(* This OCaml script was exported from a Jupyter notebook using an open-source software (under the MIT License) written by @Naereen from https://github.com/Naereen/Jupyter-Notebook-OCaml This software is still in development, please notify me of a bug at https://github.com/Naereen/Jupyter-Notebook-OCaml/issues/new if you find one *) (* # Table of Contents

1  Runge-Kutta methods for ODE integration in OCaml
1.1  Preliminary
1.2  Runge-Kutta method of order 1, or the Euler method
1.3  Runge-Kutta method of order 2
1.4  Runge-Kutta method of order 4, "RK4"
1.5  Comparisons
1.6  Conclusion
*) (* # Runge-Kutta methods for ODE integration in OCaml - I want to implement and illustrate the [Runge-Kutta method](https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods) (actually, different variants), in the [OCaml programming language](https://www.ocaml.org/). - The Runge-Kutta methods are a family of numerical iterative algorithms to approximate solutions of [Ordinary Differential Equations](https://en.wikipedia.org/wiki/Ordinary_differential_equation). I will simply implement them, for the mathematical descriptions, I let the interested reader refer to the Wikipedia page, or [any](https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods#References) [good](https://www.directtextbook.com/isbn/9780521007948) [book](https://www.decitre.fr/livres/analyse-numerique-et-equations-differentielles-9782868838919.html) or [course](https://courses.maths.ox.ac.uk/node/4294) on numerical integration of ODE. - I will start with the order 1 method, then the order 2 and the most famous order 4. - They will be compared on different ODE. *) (* ## Preliminary *) (* In[1]: *) Sys.command "ocaml -version";; (* In[147]: *) #thread ;; #require "jupyter.notebook" ;; #require "jupyter.archimedes" ;; (* I don't want to try to find a reference implementation of an Ordinary Differential Equations solver in OCaml. I'm sure there is, just don't care. *) (* I will use as a first example the one included in [the scipy (Python) documentation for this `odeint` function](https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html). $$\theta''(t) + b \theta'(t) + c \sin(\theta(t)) = 0.$$ If $\omega(t) := \theta'(t)$, this gives $$ \begin{cases} \theta'(t) = \omega(t) \\ \omega'(t) = -b \omega(t) - c \sin(\theta(t)) \end{cases} $$ Vectorially, if $y(t) = [\theta(t), \omega(t)]$, then the equation is $y' = f(t, y)$ where $f(t, y) = [y_2(t), -b y_2(t) - c \sin(y_1(t))]$. *) (* We assume the values of $b$ and $c$ to be known, and the starting point to be also fixed: *) (* In[11]: *) let b = 0.25 ;; let c = 5.0 ;; (* In[14]: *) let y0 = [| 3.14156 -. 0.1; 0.0 |];; (* In[148]: *) let f_pend (y : float array) (_ : float) : float array = [| y.(1); (-.b) *. y.(1) +. (-.c) *. sin(y.(0)) |] ;; (* ---- ## Runge-Kutta method of order 1, or the Euler method *) (* The approximation is computed using this update: $$y_{n+1} = y_n + (t_{n+1} - t_n) f(y_n, t_n).$$ The math behind this formula are the following: if $g$ is a solution to the ODE, and so far the approximation is correct, $y_n \simeq g(t_n)$, then a small step $h = t_{n+1} - t_n$ satisfy $g(t_n + h) \simeq g(t_n) + h g'(t_n) \simeq y_n + h f(g(t_n), t_n) + \simeq y_n + h f(y_n, t_n)$. *) (* In[32]: *) let rungekutta1 (f : float array -> float -> float array) (y0 : float array) (t : float array) = let d = Array.length y0 in let n = Array.length t in let y = Array.make_matrix n d 0. in for j = 0 to d-1 do y.(0).(j) <- y0.(j); done; for i = 0 to n-2 do let h = t.(i+1) -. t.(i) in let fyt = f y.(i) t.(i) in for j = 0 to d-1 do y.(i+1).(j) <- y.(i).(j) +. h *. fyt.(j); done; done; y ;; (* We have to redefine ourselfves most of the useful functions: *) (* In[28]: *) let linspace (a : float) (b : float) (n : int) = let t = Array.make n a in let h = (b -. a) /. (float_of_int n) in for i = 0 to n-1 do t.(i) <- a +. (float_of_int i) *. h; done; t ;; (* In[30]: *) let t = linspace 0. 10. 101 ;; (* In[31]: *) let sol = rungekutta1 f_pend y0 t ;; (* In[34]: *) let column sol i = Array.map (fun x -> x.(i)) sol ;; (* Let see a first plot! *) (* In[151]: *) let vp = A.init ~w:800. ~h:360. ["jupyter"] in A.Axes.box vp ; A.Viewport.xlabel vp "Time t"; A.Viewport.title vp "Solution to the pendulum ODE with Runge-Kutta 1"; A.set_color vp A.Color.red ; A.Viewport.text vp 7. 3. "o theta(t)" ; A.Array.xy ~style:(`Linesmarkers "o") vp t (column sol 0); A.set_color vp A.Color.blue ; A.Viewport.text vp 7. 2.5 "+ omega(t)" ; A.Array.xy ~style:(`Linesmarkers "+") vp t (column sol 1); A.close vp;; (* With the same number of points, the Euler method (*i.e.* the Runge-Kutta method of order 1) is less precise than the reference `solve` method. With more points, it can give a satisfactory approximation of the solution: *) (* In[55]: *) let t = linspace 0. 10. 1001 ;; let sol = rungekutta1 f_pend y0 t ;; (* In[153]: *) let vp = A.init ~w:800. ~h:360. ["jupyter"] in A.Axes.box vp ; A.Viewport.xlabel vp "Time t"; A.Viewport.title vp "Solution to the pendulum ODE with Runge-Kutta 1"; A.set_color vp A.Color.red ; A.Viewport.text vp 8.5 3. "o theta(t)" ; A.Array.xy ~style:(`Linesmarkers "o") vp t (column sol 0); A.set_color vp A.Color.blue ; A.Viewport.text vp 8.5 2.5 "+ omega(t)" ; A.Array.xy vp ~style:(`Linesmarkers "+") t (column sol 1); A.close vp;; (* In[72]: *) let t = linspace 0. 10. 10001 ;; let sol = rungekutta1 f_pend y0 t ;; (* In[154]: *) let vp = A.init ~w:800. ~h:360. ["jupyter"] in A.Axes.box vp ; A.Viewport.xlabel vp "Time t"; A.Viewport.title vp "Solution to the pendulum ODE with Runge-Kutta 1"; A.set_color vp A.Color.red ; A.Viewport.text vp 8.5 3. "o theta(t)" ; A.Array.xy ~style:(`Linesmarkers "o") vp t (column sol 0); A.set_color vp A.Color.blue ; A.Viewport.text vp 8.5 2.5 "+ omega(t)" ; A.Array.xy vp ~style:(`Linesmarkers "+") t (column sol 1); A.close vp;; (* ---- ## Runge-Kutta method of order 2 *) (* The order 2 Runge-Method uses this update: $$ y_{n+1} = y_n + h f(t + \frac{h}{2}, y_n + \frac{h}{2} f(t, y_n)),$$ if $h = t_{n+1} - t_n$. *) (* Again, we need some basic functions as OCaml `Array` are quite poor. With Julia arrays or NumPy Python arrays, we can write `h * f(y, t)` to multiply each entry of `f(y, t)` by a number h. *) (* In[92]: *) let aplus a k = Array.map ( ( +. ) k) a ;; let ( ++. ) = aplus ;; (* In[93]: *) let aaplus a b = Array.map2 ( +. ) a b ;; let ( +++. ) = aaplus ;; (* In[94]: *) let amul a k = Array.map ( ( *. ) k ) a ;; let ( **. ) = amul ;; (* In[95]: *) let rungekutta2 (f : float array -> float -> float array) (y0 : float array) (t : float array) = let d = Array.length y0 in let n = Array.length t in let y = Array.make_matrix n d 0. in for j = 0 to d-1 do y.(0).(j) <- y0.(j); done; for i = 0 to n-2 do let h = t.(i+1) -. t.(i) in let fyt = f y.(i) t.(i) in let fyt2 = f (y.(i) +++. (fyt **. (h /. 2.))) (t.(i) +. (h /. 2.)) in for j = 0 to d-1 do y.(i+1).(j) <- y.(i).(j) +. h *. fyt2.(j); done; done; y ;; (* For our simple ODE example, this method is already quite efficient. *) (* In[87]: *) let t = linspace 0. 10. 101 ;; let sol = rungekutta2 f_pend y0 t ;; (* In[156]: *) let vp = A.init ~w:800. ~h:360. ["jupyter"] in A.Axes.box vp ; A.Viewport.xlabel vp "Time t"; A.Viewport.title vp "Solution to the pendulum ODE with Runge-Kutta 2"; A.set_color vp A.Color.red ; A.Viewport.text vp 8.5 3. "o theta(t)" ; A.Array.xy ~style:(`Linesmarkers "o") vp t (column sol 0); A.set_color vp A.Color.blue ; A.Viewport.text vp 8.5 2.5 "+ omega(t)" ; A.Array.xy vp ~style:(`Linesmarkers "+") t (column sol 1); A.close vp;; (* ---- ## Runge-Kutta method of order 4, *"RK4"* *) (* The order 4 Runge-Method uses this update: $$ y_{n+1} = y_n + \frac{h}{6} (k_1 + 2 k_2 + 2 k_3 + k_4),$$ if $h = t_{n+1} - t_n$, and $$\begin{cases} k_1 &= f(y_n, t_n), \\ k_2 &= f(y_n + \frac{h}{2} k_1, t_n + \frac{h}{2}), \\ k_3 &= f(y_n + \frac{h}{2} k_2, t_n + \frac{h}{2}), \\ k_4 &= f(y_n + h k_3, t_n + h). \end{cases}$$ *) (* In[97]: *) let rungekutta4 (f : float array -> float -> float array) (y0 : float array) (t : float array) = let d = Array.length y0 in let n = Array.length t in let y = Array.make_matrix n d 0. in for j = 0 to d-1 do y.(0).(j) <- y0.(j); done; for i = 0 to n-2 do let h = t.(i+1) -. t.(i) in let k1 = f y.(i) t.(i) in let k2 = f (y.(i) +++. (k1 **. (h /. 2.))) (t.(i) +. (h /. 2.)) in let k3 = f (y.(i) +++. (k2 **. (h /. 2.))) (t.(i) +. (h /. 2.)) in let k4 = f (y.(i) +++. (k3 **. h)) (t.(i) +. h) in for j = 0 to d-1 do y.(i+1).(j) <- y.(i).(j) +. (h/.6.) *. (k1.(j) +. 2.*.k2.(j) +. 2.*.k3.(j) +. k4.(j)); done; done; y ;; (* For our simple ODE example, this method is even more efficient. *) (* In[107]: *) let t = linspace 0. 10. 31 ;; let sol = rungekutta4 f_pend y0 t ;; (* In[157]: *) let vp = A.init ~w:800. ~h:360. ["jupyter"] in A.Axes.box vp ; A.Viewport.xlabel vp "Time t"; A.Viewport.title vp "Solution to the pendulum ODE with Runge-Kutta 4 (31 points)"; A.set_color vp A.Color.red ; A.Viewport.text vp 8.5 3. "o theta(t)" ; A.Array.xy ~style:(`Linesmarkers "o") vp t (column sol 0); A.set_color vp A.Color.blue ; A.Viewport.text vp 8.5 2.5 "+ omega(t)" ; A.Array.xy vp ~style:(`Linesmarkers "+") t (column sol 1); A.close vp;; (* In[109]: *) let t = linspace 0. 10. 101 ;; let sol = rungekutta4 f_pend y0 t ;; (* In[158]: *) let vp = A.init ~w:800. ~h:360. ["jupyter"] in A.Axes.box vp ; A.Viewport.xlabel vp "Time t"; A.Viewport.title vp "Solution to the pendulum ODE with Runge-Kutta 4 (101 points)"; A.set_color vp A.Color.red ; A.Viewport.text vp 8.5 3. "o theta(t)" ; A.Array.xy ~style:(`Linesmarkers "o") vp t (column sol 0); A.set_color vp A.Color.blue ; A.Viewport.text vp 8.5 2.5 "+ omega(t)" ; A.Array.xy vp ~style:(`Linesmarkers "+") t (column sol 1); A.close vp;; (* ---- ## Comparisons *) (* In[120]: *) let methods = [|rungekutta1; rungekutta2; rungekutta4|] ;; let names = [|"Runge-Kutta 1"; "Runge-Kutta 2"; "Runge-Kutta 4"|] ;; let markers = [|"o"; "s"; ">"|] ;; let colors = [|A.Color.red; A.Color.blue; A.Color.green|] ;; (* In[159]: *) let test_1 ?(n=101) () = let t = linspace 0. 10. n in let vp = A.init ~w:800. ~h:360. ["jupyter"] in A.Axes.box vp ; A.Viewport.xlabel vp "Time t"; A.Viewport.title vp (Format.sprintf "Solution to the pendulum ODE with different methods (%i points)" n); for i = 0 to (Array.length methods) - 1 do let sol = methods.(i) f_pend y0 t in A.set_color vp colors.(i); A.Viewport.text vp 6.5 (2. -. 2.*.(float_of_int i)) (Format.sprintf "%s %s" markers.(i) names.(i)) ; A.Array.xy ~style:(`Linesmarkers markers.(i)) vp t (column sol 0); done; A.close vp; ;; (* In[160]: *) test_1 ~n:10 ();; (* In[161]: *) test_1 ~n:30 ();; (* In[162]: *) test_1 ~n:100 ();; (* ## Conclusion > *That's it for today, folks!* See my other notebooks, [available on GitHub](https://github.com/Naereen/notebooks/). *)