besson, Moy, Kaufmann, Palicot. CrownCom 2017,
- *Multi-Player Bandits Models Revisited*, Besson, Kaufmann. arXiv:1711.02317,
First model

- Discrete time $t \geq 1$ and K radio channels (e.g., 10)

![Diagram of protocol in time and frequency, with an Acknowledgement.](image)

Figure 1: Protocol in time and frequency, with an *Acknowledgement*.

- *Dynamic* devices try to access the network *independently*
- $S = S_1 + \cdots + S_K$ *static* devices occupy the network:
 - S_1, \ldots, S_K in each channel

$Lilian Besson (CentraleSupélec & Inria)$

MAB Learning in IoT Networks
Hypotheses I

Emission model
- Each device has the same low emission probability: each step, each device sends a packet with probability p. (this gives a duty cycle proportional to $1/p$)

Background traffic
- Each static device uses only one channel.
- Their repartition is fixed in time.

\Rightarrow Background traffic, bothering the dynamic devices!
Hypotheses II

Dynamic radio reconfiguration

- Each **dynamic device decides the channel it uses to send every packet.**
- It has memory and computational capacity to implement simple **decision algorithm.**

Problem

- **Goal:** minimize packet loss ratio (\(= \maximize number of received \text{Ack}\)) in a finite-space discrete-time Decision Making Problem.
- **Solution?** **Multi-Armed Bandit algorithms, decentralized** and used **independently** by each device.
A naive strategy : uniformly random access

- **Uniformly random access**: dynamic devices choose uniformly their channel in the pull of K channels.
- Natural strategy, dead simple to implement.
- Simple analysis, in term of **successful transmission probability** (for every message from dynamic devices):

$$\mathbb{P}(\text{success}|\text{sent}) = \sum_{i=1}^{K} \left(1 - \frac{p}{K}\right)^{D-1} \times \left(1 - p\right)^{S_i} \times \frac{1}{K}.$$
A naive strategy: uniformly random access

- **Uniformly random access**: dynamic devices choose uniformly their channel in the pull of K channels.
- Natural strategy, dead simple to implement.
- Simple analysis, in term of **successful transmission probability** (for every message from dynamic devices):

$$
\mathbb{P}(\text{success}|\text{sent}) = \sum_{i=1}^{K} \frac{1}{K} \left(1 - \frac{p}{K}\right)^{D-1} \times \frac{1}{K}.
$$

No other dynamic device \quad \text{No static device}

- **No learning**

 Works fine only if all channels are similarly occupied, but **it cannot learn** to exploit the best (more free) channels.
Optimal centralized strategy I

- If an oracle can decide to affect D_i dynamic devices to channel i, the **successful transmission probability** is:

$$P(\text{success}|\text{sent}) = \sum_{i=1}^{K} \frac{(1 - p)^{D_i-1}}{D_i-1 \text{ others}} \times \frac{(1 - p)^{S_i}}{\text{No static device}} \times \frac{D_i}{D}.$$

- The oracle has to solve this **optimization problem**:

$$\arg \max_{D_1, \ldots, D_K} \sum_{i=1}^{K} D_i (1 - p)^{S_i+D_i-1}$$

such that

$$\sum_{i=1}^{K} D_i = D \text{ and } D_i \geq 0, \ \forall 1 \leq i \leq K.$$

- We solved this quasi-convex optimization problem with **Lagrange multipliers**, only numerically.
3. Baseline algorithms

3.b. Optimal centralized strategy

Optimal centralized strategy II

- → Very good performance, maximizing the transmission rate of all the D dynamic devices

But unrealistic

But not achievable in practice: no centralized control and no oracle!

Now let see realistic decentralized approaches

← Machine Learning ?
← Reinforcement Learning ?
← Multi-Armed Bandit !
Multi-Armed Bandit formulation

A dynamic device tries to collect rewards when transmitting:

- it transmits following a Bernoulli process (probability \(p \) of transmitting at each time step \(t \)),
- chooses a channel \(A(\tau) \in \{1, \ldots, K\} \),
 - if Ack (no collision) \(\implies \) reward \(r_{A(\tau)} = 1 \),
 - if collision (no Ack) \(\implies \) reward \(r_{A(\tau)} = 0 \).

Reinforcement Learning interpretation

Maximize transmission rate \(\equiv \) maximize cumulated rewards

\[
\max_{\text{algorithm } A} \sum_{\tau=1}^{\text{horizon}} r_{A(\tau)}.
\]
Upper Confidence Bound algorithm (UCB₁)

Dynamic device keep τ number of sent packets, $T_k(\tau)$ selections of channel k, $X_k(\tau)$ successful transmission in channel k.

1. For the first K steps ($\tau = 1, \ldots, K$), try each channel once.
2. Then for the next steps $t > K$:
 - Compute the index $g_k(\tau) := \frac{X_k(\tau)}{T_k(\tau)} + \sqrt{\frac{\log(\tau)}{2T_k(\tau)}}$.
 - Choose channel $A(\tau) = \arg \max_k g_k(\tau)$.
 - Update $T_k(\tau + 1)$ and $X_k(\tau + 1)$.

Thompson Sampling : Bayesian approach

A dynamic device assumes a stochastic hypothesis on the background traffic, modeled as Bernoulli distributions.

- Rewards \(r_k(\tau) \) are assumed to be \(i.i.d. \) samples from a Bernoulli distribution \(\text{Bern}(\mu_k) \).
- A **binomial Bayesian posterior** is kept on the mean availability \(\mu_k : \text{Bin}(1 + X_k(\tau), 1 + T_k(\tau) - X_k(\tau)) \).
- Starts with a **uniform prior** : \(\text{Bin}(1, 1) \sim \mathcal{U}([0, 1]) \).

1. Each step \(\tau \geq 1 \), draw a sample from each posterior \(i_k(\tau) \sim \text{Bin}(a_k(\tau), b_k(\tau)) \),
2. Choose channel \(A(\tau) = \arg \max_k i_k(\tau) \),
3. Update the posterior after receiving Ack or if collision.

References: [Thompson, 1933], [Kaufmann et al, 2012]
Experimental setting

Simulation parameters

- \(K = 10 \) channels,
- \(S + D = 10000 \) devices in total. Change proportion of dynamic \(D/(S + D) \),
- \(p = 10^{-3} \) probability of emission, for all devices,
- Horizon = \(10^6 \) time slots, \(\approx 1000 \) messages / device,
- Various settings for \((S_1, \ldots , S_K) \) static devices repartition.

What do we show (for static \(S_i \))

- After a short learning time, MAB algorithms are almost as efficient as the oracle solution!
- Never worse than the naive solution.
- Thompson sampling is more efficient than UCB.
- Stationary alg. outperform adversarial ones (UCB \(\gg \) Exp3).
10% of dynamic devices

Figure 2: 10% of dynamic devices. 7% of gain.
5. Experimental results

5.2. First result: 20% of dynamic devices

![Graph showing successful transmission rate vs. number of slots]

Figure 3: 30% of dynamic devices. 3% of gain but not much is possible.
Dependence on $D/(S + D)$

Figure 4: *Almost optimal*, for any proportion of dynamic devices, *after a short learning time*. Up-to 16% gain over the naive approach!
A brief presentation of a different approach...

Theoretical results for an easier model
An easier model

Easy case

- $M \leq K$ dynamic devices always communicating ($p = 1$).
- Still interesting: many mathematical and experimental results!
An easier model

Easy case

- \(M \leq K \) dynamic devices **always communicating** \((p = 1)\).
- Still interesting: many mathematical and experimental results!

Two variants

- **With sensing**: Device first senses for presence of Primary Users (background traffic), then use \(\text{Ack} \) to detect collisions. Model the "classical" Opportunistic Spectrum Access problem. Not exactly suited for IoT networks like LoRa or SigFox, can model ZigBee, and can be analyzed mathematically...

 (cf Wassim’s and Navik’s theses, 2012, 2017)

- **Without sensing**: like our IoT model but smaller scale. Still very hard to analyze mathematically.
Notations for this second model

Notations

- \(K \) channels, modeled as Bernoulli (0/1) distributions of mean \(\mu_k \) = background traffic from Primary Users,
- \(M \) devices use channel \(A^j(t) \in \{1, \ldots, K\} \) at each time step,
- Reward: \(r^j(t) := Y_{A^j(t),t} \times 1(C^j(t)) = 1(\text{uplink \& Ack}) \)
 - with sensing information \(Y_{k,t} \sim \text{Bern}(\mu_k) \),
 - collision for device \(j \) \(C^j(t) = 1(\text{alone on arm } A^j(t)) \).
Notations for this second model

Notations

- K channels, modeled as Bernoulli (0/1) distributions of mean $\mu_k = \text{background traffic from Primary Users}$,
- M devices use channel $A_j(t) \in \{1, \ldots, K\}$ at each time step,
- Reward: $r_j(t) := Y_{A_j(t),t} \times 1(C_j(t)) = 1(\text{uplink & Ack})$
 - with sensing information $Y_{k,t} \sim \text{Bern}(\mu_k)$,
 - collision for device j $C_j(t) = 1(\text{alone on arm } A_j(t))$.

Goal: decentralized reinforcement learning optimization!

- Each player wants to maximize its cumulated reward,
- With no central control, and no exchange of information,
- Only possible if: each player converges to one of the M best arms, orthogonally (without collisions)
Centralized regret

New measure of success

- Not the network throughput or collision probability,
- Now we study the **centralized regret**

\[
R_T(\mu, M, \rho) := \left(\sum_{k=1}^{M} \mu_k^* \right) T - \mathbb{E}_\mu \left[\sum_{t=1}^{T} \sum_{j=1}^{M} r^j(t) \right].
\]
Centralized regret

New measure of success

- Not the network throughput or collision probability,
- Now we study the **centralized regret**

\[
R_T(\mu, M, \rho) := \left(\sum_{k=1}^{M} \mu^*_k \right) T - \mathbb{E}_\mu \left[\sum_{t=1}^{T} \sum_{j=1}^{M} r^j(t) \right].
\]

Two directions of analysis

- Clearly \(R_T = O(T) \), but we want a sub-linear regret
- **What is the best possible performance of a decentralized algorithm in this setting?**
 - \(\rightarrow \) **Lower Bound** on regret for any algorithm!
- **Is this algorithm efficient in this setting?**
 - \(\rightarrow \) **Upper Bound** on regret for one algorithm!
Asymptotic Lower Bound on regret I

For any algorithm, decentralized or not, we have

\[R_T(\mu, M, \rho) = \sum_{k \in M\text{-worst}} (\mu^*_M - \mu_k) E_{\mu}[T_k(T)] + \sum_{k \in M\text{-best}} (\mu_k - \mu^*_M)(T - E_{\mu}[T_k(T)]) + K \sum_{k=1}^K \mu_k E_{\mu}[C_k(T)]. \]

Small regret can be attained if...

1. Devices can quickly identify the bad arms \(M\text{-worst} \), and not play them too much (number of sub-optimal selections),
2. Devices can quickly identify the best arms, and most surely play them (number of optimal non-selections),
3. Devices can use orthogonal channels (number of collisions).
Asymptotic Lower Bound on regret II

Lower-bounds

- The first term $\mathbb{E}_\mu[T_k(T)]$, for sub-optimal arms, is lower-bounded, using technical information theory tools (Kullback-Leibler divergence, entropy).
- And we lower-bound collisions by... 0: hard to do better!

Theorem 1

- For any uniformly efficient decentralized policy, and any non-degenerated problem μ,

$$ \liminf_{T \to +\infty} \frac{R_T(\mu, M, \rho)}{\log(T)} \geq M \times \left(\sum_{k \in M-\text{worst}} \frac{(\mu^*_M - \mu_k)}{\text{kl}(\mu_k, \mu^*_M)} \right). $$

Where $\text{kl}(x, y) := x \log(\frac{x}{y}) + (1 - x) \log(\frac{1-x}{1-y})$ is the binary Kullback-Leibler divergence.
Illustration of the Lower Bound on regret

Figure 5: Any such lower-bound is very asymptotic, usually not satisfied for small horizons. We can see the importance of the collisions!
Algorithms for this easier model

Building blocks: separate the two aspects

1. **MAB policy** to learn the best arms (use sensing $Y_{A_j(t,t)}$),
2. **Orthogonalization scheme** to avoid collisions (use $C_j(t)$).
Algorithms for this easier model

Building blocks: separate the two aspects

1. **MAB policy** to learn the best arms (use sensing $Y_{A^j(t),t}$),
2. **Orthogonalization scheme** to avoid collisions (use $C^j(t)$).

Many different proposals for *decentralized* learning policies

- **Recent:** MEGA and Musical Chair,
- **State-of-the-art:** RhoRand policy and variants,
- **Our proposals:**
 - With sensing: RandTopM and MCTopM are sort of mixes between RhoRand and Musical Chair, using UCB indexes or more efficient index policy (kl-UCB),
 - Without sensing: Selfish use a UCB index directly on the reward $r^j(t)$: like the first IoT model!

[Lilian Besson (CentraleSupélec & Inria)]

MAB Learning in IoT Networks

SCEE Seminar - 23/11/17
Illustration of different algorithms

Figure 6: Regret, $M = 6$ players, $K = 9$ arms, horizon $T = 5000$, against 500 problems μ uniformly sampled in $[0, 1]^K$. $\text{RhoRand} < \text{RandTopM} < \text{Selfish} < \text{MCTopM}$ in most cases.
6. An easier model

6.5. Regret upper-bound

Regret upper-bound for MCTopM-kl-UCB

Theorem 2 [Besson & Kaufmann, 2017]

- If all M players use MCTopM-kl-UCB, for any non-degenerated problem μ,

$$R_T(\mu, M, \rho) \leq G_{M, \mu} \log(T) + o(\log T).$$

Remarks

- Hard to prove, we had to carefully design the MCTopM algorithm to conclude,
- For the suboptimal selections, we match our lower-bound!
- We also minimize the number of channel switching: interesting as it costs energy,
- Not yet possible to know what is the best possible control of collisions...
In this model

The Selfish decentralized approach = device don’t use sensing, just learn on the receive acknowledgement,

- Like our first IoT model,
- It works fine in practice!
- Except... when it fails drastically!
- In small problems with M and $K = 2$ or 3, we found small probability of failures (i.e., linear regret), and this prevents from having a generic upper-bound on regret for Selfish. Sadly...
Illustration of failing cases for Selfish

Figure 7: Histograms of regret for $M = 2$ players, $K = 3$ arms, horizon $T = 5000$, 1000 repetitions and $\mu = [0.1, 0.5, 0.9]$ (different scales). Selfish have a small probability of failure (17 cases of $R_T \geq T$, out of 1000). The regret for the other algorithms is very small for such “easy” problem.
Perspectives

Theoretical results

- MAB algorithms have guarantees for \textit{i.i.d. settings},
- But here the collisions cancel the \textit{i.i.d.} hypothesis,
- Not easy to obtain guarantees in this mixed setting (\textit{i.i.d.} emissions process, “game theoretic” collisions).
- For OSA devices (always emitting), we obtained strong theoretical results,
- But harder for IoT devices with low duty-cycle…

Real-world experimental validation?

- Radio experiments will help to validate this. Hard!
Other directions of future work

- **More realistic emission model**: maybe driven by number of packets in a whole day, instead of emission probability.
- Validate this on a *larger experimental scale*.
- Extend the theoretical analysis to the large-scale IoT model, first with sensing (*e.g.*, models ZigBee networks), then without sensing (*e.g.*, LoRaWAN networks).
- And also conclude the Multi-Player OSA analysis (remove hypothesis that objects know M, allow arrival/departure of objects, non-stationarity of background traffic etc)
Conclusion I

We showed

- Simple Multi-Armed Bandit algorithms, used in a Selfish approach by IoT devices in a crowded network, help to quickly learn the best possible repartition of dynamic devices in a fully decentralized and automatic way.
- For devices with sensing, smarter algorithms can be designed, and analyze carefully.
- Empirically, even if the collisions break the i.i.d hypothesis, stationary MAB algorithms (UCB, TS, kl-UCB) outperform more generic algorithms (adversarial, like Exp3).
Conclusion II

But more work is still needed...

- **Theoretical guarantees** are still missing for the IoT model, and can be improved (slightly) for the OSA model.
- Maybe study other emission models.
- Implement this on **real-world radio devices** (*TestBed*).

Thanks!

Any question?