
Internship thesis Summary sheet 2012/13

Towards modularity for planning and robot programs verification

Author: Lilian Besson * Tutors: Jules Villard and Peter O’Hearn

Team: PPLV (Programming Principles, Logic and Verification Group)

University: University College London

June - August 2013

Synthesis

Global context

This document is designed to be the report for the internship I did at the end of the scholar year
2012–2013. As I intent to graduate this year a double degree in Mathematics and Computer
Science, this internship was a short one (10 weeks), and counted for the two degrees (Maths
“magistère” of ENS Cachan; and 1𝑠𝑡-year of the “MPRI” for Computer Science).

Between 03 June and 09 August 2013, I had the chance to work within the PPLV team, at
UCL in London, UK.
I was tutored by Jules Villard and Peter O’Hearn (currently head of the team).

Scientific context

During my internship, I was mainly concerned with the links between AI and program verification,
focusing on the frame, and ramification, problems, and the need for modularity. These problems
come from both the domain of deterministic planning in AI (which is to find a trajectory to
satisfy some goal in a dynamic world and the domain of program verification (which is to verify
programs by finding and proving specifications), mainly formal verification methods based on
Hoare logic or the more recent separation logic.

To be short, AI planning and program verification define the frame problem as avoiding
specifying the non-effects of actions and the ramification problem as understanding the
indirect effects of actions. And modularity is often translated as procedural abstraction: when a
program has been proved, it can be used as a primitive element (and as if its specification was
an axiom) anywhere, without reusing the program’s body. Modularity can also be viewed in the
programmer point-of-view: one would like to be able to write macros, functions, or libraries
and reuse them, without having to know how exactly they have been written.

*Please, do not hesitate to contact me by email (at Lilian.BESSON[at]ens-cachan[dot]fr) for any question,
any comment or to signal any problem about this internship report.

Lilian Besson 1/36 ENS Cachan

http://www.dptinfo.ens-cachan.fr/~lbesson
http://www0.cs.ucl.ac.uk/staff/J.Villard
http://www0.cs.ucl.ac.uk/staff/p.ohearn/
http://pplv.cs.ucl.ac.uk
http://ucl.ac.uk
http://pplv.cs.ucl.ac.uk
http://ucl.ac.uk
http://www0.cs.ucl.ac.uk/staff/J.Villard
http://www0.cs.ucl.ac.uk/staff/p.ohearn/
mailto:Lilian.BESSON[at]ens-cachan[dot]fr

Internship thesis Summary sheet 2012/13

These two domains are both mature, and active since approximately 40 years. In particular,
during the last 10 years, the work of Peter O’Hearn, David Pym and John C. Reynolds
defines separation logic – a proof system based on Hoare logic; and from 1991 the work of
Raymond Reiter and Fangzhen Lin defines the situation calculus. This formalism was used
by the IPC (International Planning Competition), for a few years (2002 to 2008) which led to
the axiomatization of the PDDL norm to describe planning domains and problems. But no links
between those two domains have been really exploited with success yet.

Questions initially asked

One would like to know if recent verification techniques can help with AI problems, and
conversely. At the least, one would like to know if the solutions proposed in one community
can, in principle, solve the problems of the other. Verification is currently one of the most
active research field in Computer Science; and planning is also an active research domain in
AI, with in particular a couple of major international competitions focused on this very field.
So, trying to prevent researchers of one field to reinvent the solution already used on the other
field would help the two domains, may highlight some hidden links between them, or may even
improve performances of concrete tools in AI or in verification.

But this is not an entirely new question, because by now ideas from planning have been
used to boost the tractability of various program analysis tasks (as in the tool SpaceInvader).
However, basic ideas from AI have been borrowed by verification research teams, with success,
but more technical ideas have not been used, and it seems that there has been no efficient flow
of ideas from verification to AI yet.

Proposed contribution

We have studied state-of-the-art techniques in both domains: PDDL, STRIPS and the situation
calculus for AI planning; and Hoare logic and separation logic for program verification. For a
more concrete approach, we have used two recent tools from AI planning domain: pyperplan to
find a trajectory solving a fixed goal, and validate to prove his correctness. As links between
AI and verification, the GOLOG language and its proof system HG (proposed by Liu in 2002) have
also been studied.

First, to become more comfortable with planning and predicate calculi, we developed a
few techniques, to increase the expressiveness of the language accepted by pyperplan (a small
subset of PDDL). Then, we have been focused on the frame and ramification problems, but
mainly on compositionality. For this, we have shown that the STRIPS formalism is weak against
the frame problem, even if it relies on a frame hypothesis to implicitly solve the frame problem
for primitive actions, although separation logic prefers a more syntactical approach. We also
discovered this weakness against the frame problem in Liu’s proof system for GOLOG programs,
by pointing out a serious lack of modularity when dealing with non-primitive actions – i.e.
user-defined procedures. Therefore, we tried to propose directions of research to improve
modularity of this proof system HG, and thus for the GOLOG language.

Another weakness of the situation calculus and STRIPS formalism is a completeness hypoth-
esis, which requires a perfect knowledge and a complete description of the studied domain.
Sometimes, the difficulty is hidden behind this hypothesis, so the user may have to “work” a lot

Lilian Besson 2/36 ENS Cachan

http://www0.cs.ucl.ac.uk/staff/p.ohearn/
http://homepages.abdn.ac.uk/d.j.pym/pages/
https://www.cs.cmu.edu/~jcr/
http://www0.cs.ucl.ac.uk/staff/p.ohearn/SeparationLogic/Separation_Logic/SL_Home.html
http://en.wikipedia.org/wiki/Raymond_Reiter
http://www.cs.ust.hk/~flin/
http://en.wikipedia.org/wiki/Situation_calculus
http://ipc.informatik.uni-freiburg.de/HomePage
http://ipc.informatik.uni-freiburg.de/PDDLExtension
http://www0.cs.ucl.ac.uk/staff/p.ohearn/Invader/Invader/Invader_Home.html
https://bitbucket.org/malte/pyperplan/
http://www.dcs.kcl.ac.uk/staff/andrew/planning/index.php?option=com_content&view=article&id=70&Itemid=77

Internship thesis Summary sheet 2012/13

to produce a suitable axiomatization, or to update an existing one. This is seen as a different
kind of modularity. As a possible future work, we proposed the notion of action refinements,
but we did not have time to develop it.

In the last days of the internship, we started to consider a way to model STRIPS in the
separation logic, or to add a syntactical frame rule to STRIPS, stronger that the first frame
hypothesis, used to describe separated items and solving planning problems more efficiently.

Arguments in favor of its validity

We have worked on many examples, showing weaknesses of a naive use of the PDDL formalism
against large worlds, ramification, but most of all updates of an axiomatization. These
weaknesses are ipso facto present in the solver pyperplan.

One of our contribution consists of some formal techniques to improve the method used
to describe a dynamic world. They could result as a patch for pyperplan, to improve its
performance on large words, and ramification; and to maybe improve its performance while
updating an axiomatization (with refinements) or while unifying disjoint worlds (with the
interpretation in separation logic). We have also shown the correctness of these techniques,
by giving the intuition for acceptable bounds on both temporal and spatial complexities, to
legitimate the use of these improvements for concrete examples (like for instance the freecell
classic cardgame).

Sum-up and future

PDDL is very expressive, and thus covers many kind of domains. However, the pyperplan solver
is quite limited, and supports only a small number of PDDL extensions (typed and positive-
STRIPS only). Our approach tries to solve some of the limitations of this tool, and also some
intrinsic weaknesses of the formalism. The techniques developped could have been implemented
in pyperplan, but we did not, by lack of time. On the other hand, the lack of generality
of this tool does not imply a lack of generality of our contribution, because the techniques
improving the formalism are not limited the be applied with pyperplan, in particular the
boolean reification algorithm.

With more time, we would have continued to work on modularity for GOLOG proof system
and for updating a STRIPS-defined world; with the ideal goal of bringing a good modularity to
both of those systems.

One of the next question we could ask is to know if the AI planning domain, translated in
the separation logic point-of-view, is indeed efficient against the frame problem, and still usable
in pratice. By now, the STRIPS formalism requires an implicit frame hypothesis while defining
actions by a precondition and a postcondition, but we don’t have any argument to justify that
using partial models in separation logic and a formal separation conjunction � is a good idea to
scale while describing large separated domains, or to improve compositionality for the HG proof
system; and this could be another possible direction of research.

Lilian Besson 3/36 ENS Cachan

Internship thesis 2012/13

1 Introduction

1.1 Scientific context and theme

One of the difficulties of this internship was to become familiar with two domains, relatively
different from each other. Historically, Hoare logic is probably the most well-known formal
method to ensure properties of programs, and has been first introduced by Tony Hoare in
1969 as one of the first verification method ([Hoa69]).

Moreover, John McCarthy was one of the pioneer in the domain of artificial intelligence
(henceforth abbreviated by AI), when he started to use the predicate calculus to axiomatize
changing worlds, in the late 60s ([MH68, part 3,4]). Predicate calculi have been studied from the
70s, in particular by Raymond Reiter and more recently by Fangzhen Lin, who continued
to use and develop the situation calculus ([LR97, Rei01, Lin08]).

As a very interesting link between these two fields, Hector Levesque et al. have developed
GOLOG, a language designed to write robot programs ([LRL�97]), and, in 2002, Yongmei Liu
endowed it with a proof system à-la Hoare logic ([Liu02]). Finally, the STRIPS formalism and
its norm PDDL1 – both inspired by the situation calculus – have been developed to concretely
work on planning, and are the theoretical bases of tools like blackbox or pyperplan.

1.2 Issues and goals

One of the main question in AI is path finding, also called planning. In graph theory, path
finding is a refinement of the question of reachability: in a graph 𝒢 � p𝐸, 𝑉 q, given two
vertices 𝑢, 𝑣 P 𝐸, one would like to know if there is a path between 𝑢 and 𝑣 – and possibly to
have one witness – for the binary relation “is-connected-to” (i.e. a sequence p𝑢𝑖q0¤𝑖¤𝑛 with
𝑢0 � 𝑢, 𝑢𝑛 � 𝑣 and @𝑖. 𝑢𝑖 𝑢𝑖�1). This analogy is pursued in the appendix, section A.

Similarly, in AI, one can describe states of a dynamic world instead of vertices, and
transformations on the world instead of edges. For example, we quickly present here the
suitcase planning problem: from an initial state, 𝑢, where there is a closed suitcase 𝑠1, a possible
goal state, 𝑣, can be to open the suitcase. Then the reachability question for this small system
is to know if it is possible to execute a sequence of actions from 𝑢 to 𝑣. In this toy example,
we need to open the suitcase, and this could be written with something like 𝑂𝑝𝑒𝑛p𝑠1q. Another
question is to prove the validity of such paths, i.e. to be sure that the actions can be effectively
performed one after the other.

On the other hand, in software verification, the “path” is already there: it is the program
itself (seen as a sequence of instructions); and one goal can be to find a proof of some
program properties (written as a specification), or to mathematically validate a proof, or even
to automatically generate a program specification.

Among all the characteristics a formalism could have, conciseness, clarity, and simplicity are
the most appreciated in both verification and AI: the simpler the formulas are, the easier they
can be understood and used by a human. But, we also want to be as expressive as possible, so
there is always a balance between clarity and expressiveness. Therefore one of the goal of AI

1STRIPS means STanford Research Institute Problem Solver, and PDDL means Planning Domain
Definition Language.

Lilian Besson 4/36 ENS Cachan

Internship thesis 2012/13

and verification is to design formalisms not only efficient and expressive but also concise and
easy-to-work with.

1.3 Outline

In this report, we try to present some of the more interesting questions we had worked on.
First, we expose some simple examples to quickly show what kind of things we want to

model. As a first changing world, we introduce a robot operating on contruction blocks on
a floor, then to control this robot we write a first program, and we axiomatize its behavior
by writing a formal specification. We shortly introduce the reader to two major problems:
modularity and non-linearity, before presenting in a more rigorous way the different formalisms.
The situation calculus is used to axiomatize dynamic worlds, the GOLOG language is used to
program a robot operating of such worlds, and the HG proof system is designed to write and
prove specifications of such programs. Then we show a serious weakness of this proof system, by
writing two other programs on the block world, both using the first one. One of our contribution
is to point out a lack of modularity for HG, because it does not handle user-defined procedures
as well as primitive actions. We discuss the possible reasons of this weakness, and we also try
to point out what could be considered as a solution.

In a second part of the report, we are focused on a more concrete approach to the planification
problem, by exposing the STRIPS formalism – a subset of the situation calculus – and two tools
used concreteley (pyperplan and validate) and some weaknesses of these elements. We also
expose the results of some experiments designed to evaluate pyperplan, and then we develop
a couple of formal and automatic techniques to improve the expressiveness of the STRIPS
formalism.

In the last part, we will make a short sum-up, followed by a perspective and some possible
future direction of research. An appendix is included, to present a partial bibliography, and two
concrete axiomatization written in STRIPS according to the state-of-the-art norm called PDDL.

Lilian Besson 5/36 ENS Cachan

Internship thesis 2012/13

2 An informal presentation of what we want to model

We quickly introduce here what we want to be able to model with an example of a dynamic
world, then we use it to write our first robot programs, and we present how to formally specify
it by writing a specification.

2.1 The block world: a canonical example in planning

We would now like to present a simple example of what kind of “worlds” the AI domain is
interested on. Let us imagine a clear floor, containing some construction blocks, and an ideal
robot, operating on these blocks. The robot has two actions: it can move a block A onto B (this
is written Move(A,B)), or can move A from B to the floor, with PutFloor(A), and therefore
it can build towers of blocks. We then use predicates to describe the relationships between
blocks: the block A can be clear (i.e. A do not have anything on it) and this is written with
a predicate (also called relation fluent) like Clear(A). We also use On(A,B) to say that the
block A is on B; and OnFloor(A) says that A is on the floor. Finally, we describe the world with
a state, and for example one initial state can be 3 different blocks (A, B, C), each of them
being clear and on the floor. This is written as a formula in a predicate logic:

Γ0
def
�
�
Clear(A)^ OnFloor(A)

�
^
�
Clear(B)^ OnFloor(B)

�
^
�
Clear(C)^ OnFloor(C)

�
.(2.1)

And this can be illustrated as shown in this figure:

Figure 1: Initial state (𝑆0, Γ0). (A,B,C are different from each other)

An achievable goal Now, we can ask the robot to build a tower of three blocks (A on B,
B on C), i.e. we write Γ𝑔𝑜𝑎𝑙

def
� On(A, B) ^ On(B, C) as a goal state. We start from an

empty history of executed actions (also called a situation2): 𝑆0 � r s. We say an action is
executable if it can be performed, for example, Move(A,B) requires A and B to be different and
both clear (i.e. pA � Bq ^ ClearpAq ^ ClearpBq). And one of its consequences is to effectively
move A on top of B, so performing the action Move(A,B) will allow to deduce On(A,B).

Therefore, a valid solution to the path finding problem for this domain could be to put
B on C (going from 𝑆0 to 𝑆1, written 𝑆0 𝑆1), with Move(B,C), and then A on B (𝑆1 𝑆2).
Then the final situation 𝑆2 is the history expressing what we have done to arrive in Γ𝑔𝑜𝑎𝑙; and
this is written as follow:

𝑆1
def
� 𝐷𝑜pMove(B, C), 𝑆0q, (2.2)

𝑆2
def
� 𝐷𝑜pMove(A, B), 𝑆1q. (2.3)

2This is formally defined after, see definition 3.1

Lilian Besson 6/36 ENS Cachan

Internship thesis 2012/13

Figure 2: A goal state Γ𝑔𝑜𝑎𝑙, achieved by 𝑆2.

An unachievable goal Another goal Γ1𝑔𝑜𝑎𝑙 could be to have A on B, B on C (like before), but
to require C on A additionally. This seems to be impossible, or at least strange, and contradict
the intuition we have about these blocks; and we will see that a good formalization of the block
world allows to prove the non-reachability of this strange goal. We cannot embed a picture
representing this second goal, because of this “irrational” relationship.

We will explain how to axiomatize this domain and the two planning problems in section
3.1; by doing so, we will softly introduce the situation calculus formalism.

Remark 1 (Only deterministic worlds). The formalism we will present is also able to represent
stochastic actions and states, but we preferred to stay focused on the simplest sub-domain:
only deterministic worlds. This restriction is also done in some major works on planning, like
[Lin08].

However, an introduction to the stochastic point-of-view can be found in [Rei01, part 12].

2.2 Robot programs operating on a dynamic world

This block world is a good example of a simple but interesting dynamic world, and one
could ask if it possible to write procedures operating on such a world. The robot we have
presented before can move a block onto another, or on the floor but it does not have any more
sophisticated actions. Now, we will quickly use the GOLOG language ([LRL�97]) to write more
complicated procedures for this robot, i.e. to write robot programs.

Our first robot program: MoveOr2 As his name suggests it, the procedure MoveOr2 is
designed to move a block 𝑥 on top of another, non-deterministically chosen (ND) between two
other blocks 𝑦, 𝑧:

Proc MoveOr2p𝑥, 𝑦, 𝑧q : Movep𝑥, 𝑦q | Movep𝑥, 𝑧q EndProc; (2.4)

From here on, we use the shortcuts 𝛿1
def
� Movep𝑥, 𝑦q and 𝛿2

def
� Movep𝑥, 𝑧q to denote the left

and right parts. Hence, 𝛿1|𝛿2 means a non-deterministic choice between 𝛿1 and 𝛿2. So, we want
to prove that MoveOr2 effectively moves 𝑥 to 𝑦 or to 𝑧. We will write a partial specification for
MoveOr2 in the next subsection (c.f. formula (2.5)) and prove it after (c.f. proof 1).

High-level robot programming This language is like a bridge between verification and AI:
it allows one to write programs talking about a user-defined dynamic world, and then to prove
programs specifications, expressed in an “assertion language”. This kind of robot programming
is often called high-level robot programming, because we are not interested on how exactly the
primitive actions are executed, we are just interested on how they interact with each other in a

Lilian Besson 7/36 ENS Cachan

Internship thesis 2012/13

robot procedure. Hence, we precise that our “robots” are only a theoretical model, we were not
interested in any kind of concrete machineries.

2.3 How to write and prove program properties

Hoare logic ([Hoa69]) is a well-known formalism to express and prove specifications for programs,
with formulas written in first-order logic. We assume that the reader is at least familiar with
usual first-order logic, thus it will not be re-introduced precisely in this report. We introduce
here an example of partial specification, for the procedure MoveOr2 previously defined.

MoveOr2 is a procedure, but as primitive actions it requires some conditions to be performed.
First, we need p𝑥 � 𝑦q and p𝑥 � 𝑧q to be sure that 𝑥 can indeed be moved onto a different
block 𝑦 or 𝑧. To be executable, the first part 𝛿1 requires Clearp𝑥q ^ 𝑥 � 𝑦 ^ Clearp𝑦q, when
𝛿2 requires Clearp𝑥q ^ 𝑥 � 𝑧 ^ Clearp𝑧q. Hence, after simplification, we would like to have the
following partial3 specification:
Lemma 1 (Specification for MoveOr2). We prove it after, see proof 1.

tClearp𝑥q ^ p𝑥 � 𝑦q ^ Clearp𝑦q ^ p𝑥 � 𝑧q ^ Clearp𝑧qloooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
def
�𝑄Or2

u MoveOr2p𝑥, 𝑦, 𝑧q tOnp𝑥, 𝑦q _ Onp𝑥, 𝑧qloooooooooomoooooooooon
def
�𝑅Or2

u(2.5)

What does procedural abstraction mean? Remark that we could have switch 𝛿1 and 𝛿2
in the body of MoveOr2, without changing its effect. So, if we write a second implementation of
MoveOr2, with 𝛿2|𝛿1 instead, then we could give it the same specification. And thus, if we have
a good procedural abstraction, we should be able to use the new implementation instead of
the first one, reprove its specification, but without having to reprove anything else.

2.4 Two main problems

For programming in general, modularity is needed, because it is unthinkable to force a program-
mer to in-line all the procedure he want to define. Thus, programming compositionality
appeared with the first programming languages, and is still present in almost every languages
(even LATEX!). For instance, we defined MoveOr2, and then we will use it to construct bigger
programs, without having to expand it or rewrite it wherever it will be used.

Modularity for verification To formally prove specifications for those kind of procedures,
the key idea is to have a certain modularity in the underlying logics: the specifications
are written for each primitive elements, and each transition from one element to the next is
proved with axioms or inference rules. The proof system is a set of formal rules (see next
section 3.3 for examples of such inference rules). Compositionality means that when a sub-
procedure has been proved, one could use his specification everywhere it is used, without having
to reuse the procedure’s body nor having to reprove it somewhere else. In fact, procedural
compositionality is one of the more needed property for a proof system or for a practical
analysis tool. For example, the tool Abductor has successfully verified subsets of very huge
projects like Apache or the Linux kernel, because it is compositional (complete benchmarks for
those experiments are in [CDOY11]).

3Only partial because we do not specify its effect on 𝑥’s initial position (either OnFloorp𝑥q or Onp𝑥, 𝑧q is
transformed from true to false).

Lilian Besson 8/36 ENS Cachan

Internship thesis 2012/13

Non-linearity? But we also need to be able to change an axiomatization a little bit, without
having to rewrite everything, and to add one element without having to reconsider all what
have already be done. This is related to the notion of linearity in logics, and in fact a formalism
designed to axiomatize a dynamic world is often non-linear: adding knowledge to the system
can reduce what we know, i.e. what we are able to prove in the system. One example of
such non-linear behavior can be given with the block world again. If we want to add a new
predicate HasMoved to know if a block has been moved from the initial state (Γ0, 𝑆0), we can add
HasMovedp𝑥q as an additional effect of Movep𝑥, 𝑦q and of PutFloorp𝑥q. Then, this additional
information about the world can weaken some specifications already proved.

Lilian Besson 9/36 ENS Cachan

Internship thesis 2012/13

3 Three formalisms to prove robot programs

3.1 A quick presentation of the situation calculus

The situation calculus is a many-sorted second-order language designed to represent dynamic
worlds. It uses 4 disjoint sorts: relational fluents, objects, situations, and actions
which have already been informally introduced in section 2.1. The formalism we will present
in this section is used to axiomatize deterministic dynamic world, and the result of such an
axiomatization is a called basic action theory, denoted by a symbol 𝒟.

For example, in the block world, we recall that action symbols are Move and PutFloor,
of arity 2 and 1; relational fluents are OnFloor of arity 1 or On of arity 2. We will use 𝐴
to design an action symbol, and 𝐹 to design a relational fluent. They will be written as4

𝐴p𝑥1, . . . , 𝑥𝑛q if 𝐴 has an arity 𝑛, and 𝐹 p𝑦𝑚, . . . , 𝑦𝑚q if 𝐹 has an arity 𝑚. And, 𝑥𝑖 and 𝑦𝑗 are
used to denote objects, like A or C in the block world. We often use the shortcuts ÝÑ𝑥 def

� 𝑥1, . . . , 𝑥𝑛

or ÝÑ𝑥𝑖
def
� p𝑥𝑖q1¤𝑖¤𝑛. We precise that arities can be equal to zero, i.e. 𝑛, 𝑚 ¥ 0.

And finally, situations 𝑠 are recursively defined as follow, with 𝑆0 the empty situation:

𝑠 ::� 𝑆0 | 𝐷𝑜p𝐴pÝÑ𝑥 q, 𝑠q. (3.1)

We need to express the fact that an action can be performed, so let 𝑃𝑜𝑠𝑠p𝑎, 𝑠q be a binary
predicate meaning that action 𝑎 can be applied in situation 𝑠 (i.e. is executable), with 𝑎 an
instantiated action, of the form 𝐴pÝÑ𝑦𝑗 q, and 𝑠 a situation, We are only interested in executable
situations, i.e. histories in which it is possible to perform the actions one after the other:

𝑠 ::� 𝑆0 | 𝐷𝑜p𝐴pÝÑ𝑥 q, 𝑠q, if 𝑃𝑜𝑠𝑠p𝐴pÝÑ𝑥 q, 𝑠q. (3.2)

The situation calculus allow to consider first-order formulas, of the following form (3.3),
where all the classical logical connectors are interpreted as usual (^, _, �, �, , D, @, ñ) and
with p𝜑1 � 𝜑2q

def
� p𝜑1 ñ 𝜑2 ^ 𝜑2 ñ 𝜑1q:

𝜑 ::� p𝜑q | 𝐹 pÝÑ𝑦 q | ÝÑ𝑥 � ÝÑ𝑦 | 𝐴pÝÑ𝑥 q � 𝐴1pÝÑ𝑥 q | 𝜑 | 𝜑^ 𝜑 | 𝜑_ 𝜑 | 𝜑 ñ 𝜑 | D𝑥. 𝜑p𝑥q | @𝑥. 𝜑p𝑥q
(3.3)

So for the block world we can write axioms like @𝑥. pClearp𝑥q _ D𝑦. Onp𝑦, 𝑥qq, to say that
either a block 𝑥 is clear, either there is another block 𝑦 on top of 𝑥. In the first initial world
we presented above, Γ0 only contained zeroth-order formulas (like Clear(A)). But the domain
can also contain first-order formulas, to add some domain constraints. For example, one
would like to have Onp𝑥, 𝑦q ñ Onp𝑦, 𝑥q and D𝑦. Onp𝑦, 𝑥q ñ Clearp𝑥q as domain constraints
for the block world. We only ask Γ0 to be coherent, i.e. we do not want to have Γ0 (false
in the underlying logic. We would like to precise that the variables not explicitly existentially
quantified are implicitly universally quantified, so we do not write every @𝑥, 𝑦 in each formulas,
if it is not ambiguous.

4A convention is to use names construct as a short version of the concatenation of the natural name for the
action or the predicate, and use capital letter to denote a new world (“put on the floor” becomes PutFloor for
example).

Lilian Besson 10/36 ENS Cachan

Internship thesis 2012/13

Remark 2 (Extra predicates as shortcuts). For the block world, we used 3 different relational
fluents, but they are not independents because we introduced some domain constraints. In fact,
it is often possible to express some predicates with a smaller subset of predicates (in this case,
just On). For example, with first-order formulas, we can write Clearp𝑥q def

�
�
D𝑦. Onp𝑦, 𝑥q

�
, and

OnFloorp𝑥q def
�

�
D𝑦. Onp𝑥, 𝑦q

�
.

There is here two different point-of-views: if we use all the predicates, such equivalence
formulas can be proved (for all situations), by using some domain constraints and the classical
proof system for first-order formulas. But if we define some predicates as shortcuts, then
some domain constraints become provable, like for instance this one: D𝑦. Onp𝑦, 𝑥q ñ Clearp𝑥q
(presented in the previous paragraph)

A relational fluent 𝐹 pÝÑ𝑥 q can be written with a situation 𝑠 as its last argument
�
𝐹 pÝÑ𝑥 , 𝑠q

�
to consider the fact 𝐹 pÝÑ𝑥 q in the situation 𝑠. In our block world, we had ClearpC, 𝑆0q but then
we applied the first action to go from 𝑆0 to 𝑆1, and hence we no longer had ClearpC, 𝑆1q.

We say that 𝜑 is a pseudo-fluent formula (pff) if all the fluents in 𝜑 have no situation
term. In this case, we write 𝜑r𝑠s the new formula obtained from 𝜑 by adding 𝑠 as the
last argument in every fluent. For example, 𝜑

def
� Clearp𝑥q ^ OnFloorp𝑥q is a pff and so

𝜑r𝑠s � Clearp𝑥, 𝑠q ^ OnFloorp𝑥, 𝑠q.
Now, we need to describe when an action 𝐴 can be performed in a situation 𝑠. This will

be written as one axiom for each action 𝐴, of the form 𝑃𝑜𝑠𝑠p𝐴pÝÑ𝑦 q, 𝑠q � Π𝐴pÝÑ𝑦 qr𝑠s, where Π𝐴

is a pff. For instance, for Move, 𝑃𝑜𝑠𝑠pMovep𝑥, 𝑦q, 𝑠q
def
� Clearp𝑥, 𝑠q ^ p𝑥 � 𝑦q ^ Clearp𝑦, 𝑠q, and

for PutFloor 𝑃𝑜𝑠𝑠pPutFloorp𝑥q, 𝑠q
def
� D𝑦 � 𝑥.

�
Clearp𝑥, 𝑠q ^ Onp𝑥, 𝑦, 𝑠q

�
. Those axioms are

called action precondition axioms, and we have to give one for every action 𝑎. Moreover,
we require that those axioms describe completely the minimal condition under which an action
can be performed. This is the first completeness assumption.

Now that we can describe when an action can be executed, we need something to describe
the effect(s) of executing an action.

Remark 3 (Duality action-predicate). Here appears a major duality between relational fluents and
actions because there is two possible approaches now. One could choose to write:
(EF) one axiom 𝑃𝑜𝑠𝑡p𝑎q for each action 𝑎, with a list of the fluents changed by this action (STRIPS

choice, detailed after in (5.4) and (5.5)), or

Post(a) one axiom Φ𝐹 for each predicate 𝐹 , with a “case-by-case” analysis of the action (situation
calculus choice).

In the situation calculus, we use successor state axioms, i.e. one axiom of the form
𝐹 pÝÑ𝑦 , 𝐷𝑜p𝑎, 𝑠qq � Φ𝐹 pÝÑ𝑦 qr𝑠s, – for each fluent 𝐹 – to characterize exactly5 how the fact 𝐹 pÝÑ𝑦 q
can be true after performing any action 𝑎. Here we can use case-by-case analyzes of the
form

�
𝑎 � 𝐴pÝÑ𝑥 q ^ . . .

�
. Basically, Φ𝐹 pÝÑ𝑦 q has two parts, one saying that 𝐹 pÝÑ𝑦 q is true after

performing 𝑎 if 𝑎 does not modify it, and 𝐹 pÝÑ𝑦 q was true before (non-effect); and another
part saying that 𝐹 pÝÑ𝑦 q is true after applying 𝑎 if 𝑎 makes it become true (effect).

For example, in our block world, we will axiomatize the effects of the two actions Move and
PutFloor with one successor state axiom for every predicates, i.e. by writing one Φ𝐹 for 𝐹

5This “exactly” is the second part of the completeness assumption made by the situation calculus.

Lilian Besson 11/36 ENS Cachan

Internship thesis 2012/13

being Clear, On, and OnFloor, as follow:

Onp𝑥, 𝑦, 𝐷𝑜p𝑎, 𝑠qq � 𝑎 � Movep𝑥, 𝑦q _
�
Onp𝑥, 𝑦, 𝑠q ^ 𝑎 � PutFloorp𝑥q ^ pD𝑧 � 𝑥, 𝑦. 𝑎 � Movep𝑥, 𝑧qq

�
;

OnFloorp𝑥, 𝐷𝑜p𝑎, 𝑠qq � p𝑎 � PutFloorp𝑥qq _
�
OnFloorp𝑥, 𝑠q ^ pD𝑦 � 𝑥. 𝑎 � Movep𝑥, 𝑦qq

�
.

Clearp𝑥, 𝐷𝑜p𝑎, 𝑠qq � D𝑦 � 𝑥.
��
pD𝑧 � 𝑥. 𝑎 � Movep𝑦, 𝑧qq _ 𝑎 � PutFloorp𝑦q

�
^ Onp𝑦, 𝑥, 𝑠q

	

_
�
Clearp𝑥, 𝑠q ^ D𝑦. 𝑎 � Movep𝑦, 𝑥q

�
;

Finally, we recall that the goal state (denoted Γ𝑔𝑜𝑎𝑙) is also a set of formulas, where we
can also use quantifiers.
For instance, a different goal for the block world could be to simply require to have at least a
tower of three blocks, and this can be written as Γ1𝑔𝑜𝑎𝑙

def
� D𝑥 � 𝑦 � 𝑧. Onp𝑥, 𝑦q ^ Onp𝑦, 𝑧q.

As a last remark, we recall that free variables are also allowed in the description of actions.
That is why we can reduce the signature of actions to their minimal sizes: and for example
PutFloorp𝑥q just needed one argument (the block 𝑥 being moved) and the block 𝑦 on which 𝑥
were is introduced with a D𝑦 in ΠPutFloor.

Remark 4 (Unique name axioms). A classical assumption made in the situation calculus is
the unique names axioms, for “everything”. This means, 𝑎pÝÑ𝑥 q � 𝑎1pÝÑ𝑦 q ñ p𝑎 � 𝑎1 ^ÝÑ𝑥 � ÝÑ𝑦 q,
for every actions 𝑎, 𝑎1, and their arguments ÝÑ𝑥 ,ÝÑ𝑦 and 𝐹 pÝÑ𝑥 q � 𝐹 1pÝÑ𝑦 q ñ p𝐹 � 𝐹 1 ^ÝÑ𝑥 � ÝÑ𝑦 q,
for every fluents 𝐹, 𝐹 1, and their arguments ÝÑ𝑥 ,ÝÑ𝑦 . Finally, we have 2 axioms to complete
the definition of situations: @𝐴, 𝐴1, 𝑠, 𝑠1. 𝐷𝑜p𝐴, 𝑠q � 𝐷𝑜p𝐴1, 𝑠1q ñ

�
𝐴 � 𝐴1 ^ 𝑠 � 𝑠1

�
, and

@𝐴, 𝑠. 𝐷𝑜p𝐴, 𝑠q � 𝑆0.

3.2 A language based on user-defined primitives

We can quickly define the GOLOG language as an Algol-like language, where the primitives
are user-defined actions, and where the programs operates on a user-defined dynamic world
completely axiomatized in the formalism of the situation calculus.

In a classical imperative programming language, the underlying dynamic world is usually
the memory, so the objects being manipulated are variables and values (integer or floats) and
the smallest elements of programs are primitives, like writing a value 𝑣 on the memory case
𝑥 (often written 𝑥 :� 𝑣), or reading the value of 𝑥 (!𝑥); or even arithmetical operations (like
𝑣1 � 𝑣2). And then, programs are built inductively, for example by composing sequentially:
𝛿1;𝛿2 (to do 𝛿1 and then 𝛿2) or by a non-deterministic6 choice: 𝛿1|𝛿2 (to do 𝛿1 or 𝛿2).
Other constructions exist, as the non-deterministic iteration 𝛿�, to iterate 𝛿 a unspecified
number of time, or the more unusual p𝜋𝑥q𝛿p𝑥q designed to non-deterministically choose an
argument 𝑥 for the body 𝛿.

The GOLOG language ([LRL�97]) uses the same kind of rules to inductively build programs,
but it differs from classical languages by using user-defined primitives. This simple idea states
that, for instance, moving a block onto another (Move) is nothing else but a primitive of the
language. And that is why we used the composition rule and two primitives Movep𝑥, 𝑦q and
Movep𝑥, 𝑧q to write MoveOr2p𝑥, 𝑦, 𝑧q, in section 2.2.

6We use 3 different constructions based on non-determinism, but we recall here that we only consider
deterministic worlds.
The non-determinism introduced here is just for programs, never for actions or for states.

Lilian Besson 12/36 ENS Cachan

Internship thesis 2012/13

The grammar for GOLOG programs is presented below:

𝛿 ::� p𝛿q | 𝐴pÝÑ𝑣 q | 𝜑? | 𝛿;𝛿 | 𝛿|𝛿 | p𝜋𝑥q𝛿p𝑥q | D𝑥. 𝛿p𝑥q | @𝑥. 𝛿p𝑥q | 𝛿� |

𝑃 pÝÑ𝑣 q | Proc 𝑃1pÝÑ𝑣1q 𝛿1 endProc; . . . ; proc 𝑃𝑚pÝÑ𝑣𝑚q 𝛿𝑚 endProc 𝛿 (3.4)

where 𝜑 is a pff, 𝐴 is an action, 𝑃, 𝑃1, . . . , 𝑃𝑚 are procedures names all different from each
other, with 𝑚 ¥ 1, and where 𝛿p𝑥q means that 𝑥 appears free in 𝛿.

The last construction, abbreviated as t𝐸𝑛𝑣; 𝛿u, provides programming modularity. We
can use previously defined procedures 𝑃𝑖 as if it was a primitive element in a new GOLOG
program 𝛿: these procedures p𝑃𝑖q𝑖 just have to be included in an environment: defined as
𝐸𝑛𝑣

def
�
�
Proc 𝑃𝑖pÝÑ𝑣𝑖 q 𝛿𝑖 endProc;

�
1¤𝑖¤𝑚

.
This language can be used to define more sophisticated robot procedures. We already wrote

MoveOr2 as a first example but conditionals and loops can be defined as simple abbreviations:

if 𝜑 then 𝛿1 else 𝛿2
def
�

�
𝜑?;𝛿1

�
|
�
p 𝜑q?;𝛿2

�
(3.5)

while 𝜑 do 𝛿 done def
�

�
𝜑?;𝛿

�
�;
�
 𝜑

�
? (3.6)

Then, one could be interested in formally proving some properties about such robot programs.
For instance we would like to prove that the little procedure MoveOr2 really works as it is meant
to, by proving Lemma 1.

3.3 The HG proof system for robot programs

To prove such specifications, we will use a proof system, called HG, inspired from classical Hoare
logic, for robot programs written in GOLOG. It is is due to Liu, so for more details see [Liu02] (H
is for Hoare, G is for GOLOG). We will not present the underlying semantics for GOLOG programs,
given by Liu to formally present the semantics of the inference rules, but simply the basic
ideas of this proof system. As in classical Hoare logic, we will write Liu-triples of the form
t𝑃 u 𝛿 t𝑄u, when 𝑃, 𝑄 are pseudo-fluent formulas (pff s) and 𝛿 is a GOLOG program.

The different between Hoare-triples and Liu-triples is how we interpret them: usually,
t𝑃 u 𝛿 t𝑄u means that if 𝑄 is true, 𝛿 can be executed and if it terminates, then the system
will be in a new state with 𝑅 being true. But in the HG proof system, we only consider 𝑄 in
executable situations 𝑠: if 𝑄r𝑠s is true, then 𝛿 can be performed to change the system from 𝑠 to
𝑠1. And if 𝛿 terminates when starting from 𝑠, performing it implies 𝑅r𝑠1s.

As the GOLOG language, its proof system HG is parametric in a basic action theory. Liu
used the symbol 𝒟 to denote an basic action theory (i.e. a dynamic world), and HGp𝒟q to
denote the proof system for this dynamic world. For example, the block world will have one
proof system 𝒟1, and the suitcase example (presented in the introduction) defines 𝒟2. HG is
based on inference rules and primitive axioms, like the following:

(EF) We can quickly define the frame problem as avoiding specifying the non-effects of
actions. These Effect and Frame Axioms come from the work of Reiter about frame
([Rei01]), and have not to be written by hand (HG use them without having to generate
them):

tΦ𝐹 pÝÑ𝑥 , 𝐴pÝÑ𝑦 qqu 𝐴pÝÑ𝑦 q t𝐹 pÝÑ𝑥 qu, (3.7)
t Φ𝐹 pÝÑ𝑥 , 𝐴pÝÑ𝑦 qqu 𝐴pÝÑ𝑦 q t 𝐹 pÝÑ𝑥 qu, (3.8)

Lilian Besson 13/36 ENS Cachan

Internship thesis 2012/13

where 𝐴 is an action symbol, 𝐹 is a relational fluent with successor state axiom 𝐹 pÝÑ𝑥 , 𝐷𝑜p𝑎, 𝑠qq �
Φ𝐹 pÝÑ𝑥 , 𝑎qr𝑠s. As their names imply it, these axioms embed a first solution to the frame
problem, for primitive actions only; because we will have axioms like t𝐹 u 𝐴 t𝐹 u (resp.
t 𝐹 u 𝐴 t 𝐹 u) if performing 𝐴 does not change the truth value of 𝐹 (resp. of 𝐹).

(FF) Fluent-Free Axiom, where 𝑄 does not contain any predicates, i.e. is of the form
ÝÑ𝑥 � ÝÑ𝑦 or ÝÑ𝑧 � ÝÑ𝑤 :

t𝑄u 𝛿 t𝑄u. (3.9)

(TA) These Test Action Axioms are the natural specifications for a requirement of the form
𝜑?, with any 𝑅:

t𝜑 ñ 𝑅u 𝜑? t𝑅u. (3.10)

Inference rules We quote here all the inference rules except PAR and RC. We expose only
the rules used for the specifications proved after (c.f. the proofs 1, 2 and 3). The first two rules
are only syntactical, and it is important to notice the subtle difference between them: (Seq)
requires to have a shared 𝑅 as 𝑃𝑜𝑠𝑡p𝛿1q and 𝑃𝑟𝑒𝑐p𝛿2q, because the sequence 𝛿1; 𝛿2 does 𝛿1 then
𝛿2; while (NA) requires to have the same specification for the two parts 𝛿1 and 𝛿2, because it
does 𝛿1 or 𝛿2 “simultaneously”.

2: Sequence (Seq)
t𝑃 u 𝛿1 t𝑅u t𝑅u 𝛿2 t𝑄u

t𝑃 u 𝛿1;𝛿2 t𝑄u

3: Non-deterministic Action (NA)
t𝑃 u 𝛿1 t𝑄u t𝑃 u 𝛿2 t𝑄u

t𝑃 u 𝛿1|𝛿2 t𝑄u

Figure 3: Some structural rules for the GOLOG programming language.

Before introducing the next rules, we need the notion of executable truth: for a pff
𝑄, we write l𝑄 as a formula true iff 𝑄 is true in all executable situations (i.e. l𝑄

def
�

@𝑠. p𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒p𝑠q ñ 𝑄r𝑠sq).
Therefore, we give an additional axiom (Inv), parametric in 𝒟 because it uses the knowledge
contained in the theory as domain constraints or facts assumed true in the initial state (i.e.
included in Γ0):

(Inv) “Invariant Oracle Axiom”: l𝑄, if the theory 𝒟 is sufficient to prove l𝑄. For example,
in HGp𝒟1q, we have l pOnp𝑥, 𝑦q ñ Onp𝑦, 𝑥qq because it is a domain constraint.

4: Conjunction (Conj)
t𝑄1u 𝛿 t𝑅1u t𝑄2u 𝛿 t𝑅2u

t𝑄1 ^𝑄2u 𝛿 t𝑅1 ^𝑅2u

5: Disjunction (Disj)
t𝑄1u 𝛿 t𝑅1u t𝑄2u 𝛿 t𝑅2u

t𝑄1 _𝑄2u 𝛿 t𝑅1 _𝑅2u

6: Consequence (Cons)
l p𝑄 ñ 𝑄1q t𝑄1u 𝛿 t𝑅1u l p𝑅1 ñ 𝑅q

t𝑄u 𝛿 t𝑅u

Figure 4: Classical logical rules. (Cons) uses a l to consider ñ only in executable situations.

Lilian Besson 14/36 ENS Cachan

Internship thesis 2012/13

The next rules DI and @I are the usual introduction of variables quantifiers (from Hoare
logic):

7: Introduction of D (DI)
t𝑄u 𝛿p𝑥q t𝑅u

tD𝑥. 𝑄u 𝛿p𝑥q tD𝑥. 𝑅u

8: Introduction of @ (@I)
t𝑄u 𝛿p𝑥q t𝑅u

t@𝑥. 𝑄u 𝛿p𝑥q t@𝑥. 𝑅u

Figure 5: D𝑥 and @𝑥 Introduction rules with 𝑥 free in 𝑄, 𝑅..

The next two rules (NAA) and (NI) are relatively straightforward, and they state that
iterating or choosing an argument does not change the specification, where 𝛿p𝑥q denotes a
GOLOG program with a free variable 𝑥.

9: Non-deterministic Action Argument (NAA)
t𝑄u 𝛿p𝑥q t𝑅u

t𝑄u p𝜋𝑥q𝛿p𝑥q t𝑅u

10: Non-deterministic Iteration (NI)
t𝑄u 𝛿 t𝑅u

t𝑄u 𝛿� t𝑅u

Figure 6: Non-deterministic rules (with 𝑥 free in 𝑄, 𝑅.).

The last rule (IK) we want to present is there to add a certain modularity by allowing
to reuse a specification already proven, only where it is encountered exactly as proven. So,
the invocation rule is designed to propagate the environment 𝐸𝑛𝑣 in every sub-parts of a
procedure.

Informally, it just states that when we have t𝐸𝑛𝑣; 𝑃 pÝÑ𝑣 qu, we can replace every pro-
cedure call 𝑃𝑖pÝÑ𝑣𝑖 q in 𝑃 pÝÑ𝑣 q by its contextualized version t𝐸𝑛𝑣; 𝑃𝑖pÝÑ𝑣𝑖 qu This is denoted by
𝑃 pÝÑ𝑣 qr𝑑 Ð t𝐸𝑛𝑣; 𝑑us with r𝑑 Ð 𝑑1s to substitute 𝑑 by 𝑑1 in 𝛿.

11: Invocation Rule(IK)
t𝑄u 𝑃 pÝÑ𝑣 qr𝑃𝑖pÝÑ𝑣𝑖 q Ð t𝐸𝑛𝑣;𝑃𝑖pÝÑ𝑣𝑖 qus t𝑅u

t𝑄u t𝐸𝑛𝑣; 𝑃 pÝÑ𝑣 qu t𝑅u

Figure 7: Programming compositionality (without recursion).

Finally, we precise that GOLOG supports mutually recursive procedures, but we do not use
recursion in our examples, and we think writing (PAR) or (RC) is confusing. Indeed, we are
mainly concerned about how modular this proof system can be, and in the next section we prove
its non-modularity in a counter-example.

Lilian Besson 15/36 ENS Cachan

Internship thesis 2012/13

4 Pointing out the absence of modularity for HG

Here we consider again the block world, and we use our first simple GOLOG program MoveOr2,
to define two other programs: MoveOr3 and MoveThen. We will use Liu’s proof system to prove
the specification for MoveOr2 (Lemma 1), and when we prove the specification of MoveThen we
will show that this proof system is not really modular, because we will have to reuse the body
of MoveOr2 to prove MoveThen.

4.1 A procedure is not like a primitive action

We can use the intermediate procedure MoveOr2 to define two new procedures:

MoveOr3 is designed to move non-deterministically a block 𝑥 onto another, chosen between 𝑦, 𝑧,
or 𝑤:

Proc MoveOr3p𝑥, 𝑦, 𝑧, 𝑤q : MoveOr2p𝑥, 𝑦, 𝑧q | Movep𝑥, 𝑤q EndProc; (4.1)

MoveThen is designed to move 𝑥 on 𝑦 or on 𝑧 (non-deterministically), and then move it to 𝑤:

Proc MoveThenp𝑥, 𝑦, 𝑧, 𝑤q : MoveOr2p𝑥, 𝑦, 𝑧q ; Movep𝑥, 𝑤q EndProc; (4.2)

We want to prove the following (partial) specifications:

Lemma 12. 𝐸𝑛𝑣, 𝐸𝑛𝑣1 are the environments defining MoveOr3 and MoveThen, and the com-
mon precondition 𝑄Or3

def
� 𝑄Then

def
� 𝑄

def
� Clearp𝑥q^ p𝑥 � 𝑦q^ Clearp𝑦q^ p𝑥 � 𝑧q^ Clearp𝑧q^

p𝑥, 𝑦, 𝑧 � 𝑤q ^ Clearp𝑤q:

t𝑄Or3u 𝐸𝑛𝑣; MoveOr3p𝑥, 𝑦, 𝑧, 𝑤q t

def
�𝑅Or3hkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj

Onp𝑥, 𝑦q _ Onp𝑥, 𝑧q _ Onp𝑥, 𝑤qu (4.3)
t𝑄Thenu 𝐸𝑛𝑣1; MoveThenp𝑥, 𝑦, 𝑧, 𝑤q tOnp𝑥, 𝑤qlooomooon

def
�𝑅Then

u (4.4)

Let recall here that Movep𝑥, 𝑤q is a primitive action, but MoveOr2p𝑥, 𝑦, 𝑧q is a call to an
intermediate procedure, and so they only differ by the fact that we have the Effect and Frame
Axiom (EF) for Movep𝑥, 𝑤q (with 𝐴 � MoveToBack), but not for MoveOr2p𝑥, 𝑦, 𝑧q. We can
therefore easily describe non-effects for Movep𝑥, 𝑤q, but not for a non-primitive element such
MoveOr2p𝑥, 𝑦, 𝑧q.

4.2 Proving MoveThen to point out the lack of procedural abstraction for HG

We quickly prove here the partial specification for the GOLOG procedures MoveOr2, MoveOr3 and
MoveThen, by using the HG proof system presented before (in section 3.3).

Lilian Besson 16/36 ENS Cachan

Internship thesis 2012/13

4.2.1 A partial specification for MoveOr2

Proof 1 (Proof of Lemma 1). We shorten this proof tree and the next ones by using 𝜙p𝑎, 𝑏q
def
�

ΦMovep𝑎, 𝑏q � Freep𝑎q ^ 𝑎 � 𝑏 ^ Freep𝑏q to denote the precondition for the primitive action
Movep𝑎, 𝑏q.

We use (NA) to separate 𝛿1 and 𝛿2. Then we use (Cons) to weaken the preconditions
(𝑄Or2 becomes 𝜙p𝑥, 𝑦q or 𝑄Or2 becomes 𝜙p𝑥, 𝑧q) and strengthen the postcondition (𝑅Or2 becomes
Onp𝑥, 𝑦q or Onp𝑥, 𝑧q). Finally, we use the Effect Axiom (EF) for 𝐹 � On and 𝐴 � Move.

NA
Cons

EF
t𝜙p𝑥, 𝑦qu Movep𝑥, 𝑦q tOnp𝑥, 𝑦qu

t𝑄Or2u Movep𝑥, 𝑦q t𝑅Or2u

t𝜙p𝑥, 𝑧qu Movep𝑥, 𝑧q tOnp𝑥, 𝑧qu
EF

t𝑄Or2u Movep𝑥, 𝑧q t𝑅Or2u
Cons

t𝑄Or2u Movep𝑥, 𝑦q|Movep𝑥, 𝑧q t𝑅Or2u

4.2.2 A partial specification for MoveOr3

Proof 2 (Proof scheme for MoveOr3 (first part of Lemma 12)). We keep here the notation
introduced for the first proof 1. We use (NA) to separate the left and the right part of the |,
then the right part has been done previously for the first proof, and the left part is very similar.
We use once (Cons) with lp𝑄Or3 ñ 𝑄Or2q and lp𝑅Or2 ñ 𝑅Or3q We use the lemma 12 with the
invocation rule to conclude.

NA
Cons

IK
Using Lemma 1 but not reproving it
t𝑄Or2u MoveOr2p𝑥, 𝑦, 𝑧q t𝑅Or2u

t𝑄Or3u Movep𝑥, 𝑦q t𝑅Or3u

t𝜙p𝑥, 𝑤qu Movep𝑥, 𝑤q tOnp𝑥, 𝑤qu
EF

t𝑄Or3u Movep𝑥, 𝑤q t𝑅Or3u
Cons

t𝑄Or3u MoveOr2p𝑥, 𝑦, 𝑧q|Movep𝑥, 𝑤q t𝑅Or3u

4.2.3 A partial specification for MoveThen

Proof 3 (Proof scheme for MoveThen). Now, we have to use the rule (Seq) to separate 𝛿1; 𝛿3.

Seq
Cons

?!?

t𝑄Or2u MoveOr2p𝑥, 𝑦, 𝑧q t𝑅Or2u

?!?
t𝑄Or2 ^ 𝑖𝑛𝑣u MoveOr2p𝑥, 𝑦, 𝑧q t𝑅Or2 ^ 𝑖𝑛𝑣u

t𝑄Thenu Movep𝑥, 𝑦q t𝑃 u

t𝜙p𝑥, 𝑤qu Movep𝑥, 𝑤q tOnp𝑥, 𝑤qu
EF

t𝑅Or2 ^ 𝑃 u Movep𝑥, 𝑤q t𝑅Thenu
Cons

t𝑄Thenu MoveOr2p𝑥, 𝑦, 𝑧q;Movep𝑥, 𝑤q t𝑅Thenu

Therefore, the precondition 𝜙p𝑥, 𝑤q � 𝑄 have to be available as a precondition for 𝛿3, and
so the rule (Cons) shows that we need to deduce the conservation of 𝑖𝑛𝑣 from the proved
specification of MoveOr2:

t𝑄Or2 ^ Clearp𝑥q ^ p𝑥, 𝑦, 𝑧 � 𝑤q ^ Clearp𝑤qu MoveOr2p𝑥, 𝑦, 𝑧q t𝑅Or2 ^ Clearp𝑥q ^ p𝑥, 𝑦, 𝑧 � 𝑤q ^ Clearp𝑤qu(4.5)

which looks like a frame axiom for the conserved property Clearp𝑥q^p𝑥, 𝑦, 𝑧 � 𝑤q^Clearp𝑤q def
�

𝑖𝑛𝑣, and with an effect part for t𝑄Or2u MoveOr2p𝑥, 𝑦, 𝑧q t𝑅Or2u for the non-primitive procedure
MoveOr2. This Liu-triple says that with 𝑥, 𝑦, 𝑧 � 𝑤, if MoveOr2p𝑥, 𝑦, 𝑧q can be performed, it

Lilian Besson 17/36 ENS Cachan

Internship thesis 2012/13

does not change the facts Clearp𝑥q^Clearp𝑤q, i.e. it says that 𝛿11 does not touch to a disjoint
(𝑥, 𝑦, 𝑧 � 𝑤) part of the domain (in this case, Clearp𝑤q).

But, if we try to prove this without using the body of MoveOr2, we see that no rule can be
applied. Indeed, the only rules permitting to show the conservation of a property are (FF),
but only for properties of the form ÝÑ𝑢 � ÝÑ𝑣 (i.e. without any fluents), and (EF), which is
only available for primitive actions 𝐴. So, the only way to prove (4.5) is to use the body of
MoveOr2, as in proof 1, and to use twice the Frame Axiom (EF) with 𝐹 � Clear and ÝÑ𝑋 � 𝑤
or ÝÑ𝑋 � 𝑥 for 𝛿1 and 𝛿2. l

So, as we said before, we can prove a specification for MoveOr3 without using its body,
because the two parts of its body (𝛿11 and 𝛿3), are separated with a “|” and are disjoint enough
to be treated separately. MoveOr3 differs from MoveThen by having two parts separated with a
“;” – so they are not really separated: 𝛿11 is executed after 𝛿3.

4.3 Diagnostic

This lack of modularity comes from the solution against the Frame problem used in HG. In
[Liu02], Liu used the solution proposed by Reiter ([LR97, Rei01]), which consists of adding one
Effect and Frame Axiom for every fluent 𝐹 , where case-analyzes over the primitives actions
are allowed (of the form

�
𝑎 � 𝐴pÝÑ𝑥 q ^ . . . q). Therefore, Reiter’s solution to the frame problem

works well as long as we use only primitives actions, like in the proof of MoveOr2. But when we
define intermediate procedure,we want to be able to specify it and to prove it in a natural way
by giving Liu triples only for effects.

Hence, when we want to intermediate procedures them to write more complicated programs,
we pointed out that this approach is not sufficient to describe the non-effects of programs (i.e.
to face the frame problem): indeed in our example we encountered difficulties to prove that
MoveOr2p𝑥, 𝑦, 𝑧q preserve the property Clearp𝑤q when 𝑥, 𝑦, 𝑧 � 𝑤.

4.4 A solution for this lack of modularity?

We can describe effects and non-effects with the (EF) axioms, but only for the primitive
actions 𝐴, because the Φ𝐹 are written when the user axiomatizes her dynamic world, i.e.
when she provides the primitive actions as the smallest component of GOLOG programs for this
world. But axiomatize the world and use it to write procedure have to be a disjoint process.
Thus, this mean that we cannot propose to update all the Φ𝐹 when we define a new procedure
(like MoveOr2). Moreover, propose to change each Φ𝐹 implies to prove these modifications, so
its requires (in the worst case) to prove one triple per fluents, for every new GOLOG procedure.
Therefore this idea is not elegant, and in practice it will not scale.

On the other hand, in this example, we could require to extend the Lemma 1 and embed
something like a Effect and Frame Axiom (rule (EF)) for the new procedure MoveOr2. We
can ask to prove two axioms for every fluent 𝐹 : one for the effects of the new procedure on 𝐹
and another for the effects on 𝐹 . In fact, if we prove a frame axiom for each fluent and for
every new procedures, it will be sufficient to propagate properties where it is needed (like in
proof 3 when we asked MoveOr2 to conserve Clearp𝑤q). But here again this possibility is not
applicable, because it requires to prove 27𝐹 just to define and specify one new procedure.

Lilian Besson 18/36 ENS Cachan

Internship thesis 2012/13

Therefore, our simple example of GOLOG procedures pointed out a serious lack of composi-
tionality in the HG proof system, and in fact a real weakness of the situation calculus against
the frame problem. This weakness is mainly due to Reiter’s solution to the frame problem
([Rei01]), because writing Frame Axioms with a case-by-case analysis over actions can makes
the update of an axiomatization laborious, especially when describing the non-effects of the
form “𝐹 p

ÝÑ
𝑡 q is still true after applying 𝐴pÝÑ𝑥 q if 𝐹 p

ÝÑ
𝑡 q was true before applying it and if 𝐴pÝÑ𝑥 q

does not modify 𝐹 p
ÝÑ
𝑡 q”.

Lilian Besson 19/36 ENS Cachan

Internship thesis 2012/13

5 A more concrete language and a planning solver

We have presented the two domains of AI planning and formal verification, and the associated
formalisms: the situation calculus, GOLOG and Liu’s proof system. Now we will focused on our
contribution about planning. We will present the STRIPS language as a subset of situation
calculus, and shortly introduce the tools we used to make automated simulations, designed to
show some limitations of the tool and the formalism. And finally we present some ideas of
solutions, partly proven correct and efficient.

5.1 STRIPS as a subset of the situation calculus with a type system

The STRIPS formalism, originally developed at Stanford, by Fikes and Nilsson [FN72], is also a
language to describe changing world, but it has the advantage of being more concrete than the
situation calculus. The simplest way to view the STRIPS language, and its norm (PDDL), is to
consider it as a zeroth-order restriction of the situation calculus, with the possibility to use a
simple type system (also zeroth-order types, often called sorts).

We can use types for the sort object, as block for example, and then we give a type for
every objects and constants, as 3 blocks A, B and C. This type system is often called a “tagging
type system”, because the declaration of typed objects consists at giving one label for each
objects and this is written as follow: A B C - block.

Now we require predicates to be typed, like functions in functional languages such the
𝜆-calculus or OCaml, or like procedures in the C language. For instance, with a C-like formalism,
the relational fluents for the block world become:

Clearpblock b1q, Onpblock b1, block b2q, andOnFloorpblock b1q. (5.1)

In STRIPS a state is a collection of facts, known to be true. There is a huge restriction made
here: the situation calculus allow to add domain constraints as first-order formulas in Γ0, but
the STRIPS language can just consider zeroth-order facts. Therefore, if a state is a database
of knowledge about the world, we have to clarify that a fact not present in this database is
assumed as false. Again, the only difference made by STRIPS when describing actions is to add
the tagging type system: now an action is declared with a typed signature. For instance, with
a C-like formalism, the actions for the block world become:

Movepblock b1, block b2q, andPutFloorpblock b1, block b2q. (5.2)

Using STRIPS and not the situation calculus means we can no longer use undeclared variables,
i.e. we can no longer write ΠPutFloorp𝑥q

def
� D𝑦. Onp𝑦, 𝑥q. This is a huge limitation, because we

have to adapt its signature to contain each variables used to describe its precondition or its
effects. For example, that is why we had to add a second argument to PutFloor, to represent
the block b2 on which b1 is. We no longer use Π𝐴 to now use 𝑃𝑟𝑒𝑐p𝐴q. For the block worlds,
the precondition can be rewritten as follow:

ΠMovep𝑏1, 𝑏2qq � Clear(b1)^ Clear(b2)^ OnFloor(b1). (5.3)

So, states are sets of zeroth-order formulas describing the world, and actions can be applied
to transform a state into another. Another difference between the situation calculus and STRIPS
is the point-of-view adopted to describe the effects of an action.

Lilian Besson 20/36 ENS Cachan

Internship thesis 2012/13

We already presented the intrinsic duality hidden here (c.f. remark 3), and STRIPS uses one
formula for each action when the situation calculus require one axiom for each fluent. With
our block example, we expect the action Move to actually move the block b1 on top of b2. So,
performing this action in a state Γ will change it by adding the fact On(b1, b2), and this is
done by writing the following positive postcondition:

𝑃𝑜𝑠𝑡𝑎𝑑𝑑pMove(b1, b2)q � On(b1, b2). (5.4)

But, in Γ there will still be OnFloor(b1, l), with some l, and Clear(b2). And, remember,
a state Γ is a coherent collection of fact, that means with no contradiction in it, so it is not
acceptable to have both On(b1, b2) and Clear(b2) in the same time. This shows that we
need to be able to remove facts from the database, when performing an action. This is done
by adding negative literals in the postcondition, i.e. by writing a negative postcondition,
like this one:

𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒pMove(b1, b2)q � Clear(b2)^ OnFloor(b1). (5.5)

A postcondition is a conjunction of positive literals, called the add list and a conjunction of
negative literals, called the delete list. Thus, we have to impose a condition on the delete list,
because performing an action cannot result as deleting facts in our database Γ that were not
there before. So, a postcondition can use a negative literal iff it was present in the precondition
of the action. To continue with our example, this is indeed the case for the action Move,
described by the positive post (5.4) and the negative post (5.5). Here, either we keep using two
statements 𝑃𝑜𝑠𝑡𝑎𝑑𝑑 and 𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒, or we use just one 𝑃𝑜𝑠𝑡, defined like this:

𝑃𝑜𝑠𝑡p𝑎q
def
�

�
� ©

𝑓P𝑃 𝑜𝑠𝑡𝑎𝑑𝑑p𝑎q

𝑓

�

^

�
� ©

𝑓P𝑃 𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒p𝑎q

 𝑓

�

, (5.6)

with the condition that all the 𝑓 are positive literals, which used only variables that are argument
of 𝑎.

The description of an action is like a Hoare triple Now, we can describe an action
𝑎p𝑥1, . . . , 𝑥𝑛q by its precondition 𝑃𝑟𝑒𝑐p𝑎q and its postcondition 𝑃𝑜𝑠𝑡p𝑎q. This is like a Hoare
triple: t𝑃𝑟𝑒𝑐p𝑎qu 𝑎pÝÑ𝑥𝑖q t𝑃𝑜𝑠𝑡p𝑎qu. Remember that in the situation calculus, we do not use
𝑃𝑜𝑠𝑡p𝑎q to describe effects, and thus it is normal that such triples did not appear as axioms for
the proof system HG.

Then, we said that 𝑎 can be applied in a state Γ if from Γ𝑖 we can deduce 𝑃𝑟𝑒𝑐p𝑎q, with a
certain instantiation 𝐼 of ÝÑ𝑥𝑖 (i.e. each 𝑥𝑖 is mapped by 𝐼 to an object or a constant 𝑦𝑖 defined
in the domain), and this is written Γ𝑖(𝐼𝑃𝑟𝑒𝑐p𝑎q.

So, if Γ𝑖 (𝐼 𝑃𝑟𝑒𝑐p𝑎q then applying 𝑎 change Γ𝑖 to Γ𝑖�1 where we add to Γ𝑖 the facts in 𝑎’s
add-list (i.e. 𝑃𝑜𝑠𝑡𝑎𝑑𝑑p𝑎q) and remove the facts in 𝑎’s delete-list (i.e. 𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒p𝑎q) :

Γ𝑖�1
def
� Γ𝑖 Y 𝑃𝑜𝑠𝑡𝑎𝑑𝑑p𝑎p

ÝÑ𝑦 qqz𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒p𝑎p
ÝÑ𝑦 qq. (5.7)

This define the transition relation 𝑎,𝐼
 , for database Γ which can be read as “applying

the action 𝑎, with arguments given by the interpretation 𝐼”; and the function 𝐴𝑝𝑝𝑙𝑦 by
𝐴𝑝𝑝𝑙𝑦p𝑃𝑜𝑠𝑡p𝑎, 𝐼q, Γ𝑖q

def
� Γ𝑖�1.

Lilian Besson 21/36 ENS Cachan

Internship thesis 2012/13

A planning domain is the axiomatization of a dynamic world, and it is a declaration of
types, constants tagged with types, predicates and actions, with typed signatures.

A planning problem is a declaration of a domain, a possibly empty list of objects, tagged
with types, an initial database of facts Γ0, and a goal Γ𝑔𝑜𝑎𝑙. Solving this problem mean finding a
sequence7 p𝑎𝑗 , 𝐼𝑗q0¤𝑗¤𝑛 of actions 𝑎𝑗 , instantiated by an interpretation 𝐼𝑗 , such that Γ𝑔𝑜𝑎𝑙 � Γ𝑛

and @𝑗. Γ𝑗
𝑎𝑗 ,𝐼𝑗
 Γ𝑗�1, with the transition relation 𝑎,𝐼

 defined in (5.7).
A solution to the first planning problem we introduced can be automatically generated,

with the tool we used for our simulation, the only difference is the syntax used to represent this
path, here we use the predicate calculus (i.e. classical zeroth-order logic), and the tool will
produce a solution written in a Lisp-like syntax.

A complete axiomatization of the block world The appendix B presents the complete
axiomatization for this basic block world, written with the PDDL syntax. It also includes two
problems, figure 16 defines the first goal (A on B on C), and figure 17 defines the second goal (A
on B on C on A).

BNF grammar A more syntactical approach could be done, but it is not very interesting to
simply give here a grammar used to described domains and problems. The STRIPS language has
been developed and used since 40 years, and nowadays an “official” version of this language has
been proposed for the IPC competition. The result of this norm is a very clean BNF grammar.
If the reader is curious about it, see [Kov11].

5.2 Tools used for our simulations

All the experiments were made on my personal machine, a 64-bits PC running on Ubuntu
12.04, without parallelization, so with one core, running at 3.2 GHz, and with 2 Go of Ram.

In verification, different kinds of tools exist, and in particular: proof inference tools (designed
to find a prove for a program, like Z3 or a type for a program like the in OCaml) and proof
checkers (designed to verify a given proof and possibly give informations to help the programmer
to fix it, like a prove assistant like Coq). In AI, theorem prover becomes planning solver (also
called planner), and proof checker becomes plan validation tool (also called validator).

A planner: pyperplan To solve the planning problem, with a domain and a problem written
in PDDL, we used the state-of-the-art solver pyperplan (see [Mal11] for more details).

pyperplan is a lightweight STRIPS planner written in Python 3, developed for the planning
practical course at Albert-Ludwigs-Universität Freiburg during the winter term 2010/2011 and is
an open-source software. It supports the following PDDL fragment: deterministic and positive8

STRIPS without action costs, and without domain constraints.
Basically, pyperplan use two files: domain.pddl, defining the domain (types, predicates,

actions) and task.pddl, defining the planning problem (objects, initial and goal state). For
an example of such files, see the appendix B. So, with this two files, pyperplan try to solve

7This sequence can be empty, if Γ0 (Γ𝑔𝑜𝑎𝑙, 𝑛 � 0. So in general, 𝑛 ¥ 0.
8See section 5.3.1 for an explanation of this term.

Lilian Besson 22/36 ENS Cachan

http://releases.ubuntu.com/precise/
http://releases.ubuntu.com/precise/
http://python.org/download/

Internship thesis 2012/13

the path-finding problem. If there is a solution, it will be written to task.pddl.soln, in the
Lisp-like syntax; and if there is none, a warning message is printed.

A validator: validate (VAL) Even if pyperplan seems to be sure9 of the solution it gives,
it allows the use of an external path validation tool. We used the state-of-the-art validate
tool. This plan validation software is also freely available and open-source (see [LF11] for more
details).

5.3 Sub-language accepted by pyperplan

Here we present some experiments we made with the tool pyperplan and the STRIPS formalism.
Those experiments were especially designed to point out some limitations of the tool, but also
a few weaknesses of the language.

5.3.1 Positive-STRIPS seems to be a serious limitation

One limitation pyperplan that it accepts only positive-STRIPS. This sub language does not
allow to use a negative literal (𝑃 pÝÑ𝑥𝑗q) in a state Γ𝑖; nor in the goal Γ𝑔𝑜𝑎𝑙; neither in an action’s
precondition; nor in an action’s delete-list postcondition (𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒) which is not present in its
positive form in the precondition (i.e. the delete-list can only delete facts explicitly assumed as
true by 𝑃𝑟𝑒𝑐).

Let us consider the classical Yale Shooting problem. We consider two types, man and
gun, two predicates, Loaded(gun) to say that a gun is ready to shoot and Alive(man) to
say that the man is still alive, and two actions Shoot(man, gun) to kill the man with a
loaded gun, and Load(gun) to load the gun. An axiomatization in general-STRIPS could
be 𝑃𝑟𝑒𝑐pLoadp𝑔qq def

� Loadedp𝑔q, 𝑃𝑟𝑒𝑐pShootp𝑚, 𝑔qq
def
� Alivep𝑚q ^ Loadedp𝑔q for precondi-

tions and 𝑃𝑜𝑠𝑡pLoadp𝑔qq def
� Loadedp𝑔q, 𝑃𝑜𝑠𝑡pShootp𝑚, 𝑔qq

def
� Alivep𝑚q ^ Loadedp𝑔q for

postconditions.
Now let try to axiomatize it naively in positive-STRIPS. For the action Load, if we have a

predicate Loaded(g), it has to be in negative form in 𝑃𝑟𝑒𝑐pLoadq, and this is not allowed.
Otherwise, if we have a predicate NotLoaded(g), we can put it in positive-form in 𝑃𝑟𝑒𝑐pLoadq,
but for 𝑃𝑜𝑠𝑡pLoadq, we cannot use NotLoaded(g).

Whereof, this is a huge limitation, and an example as simple as the Yale Shooting problem
cannot be naively axiomatized in positive-STRIPS (at least, without adding other predicates
or other types). We have a systematic and efficient solution for this limitation, presented in
section 6.2.

5.3.2 Updating an axiomatized world is not so easy

Let us imagine a colored block world, defined with the type color; objects of type color like
red, blue or yellow; a predicate Color(block, color) giving the current color of a block;

9This correctness depends on which heuristic (option -H) and search algorithm (option -s) is used, an
inefficient but sure choice is to use a breath-first search and no heuristic, to at-least by theoretically sure of the
given solution (only theoretically, we never are certain of the absence of bugs in the solver!).

Lilian Besson 23/36 ENS Cachan

Internship thesis 2012/13

and one action Paint(cu, co, co’), with 𝑃𝑟𝑒𝑐pPaintq � Color(cu, co), 𝑃𝑜𝑠𝑡𝑎𝑑𝑑pPaintq �
Color(cu, co’), 𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒pPaintq � Color(cu, co). If we want to join this colored block
world with the previously defined block world, we add the facts Color(A, red), Color(B,
blue) and Color(C, yellow) to the initial fact database Γ0.

Then, there is no problem, we can move blocks (using Move or PutFloor) without having
to consider their colors and we can paint them (with Paint) without having to consider their
relatives positions.

But if now we want to say that the floor is a huge paint tray, of one color (red for example,
written with the new predicate ColorFloor(color)), we would like to be able to update the
action PutFloor, because putting a block to the floor will make it become red. So, for this “new
version” of PutFloor, we have to add the following fact in its precondition: ColorFloor(co’),
to say that co’ is the color of the floor, and Color(b1, co), to be able to delete this fact in
the 𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒 (remember, we require to delete only facts present in the precondition);

And we also have to update both the positive and negative postconditions: we add to
𝑃𝑜𝑠𝑡𝑎𝑑𝑑: Color(co’), the block takes now the color of the floor; we add to 𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒: Color(b1,
co), to delete the old color, One of the limitation of PDDL is the absence of free variable in
𝑃𝑟𝑒𝑐p𝑎q and 𝑃𝑜𝑠𝑡p𝑎q.
Here, we used co’ to be the floor’s color, and co to be b1’s color. So, we have to change the
signature for this action, and it becomes PutFloor(?b1 ?b2 - block ?co ?co’ - color)
(in the Lisp-like syntax).

This simple experiment showed that if it is done naively, adding 2 new elements in the block
world (block color and floor color) requires to re-write all the moving actions. So this approach
requires to change some previously defined actions (the old Move for instance). Indeed, this
new version of PutFloor does not have the same signature, so everything we have proven with
the first version is not valid anymore. Thus, the main point to keep in mind is that the basic
way to update an axiomatization is not very efficient, and it is not modular. The question of
how to easily update en existing axiomatization is in-fact related the question of procedural
modularity, already discussed before.

The duality predicate-action In the in remark 3, we presented a duality between effect
axioms (EF) (one Φ𝐹 for each 𝐹 , the choice made in the situation calculus) and action
postcondition (one 𝑃𝑜𝑠𝑡p𝑎pÝÑ𝑥 qq for each 𝑎, the choice made in STRIPS). We use this paragraph
to remark that each choice is strong against one kind of update and weak against the other :
(EF) is efficient when we add a new fluent 𝐹 1, we just have to write a new Φ𝐹 1 , but is weak

when we add a new action 𝑎1, because in the worst case we have to change each previous
Φ𝐹𝑗 to add a case for 𝑎1.

Post(a) is efficient when we add a new action 𝑎1, we just have to write a new 𝑃𝑜𝑠𝑡p𝑎1q, but is
weak when we add a new fluent 𝐹 1, because in the worst case we have to change each
previous 𝑃𝑜𝑠𝑡p𝑎𝑗q to express their effects on 𝐹 1.

5.4 pyperplan does not scale well?

In the STRIPS point-of-view, there is a frame hypothesis, implicitly given when we described
the relation 𝑎,𝐼

 . And in the situation calculus point-of-view, this hypothesis is explicitly given

Lilian Besson 24/36 ENS Cachan

Internship thesis 2012/13

by the Effect and Frame Axioms. Applying an action 𝑎pÝÑ𝑥 q only change the knowledge set Γ
by adding the facts in 𝑃𝑜𝑠𝑡𝑎𝑑𝑑p𝑎q and removing the facts in 𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒p𝑎q. So, a fact 𝐹 pÝÑ𝑦 q not
concerned by 𝑃𝑜𝑠𝑡p𝑎q will not be modified by 𝑎.

This frame hypothesis is already a good idea, because for planning it works, and the STRIPS
formalism is relatively concise thanks to this hypothesis. But it is not enough to scale when we
describe large worlds, and it is not enough to have a good modularity. For example, if we want
to describe a robot’s actions for the first floor and the second floor of a building, we would like
to say that every things happening in the two floors are disjoint. Therefore, for planning, if the
initial state and the goal state does not include facts about the second floor, the planner should
be able to find a plan only in the first floor world. But will it be able to do it as efficiently as
in there was only one floor? The benchmarks presented below show that it is not the case.

About benchmarking pyperplan We present here some of the benchmarks we made,
with the solver pyperplan. This simulation was made with the block world, axiomatized
a little differently that the one included in the appendix: this version uses 4 actions and
4 relational fluents. All the files used for the simulations are available on-line, on my web
page http://www.dptinfo.ens-cachan.fr/~lbesson/stageM1/benchmarks/. We used the
following GNU Bash command to time the simulation: time pyperplan.py -H hff -s gbf
domain.pddl task.pddl.

First experiment: increasing the number of objects We consider one robot, with the
goal of building a tower of 𝑛 blocks (i.e. Γ𝑔𝑜𝑎𝑙p𝑛q

def
� OnpB𝑛, B𝑛�1q, . . . , OnpB2, B1q). And we

present in the next array the time needed by pyperplan to solve a planning problem defining
more and more objects. The file used are blocks/task*.pddl.

Goal file Number of objects n Computation time (in
s)

Lenght of the plan Optimal
plan

task01 4 0.130 6 6
task13 8 1.880 34 14
task33 16 493.097 168 30
task35 17 Still running! No plan found yet 32

Figure 8: A goal more and more complicated in the same world.

This simulation (figure 8) shows that increasing the complexity of the goal increases the
exponentially the time required to solve the planning problem. And the length of the plan
discovered by pyperplan grows also exponentially, even if the length of the optimal plan grows
linearly (with 𝑛 objects, there is a solution of length 2p𝑛� 1q for Γ𝑔𝑜𝑎𝑙p𝑛q in this second version
of the block world). So, for too sophisticated or too big goals, the tool is not usable; in other
words, it does not scale very well.

Second experiment: cross-product of disjoint worlds We consider now different robots,
each operating on a different table. Each pair probot, tableq is a disjoint block world. This
is like making a Cartesian product of vectorial sub-space in linear algebra: each sub-space

Lilian Besson 25/36 ENS Cachan

http://www.dptinfo.ens-cachan.fr/~lbesson/stageM1/benchmarks/

Internship thesis 2012/13

operates independently of the others, but they are considered unified in one big vectorial space.
The file used are in the subdirectories blocks, block_double, block_triple, and block_4.

Goal file (.pddl) Number of ob-
jects

Computation time
(in s)

Lenght of the
plan

Optimal
plan

task01 4 0.130 6 6
task04-fixedgoal 5 0.133 6 6
task35-fixedgoal 30 0.149 6 6

Figure 9: Growing number of objects but constant goal in the same world.

Number of ob-
ject

Number of
world

Computation time (in
s)

Lenght of the plan Optimal
plan

4 1 0.130 6 6
4,0 2 0.133 6 6
4,0,0 3 0.135 6 6
4,0,0,0 4 0.137 6 6

Figure 10: Disjoint-union of similar worlds but constant goal.

This second experiment (figure 10) shows that increasing the complexity of the world (i.e.
the number of actions and fluents) but with keeping the same simple goal (a tower of 4 blocks)
does not change very much the computation time. In fact, what changed is just the time
needed by pyperplan to read the files. However, adding objects, even if they are not used
in the goal (figure 9), slightly increases the difficulty of the problem, because the solver may
consider actions applicable to useless objects, and this can be time-consuming.

Number of ob-
ject

Number of
world

Computation time (in
s)

Lenght of the plan Optimal
plan

4,0,0,0 4 0.137 6 6
4,4,0,0 4 0.277 24 12
4,4,4,0 4 1.213 42 18
4,4,4,4 4 3.486 60 24

Figure 11: Disjoint-union of similar worlds and growing goal.

This last array (figure 11) shows that increasing the complexity of the world (i.e. the
number of actions, fluents, and objects) and of the goal in a disjoint way makes the computation
time explodes.

We presented here a few experiments, but we have made many others, mainly with more
sophisticated dynamic world. For example, one of the more impressive simulated world was a
freecell solitaire game. What is important to remember is that the tool pyperplan does not
scale very well when it considers large worlds, and it use not efficiently the fact that some
sub-parts of the domain are disjoint.

Lilian Besson 26/36 ENS Cachan

Internship thesis 2012/13

6 Techniques to fix some weaknesses

6.1 Working without the “tagging” type mechanism

blackbox, the first planner we used was more minimalistic, and it didn’t support the STRIPS
typing extension. This extension is used to declare somes types (like gun and man for the Yale
Shooting problem, or block and color for the block world). From the first introduction of the
STRIPS syntax, we used types to write the signature for predicates and for actions. Those types
as the simplest types we could consider, and are usually referred as tagging types (types are
like labels or tags for objects).

For example, we also could axiomatize the Yale Shooting problem without using types.
For instance, in STRIPS without types, we can add two fresh predicates IsOfType𝑔𝑢𝑛 and
IsOfType𝑚𝑎𝑛; and in Γ0, we add IsGun(Colt), and IsMan(Joe). And in 𝑃𝑟𝑒𝑐pShootp𝑚, 𝑔qq,
we require IsOfType𝑔𝑢𝑛(g) and IsOfType𝑚𝑎𝑛(m).

This emulated type system requires to add one predicate IsOfType𝑡𝑦𝑝𝑒 for each types
type, to add one fact IsOfType𝑡𝑦𝑝𝑒(o) in Γ0 for each objects o previously defined with o - 𝑡𝑦𝑝𝑒.
And for each action 𝑎 of arity 𝑛, we have to add 𝑛 typing fact in 𝑃𝑟𝑒𝑐p𝑎q. When we consider
the length of the formulas and the size of the PDDL files, this emulated type system is equivalent
to give 𝑎’s signature in the first form 𝑎p?𝑥1 � 𝑡1 . . .?𝑥𝑛 � 𝑡𝑛q.

But in fact, the type system, emulated or not, seems to not be needed. We conjecture that
we can remove it, and hence only use an implicit type system. In the Yale Shooting example,
in 𝑃𝑟𝑒𝑐pShoot(m,g)q, we have Loaded(g) and Alive(m), so this imply that g’s implicit type
is the type accepted by Loaded (which is gun) and m’s implicit type is the type accepted by
Alive (i.e. man). Of course, Γ0 have to be sound according to this implicit type, i.e. it could
be possible for a human programmer to produce an axiomatization in the system with the type
system by simply add types where they are needed, without producing anything unsound.

In practice, pyperplan allows to use the typing extension, but also allows not to use it; thus
the extension is never truely needed, because we can simulate it. And even without simulate
a type system, if the programmer is aware of the implicit type system, we think that we can
completely remove it, without changing the expressiveness of the language, but without really
improving the conciseness of the descriptions (using only the implicit type system allows to
shorten each action’s signature by something like 𝑐� 𝑛�max lengthp𝑡𝑦𝑝𝑒q, where 𝑛 is the
action’s arity, and 𝑐 is a certain small constant).

6.2 Truth values reification, or how positive-STRIPS is equivalent to general-
STRIPS

We previously said that pyperplan only accepts positive-STRIPS, and we present here a
solution to fix this limitation. For the Yale Shooting example presented in the section 5.3.1, we
did not know if we had to use the predicate Loaded or NotLoaded because in fact none of them
was a good approach.

First, we introduce, in every domains, a new type: bool, representing boolean values,
and two constants10 true and false of type bool. And then, for every relational fluent

10Constants are defined in the field :constants if it is allowed in the domain file (domain.pddl), otherwise we

Lilian Besson 27/36 ENS Cachan

Internship thesis 2012/13

Fp𝑦𝑗 � 𝑡𝑗q defined in the domain, we change it to a fresh new fluent ValueFp𝑦𝑗 � 𝑡𝑗 , 𝑏� 𝑏𝑜𝑜𝑙q,
with an extra boolean argument b. This new fluent is interpreted as ValueFp𝑦, trueq � F(y)
and ValueFp𝑦, falseq � F(y) Whenever a literal F(y) is used in a 𝑃𝑟𝑒𝑐paq, we change it
to ValueF(y, true), and a negative literal F(y) is changed to ValueF(y, false). This
little transformation increases the length of 𝑃𝑟𝑒𝑐p𝑎q by a small constant 𝑐1 (in the worst case,
transforming F(y) into ValueF(y, false), so 𝑐1¤15)

And then we update 𝑃𝑜𝑠𝑡p𝑎q as follow: if F(y) is changed from being true to false by 𝑎
(resp. from false to true), we add ValueF(y, false) in 𝑃𝑜𝑠𝑡𝑎𝑑𝑑p𝑎q (resp. ValueF(y, true))
and we add ValueF(y, true) in 𝑃𝑜𝑠𝑡𝑑𝑒𝑙𝑒𝑡𝑒p𝑎q (resp. ValueF(y, false)).

This technique shows that in term of expressiveness, positive-STRIPS is equivalent to STRIPS.
And it is also the case in term of conciseness. Indeed this second transformation increases the
length of 𝑃𝑜𝑠𝑡p𝑎q by multiply it by another small constant 𝑐2: here we transform ?F(y) into
 ?ValueF(y, true)^ ?ValueF(y, false), so 𝑐2¤3.

However, in term of simplicity, this truth values reification technique11 is obviously
not “nice” to work with. But these two transformations are simple enough to be automatically
done by a tool; even if we did not take the time to look at the code of pyperplan. So, we can
claim that this technique can be used in practice, without changing the performance too much12.
And thus, we conclude that positive-STRIPS is almost equivalent to general-STRIPS.

6.3 Emulating the STRIPS equality extension

The equality extension allow to use the predicate �, to express that some objects are different
or equals. Here we re-use the example of the suitcase, mentionned in the introduction (see
section 1). We model a suitcase s with two different latches L1 and L2 (type latch). Such a
latch can be up and down (Up(l) or Up(l)), and the suitcase can be open or close (Open(s)
or Open(s)), and a latch can be related to a suitcase (Related(s,l)). We can open the
suitcase iff its two latches are up. So the action OpenSuitcase(s, L1, L2) requires that L1
� L2 (i.e. (not (= L1 L2)) in the Lisp-like syntax).

There is a simple but inefficient way to use this simulate this extension in a subset of
STRIPS. For every types type defined in a domain, we add a predicate Eq𝑡𝑦𝑝𝑒(?x ?y - ty ?b - bool),
using the boolean reification trick (introduced previously in section 6.2). In a precondition, we
substitute (not (= ?x ?y)) by (Eq𝑡𝑦𝑝𝑒 ?x ?y false) and (= ?x ?y) by (Eq𝑡𝑦𝑝𝑒 ?x ?y true)
(in the PDDL syntax). In Γ0, in the worst case we have to add (Eq𝑡𝑦𝑝𝑒 ?x ?y false) for every
different objects x,y of type type, and we might even have to add (Eq𝑡𝑦𝑝𝑒 ?x ?x true) for
every objects x of type type (we did not find example that requires it, but possibly there is one).

Consequently, this technique works, but is very inefficient because it could require to add
𝑛type

2 facts in Γ0 for every types type, and where 𝑛type is the number of objects of type type.

add them in every problem file (task.pddl).
11In this case, reification means transform a concept (the truth value of a predicate) into an object (true

and false).
12As in the study of algorithms’s complexity, we are only interested in the order of complexity, multiplying the

files’s length by a small constant is acceptable.

Lilian Besson 28/36 ENS Cachan

Internship thesis 2012/13

7 Sum-up and perspectives

In this last section, we will briefly sum up what we have done in this report, then explain some
directions we could have explored with more time. Finally, I will quickly give a short opinion
about this internship.

7.1 Sum-up

In the first part, we started by presenting the block world, an example of a dynamic system,
interpreted as a domain of exploration for a small robot. Dynamic systems such as this one
are described by a higher order predicate language called situation calculus ([MH68, Rei01]).
When one considers a robot exploring a domain, the question of reachability is natural, and in
AI this is studied in a research field called planning.

But another natural question is to program the robot to control it in a more sophisticated way
that just a sequence of orders. The GOLOG language ([LRL�97]) is used to program such robots
and more easily, and for this goal GOLOG provides a compositional way to define intermediate
procedures and use them to increase conciseness and simplicity of other programs. This was
illustrated by writing the first program MoveOr2 and then by using it to define MoveOr3 and
MoveThen, to control the robot operating on the block world.

To formally describe this procedure MoveOr2, we introduced the notion of Liu triples, very
similar to Hoare triples from classical Hoare logic, with the difference that Liu logic is used
to write specifications for robot programs, i.e. in a programming language where the smallest
components are user-defined action on a dynamic world axiomatized with the situation calculus.

To prove such specification, we used the HG proof system, also very similar to Hoare logic.
The proof of a partial specification for MoveOr2 is the first concrete contact with HG. We were
mainly interested in proving or disproving procedural modularity for HG, as the Hoare proof
system is thanks to separation logic ([Rey02]). Unfortunately, we found a loophole in HG,
exposed with the counter-example MoveThen. To strengthen the importance of this counter-
example, and expose the proof of MoveThen more didactically, we also wrote and proved an
other program MoveOr3, very similar to the problematic one (MoveThen). Indeed, HG is not
compositional in this example because the proof of MoveThen required to demonstrate some
additional conservation lemma for the intermediate procedure MoveOr2.

In fact, the situation calculus provides a solution to the frame problem (i.e. the difficulty to
describe the non-effects of actions) by writing successor state axiom for every fluents, of the
form of a case-by-case analyzes over primitive actions. The proof system use these successor
state axioms to infer Frame and Effect axioms (see the rule (EF)), and they are used to
axiomatize both effects and non-effects on relational fluents, but only for primitive actions.
As it is not possible to update these EF axioms when writing new GOLOG procedures, HG is
not able to consider a proven procedure as an atom, and thus it suffers for a serious lack of
compositionality.

A second part of the work done during my internship was more concrete and more related to
the question of planning. Historically, during the first weeks we were mainly focused on this
aspect, and we became interested in the HG proof system in the last third of my internship. But

Lilian Besson 29/36 ENS Cachan

Internship thesis 2012/13

it was more didactic to first expose the situation calculus, GOLOG programs and to study here
compositionality for HG.

Hence, we focused on a more concrete approach in the second part of this report. We choose
to use a planning solver called pyperplan, partly because it was the more recent I found, the
simpler to use, but mainly because the formalism used to describe the exploration space (i.e. the
dynamic system where the robot work) is inspired from the situation calculus. pyperplan reads
domain and problem files written in a List-like version of the STRIPS formalism, normalized
by the Internation Planning Competition between 2002 and 2011 as the norm PDDL ([Kov11]).
Basically, STRIPS is a subset of the situation calculus, without quantifiers, and with a labeling
type system. The main difference comes from how the effects of actions are described: STRIPS
prefers a more natural way, by writing positive and negative postconditions instead of successor
state axioms as the situation calculus does.

Two concrete axiomatizations of a domain and a problem are embedded in the appendix
(see sections A and B). We used them to point out some concrete limitations of the solver,
thus we have done many different numerical simulations, and the most interesting results are
explained in the section 5.4. The solver works well only for small worlds, because its exploration
algorithm does not scale when the complexity of the goal increases. Another limitation of
pyperplan comes when solving disjoint problems defined as one: the solver is not clever enough
to find disjoint parts in the domain, therefore it suffers from a serious concrete weakness when
dealing with worlds with disjointness.

This weakness is also present in the situation calculus, and in STRIPS. Historically, specifying
disjointness was one of the problematics at the origin of the development of separation logic,
which can be quickly presented as an extension of Hoare proof system with a new symbol and a
new rule to explicitly express disjointness. We were focused on compositionality in this report,
thus we pointed out both formal and concrete lack of compositionality in the situation calculus,
the HG proof system, and the solver pyperplan and its formalism (STRIPS, PDDL). Therefore, a
natural next step is to fix these limitations, and even if we did not have the time to really do
this, we started to consider possible direction, as exposed in the next section.

7.2 Ideas, other questions and future works

We would now conclude and extend this digest by presenting one question we could also have
worked on, and some ideas or direction we have not really studied by lack of time.

7.2.1 Termination for GOLOG procedures

We worked on verification for robot procedures, but we only consider one kind of specification:
Liu-triple. Expressing termination as a first-order formula is not possible, therefore this
formalism can not be used to work on termination. We did not take time to work on termination,
mainly because it have already been studied. If we assume that every primitive actions terminates
when they are applied to executable situations, then the only way to introduce non-termination
in a GOLOG program is with the non-deterministic iteration (𝛿�). It seems possible to convert a
GOLOG procedure into a logical language such Prolog, and then use what is already available
to try to proof its termination. Of course, we only expect to “try to” because GOLOG is a
Turing-complete language and therefore, its termination is undecidable.

Lilian Besson 30/36 ENS Cachan

Internship thesis 2012/13

7.2.2 Adding a separation conjunction to express disjointness

The simulations presented in section 5.4 showed that STRIPS and pyperplan do not scale well
when describing a world as a union of disjoint parts, although this particular case is frequent,
thus fixing this weakness could be an iterating goal. Nor STRIPS neither pyperplan have a way
to express disjointness, so introducing a way to specify disjoint for some subset of the domain
(i.e. of the axiomatization) is a possible direction.

Another direction could be to interpret the block world by partial models, i.e. partial
boolean functions on the block world (𝑓 : Blocks𝑛 ãÑ B) as it is done in the domain of separation
logic ([Rey02, CDOY11]). If we could find a way to convert an axiomatization (written in the
situation calculus formalism or in STRIPS) to a list of separation logic specifications for the
primitive actions. Then, it might be possible to simply use the extended Hoare proof system
from separation logic ([HV13, O’H08]) to proof GOLOG programs, in a more compositional way
than with HG, thanks to the Frame Rule of the separation logic. In the last two weeks, we
started to consider this direction, with Peter O’Hearn, but by lack of time, we did not have
worked more than that.

7.2.3 Nicely update an axiomatization with action refinements

As we said before (in section 5.3.2), one kind of compositionality appears when we want to
complete or update an axiomatization. In this situation calculus point-of-view, one might have
to re-write all successor state axioms when adding one new action (i.e. one per fluent).

And in the STRIPS point-of-view, one might have to re-write every postconditions when
adding one new fluent. In fact, it more likely necessary change these axioms by adding something
new rather than completely rewrite it.

With this idea in mind, one way to make this easier for the programmer could to have a
concrete syntax to only write what changes. For instance, with the example of color back from
section 5.3.2, we want to have two ways to put a block on the floor: to a color back or not.
One way to generate these two versions of the action PutFloor could be to write the first one,
as we did previously, and then to refine it to write the second one. Refining it, mean that we
specify something to add in its precondition, and either specify some additional effects, either
specify a completely new set of effects.

This idea is related to class inheritance as encountered in Object Oriented languages (OOP).
Hence, one should first become familiar with the theory behind inheritance and try to apply it
to actions refinement. We hope that this idea will ease the work needed to produce a suitable
axiomatization, by shortening some primitive actions definition. We started to explore this
direction, in particular with the work of Matthew Parkinson ([Par07]), but we preferred to stay
focused on HG and its compositionality, by lack of time.

7.3 Personal conclusion

Even if this internship was short (10 weeks only), it was a very rewarding experience. First of
all, the opportunity to live and work in a different city, in a different country, and to speak a
different language is an enriching experience in many ways. Secondly, I enjoyed being included
in a research team and working with interesting people on a daily basis. Finally, working on the

Lilian Besson 31/36 ENS Cachan

Internship thesis Appendix 2012/13

same questions during two months and a half was enriching, especially fundamental problems
like the frame problem and modularity.

This first year M.Sc. internship was my second one, and I think it helps me develop some
useful skills, as for instance scientific English, working with a tutor and in a research team,
reading research papers more efficiently; or also practical skills like BibTEX for instance.

I might continue to study with Jules Villard and Peter O’Hearn some questions raised in
this report, especially the future work exposed in section 7.2.2 might result as a significant
solution to improve modularity, for both the situation calculus and HG. Such contribution would
be a real breakthrough in this domain and would surely lead to publication. In this case, it
would be greatly rewarding to be part of its development.

Thanks for the reading !
Please, do not hesitate to contact me for any question, any comment or to signal any

problem about this internship report by email at Lilian.BESSON[at]ens-cachan[dot]fr or get
more information on my web page.

Mark Jules and Peter gave me 19/20. I got the mark 17.7/20 from the Computer Science
jury at ENS Cachan, and 18.50/20 from the Maths jury at ENS Cachan.

Acknowledgements

First, I would like to thank Jean Goubault-Larrecq, Hubert Comon, Serge Haddad
(from LSV & ENS Cachan), Damien Vergnaud (from ENS Ulm) and Florian de Vuyst
(from CMLA & ENS Cachan) for helping me to find an internship.

I would also like to thank the UCL, the CS department, the PPLV group, and especially
Carsten Fuhs and Peter O’Hearn for their support and their warm hospitality.

And, most of all, I would like to thank Jules Villard for his constant support.

– End –

Lilian Besson 32/36 ENS Cachan

mailto:Lilian.BESSON[at]ens-cachan[dot]fr
http://www.dptinfo.ens-cachan.fr/~lbesson

Internship thesis Appendix 2012/13

Bibliography

[CDOY11] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Com-
positional shape analysis by means of bi-abduction. Journal of the ACM, 2011. 2.4,
7.2.2

[FN72] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial intelligence, 2(3):189–208, 1972. 5.1

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer programming.
Communications of the ACM, 12(10):576–580, 1969. 1.1, 2.3

[HV13] Aquinas Hobor and Jules Villard. The ramifications of sharing in data structures.
2013. 7.2.2

[Kov11] Daniel L. Kovasc. Bnf definition of pddl 3.1. Technical report, international planning
competition (IPC), 2011. 5.1, 7.1

[LF11] Derek Long and Maria Fox, 2011. validate, an efficient and easy-to-use plan
validation software, written in C++. 5.2

[Lin08] Fangzhen Lin. Handbook of Knowledge Representation, volume 1, chapter 16.
Elsevier Science, 2008. 1.1, 1

[Liu02] Yongmei Liu. A hoare-style proof system for robot programs. 2002. 1.1, 3.3, 4.3

[LR97] Fangzhen Lin and Raymond Reiter. Rules as actions, a situation calculus semantics
for logic programs. volume 31, pages 299–330, 1997. 1.1, 4.3

[LRL�97] Hector J Levesque, Raymond Reiter, Yves Lesperance, Fangzhen Lin, and Richard B
Scherl. Golog: A logic programming language for dynamic domains. The Journal
of Logic Programming, 31(1):59–83, 1997. 1.1, 2.2, 3.2, 7.1

[Mal11] Helmert Malte, 2011. pyperplan, a lightweight STRIPS planner, written in python
3. 5.2

[MH68] John McCarthy and Patrick Hayes. Some philosophical problems from the standpoint
of artificial intelligence. Stanford University, 1968. 1.1, 7.1

[O’H08] Peter O’Hearn. Tutorial on separation logic (invited tutorial). In Computer Aided
Verification, pages 19–21. Springer, 2008. 7.2.2

[Par07] Matthew Parkinson. Class invariants: The end of the road. In International
Workshop on Aliasing, Confinement and Ownership, volume 23, 2007. 7.2.3

[Rei01] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. The MIT Press, Massachusetts, MA, illustrated
edition edition, 2001. 1.1, 1, 3.3, 4.3, 4.4, 7.1

[Rey02] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
2002. 7.1, 7.2.2

Lilian Besson 33/36 ENS Cachan

http://www.dcs.kcl.ac.uk/staff/andrew/planning/index.php?option=com_content&view=article&id=70&Itemid=77
https://bitbucket.org/malte/pyperplan

Internship thesis Appendix 2012/13

A Path finding for graphs seen as a robot problem

We define here a planning domain and problem, to continue the analogy between path finding
in graph theory and in AI. This analogy is almost fruitless, we did not use any results from
graph theory to help planning in general, bu we found useful to presents a very simple dynamic
world, based on the very well-known model of deterministic finite graphs.

This give an opportunity to see an axiomatization in STRIPS written according to the PDDL
norm.

(define (domain GRAPH) ; A graph axiomatization in PDDL
(:requirements :strips :typing)
(:types edge explorer) ; One explorer visites the graph
(:predicates ; The explorer e is on s, or have visited s

(IsOn ?e - explorer ?s - edge)
(Explored ?e - explorer ?s - edge)
(Vertex ?x ?y - edge)) ; There is an edge from x to y

(:action GoTo ; The explorer e move FROM s1 TO s2
:parameters (?e - explorer ?s1 ?s2 - edge)
:precondition (and (IsOn ?e ?s1) (Vertex ?s1 ?s2))
:effect (and (not (IsOn ?e ?s1)) (IsOn ?e ?s2) (Explored ?e ?s2))))

Figure 12: A graph axiomatization (Vertex) and a graph explorer (On, GoTo) in PDDL.

We use the PDDL formalism to axiomatize a graph and a graph explorer, and then we use
the tool pyperplan to solve a little path finding problem, with this axiomatization (the graph
is explored by an object of type explorer, as a robot moving on the graph)

One example is showed here, for the very simple graph 𝒢1
def
� ptA, B, Cu, tA B, B Cuq.

A

B

CAn achievable goal is to ask the explorer Dora to start from A, and to visit B.

(define (problem REACHABLE)
(:domain GRAPH)
(:objects A B C - edge Dora - explorer) ; A->B and B->C
(:init (IsOn Dora A) (Explored Dora A) (Vertex A B) (Vertex B C))
(:goal (and (Explored Dora C))))

Figure 13: 𝒢1 (in the left), and its axiomatization in PDDL as a reachable goal.

The solver pyperplan proposed the following straightforward solution:

(goto dora a b)
(goto dora b c)

Figure 14: An automatically generated solution for the problem defined by figure 13.

Lilian Besson 34/36 ENS Cachan

Internship thesis Appendix 2012/13

B A simple axiomatization of the block world, in the PDDL syn-
tax

Here are included 3 pddl files.
The first one (domain.pddl) defines the block world domain, used in all this report. Those

files are written accordingly to the latest norm (PDDL v3.1), in the Lisp-like syntax, with the
typing extension, and in positive-STRIPS only, so they can be used as-provided by the solver
pyperplan.

(define (domain BLOCKS)
(:requirements :strips :typing)
(:types block)
(:predicates

(On ?x ?y - block)
(OnFloor ?x - block)
(Clear ?x - block))

(:action Move
:parameters (?block1 ?block2 - block)
:precondition (and (Clear ?block1) (Clear ?block2) (OnFloor ?block1))
:effect (and (not (Clear ?block2)) (not (OnFloor ?block1)) (On ?block1 ?block2)))

(:action PutFloor
:parameters (?block1 ?block2 - block)
:precondition (and (Clear ?block1) (On ?block1 ?block2))
:effect (and (OnFloor ?block1) (Clear ?block2) (not (On ?block1 ?block2)))))

Figure 15: The block domain.

The second one defines the achievable goal presented in figure 1 (a tower, A on B on C).

;;; This goal is reachable, and the solver proves his reachability, by giving a solution
(define (problem REACHABLE)
(:domain BLOCKS)
(:objects A B C - block)
(:init (Clear A) (OnFloor A) (Clear B) (OnFloor B) (Clear C) (OnFloor C))
(:goal (and (On A B) (On B C))))
;;; The generated solution is: (Move B C) (Move A B)

Figure 16: A reachable goal for the block world.

And the last one defines a similar goal, also presented in section 2.1, but non-achievable (A
on B on C on A).

Lilian Besson 35/36 ENS Cachan

Internship thesis Appendix 2012/13

;;; This goal is not reachable, and the solver proves his non-reachability.
(define (problem NON-REACHABLE)
(:domain BLOCKS)
(:objects A B C - block)
(:init (Clear A) (OnFloor A) (Clear B) (OnFloor B) (Clear C) (OnFloor C))
(:goal (and (On A B) (On B C) (On C A))))

Figure 17: A non-reachable goal for the block world.

Lilian Besson 36/36 ENS Cachan

	Introduction
	Scientific context and theme
	Issues and goals
	Outline

	An informal presentation of what we want to model
	The block world: a canonical example in planning
	An achievable goal
	An unachievable goal

	Robot programs operating on a dynamic world
	Our first robot program: MoveOr2
	High-level robot programming

	How to write and prove program properties
	What does procedural abstraction mean?

	Two main problems
	Modularity for verification
	Non-linearity?

	Three formalisms to prove robot programs
	A quick presentation of the situation calculus
	A language based on user-defined primitives
	The HG proof system for robot programs
	Inference rules

	Pointing out the absence of modularity for HG
	A procedure is not like a primitive action
	Proving MoveThen to point out the lack of procedural abstraction for HG
	A partial specification for MoveOr2
	A partial specification for MoveOr3
	A partial specification for MoveThen

	Diagnostic
	A solution for this lack of modularity?

	A more concrete language and a planning solver
	STRIPS as a subset of the situation calculus with a type system
	The description of an action is like a Hoare triple
	A complete axiomatization of the block world
	BNF grammar

	Tools used for our simulations
	A planner: pyperplan
	A validator: validate (VAL)

	Sub-language accepted by pyperplan
	Positive-STRIPS seems to be a serious limitation
	Updating an axiomatized world is not so easy
	The duality predicate-action

	pyperplan does not scale well?
	About benchmarking pyperplan
	First experiment: increasing the number of objects
	Second experiment: cross-product of disjoint worlds

	Techniques to fix some weaknesses
	Working without the ``tagging'' type mechanism
	Truth values reification, or how positive-STRIPS is equivalent to general-STRIPS
	Emulating the STRIPS equality extension

	Sum-up and perspectives
	Sum-up
	

	Ideas, other questions and future works
	Termination for GOLOG procedures
	Adding a separation conjunction to express disjointness
	Nicely update an axiomatization with action refinements

	Personal conclusion
	Mark

	Partial bibliography
	Path finding for graphs seen as a robot problem
	A simple axiomatization of the block world, in the PDDL syntax

