# coding: utf-8 # # Table of Contents #

1  A short study of Rényi entropy
1.1  Requirements
1.2  Utility functions
1.3  Definition, common and special cases
1.4  Plotting some values
1.5  Conclusion
# # A short study of Rényi entropy # # I want to study here the Rényi entropy, using [Python](https://www.python.org/). # I will define a function implementing $H_{\alpha}(X)$, from the given formula, for discrete random variables, and check the influence of the parameter $\alpha$, # $$ H_{\alpha}(X) := \frac{1}{1-\alpha} \log_2(\sum_i^n p_i^{\alpha}),$$ # where $X$ has $n$ possible values, and the $i$-th outcome has probability $p_i\in[0,1]$. # # - *Reference*: [this blog post by John D. Cook](https://www.johndcook.com/blog/2018/11/21/renyi-entropy/), [this Wikipédia page](https://en.wikipedia.org/wiki/R%C3%A9nyi_entropy) and [this page on MathWorld](http://mathworld.wolfram.com/RenyiEntropy.html), # - *Author*: [Lilian Besson](https://perso.crans.org/besson/) # - *License*: [MIT License](https://lbesson.mit-license.org/) # - *Date*: 22th of November, 2018 # ## Requirements # In[4]: get_ipython().system('pip install watermark matplotlib numpy') # In[5]: get_ipython().run_line_magic('load_ext', 'watermark') get_ipython().run_line_magic('watermark', '-v -m -a "Lilian Besson" -g -p matplotlib,numpy') # In[7]: import numpy as np import matplotlib.pyplot as plt # ---- # ## Utility functions # We start by giving three examples of such vectors $X=(p_i)_{1\leq i \leq n}$, a discrete probability distributions on $n$ values. # In[49]: X1 = [0.25, 0.5, 0.25] X2 = [0.1, 0.25, 0.3, 0.45] X3 = [0, 0.5, 0.5] X4 = np.full(100, 1/100) X5 = np.full(1000, 1/1000) X6 = np.arange(100, dtype=float) X6 /= np.sum(X6) # We need a function to safely compute $x \mapsto x \log_2(x)$, with special care in case $x=0$. This one will accept a numpy array or a single value as argument: # In[50]: np.seterr(all="ignore") # In[51]: def x_log2_x(x): """ Return x * log2(x) and 0 if x is 0.""" results = x * np.log2(x) if np.size(x) == 1: if np.isclose(x, 0.0): results = 0.0 else: results[np.isclose(x, 0.0)] = 0.0 return results # For examples: # In[52]: x_log2_x(0) x_log2_x(0.5) x_log2_x(1) x_log2_x(2) x_log2_x(10) # and with vectors, slots with $p_i=0$ are handled without error: # In[54]: x_log2_x(X1) x_log2_x(X2) x_log2_x(X3) x_log2_x(X4)[:10] x_log2_x(X5)[:10] x_log2_x(X6)[:10] # ---- # ## Definition, common and special cases # From the mathematical definition, an issue will happen if $\alpha=1$ or $\alpha=\inf$, so we deal with the special cases manually. # $X$ is here given as the vector of $(p_i)_{1\leq i \leq n}$. # In[39]: def renyi_entropy(alpha, X): assert alpha >= 0, "Error: renyi_entropy only accepts values of alpha >= 0, but alpha = {}.".format(alpha) # DEBUG if np.isinf(alpha): # XXX Min entropy! return - np.log2(np.max(X)) elif np.isclose(alpha, 0): # XXX Max entropy! return np.log2(len(X)) elif np.isclose(alpha, 1): # XXX Shannon entropy! return - np.sum(x_log2_x(X)) else: return (1.0 / (1.0 - alpha)) * np.log2(np.sum(X ** alpha)) # In[40]: # Curryfied version def renyi_entropy_2(alpha): def re(X): return renyi_entropy(alpha, X) return re # In[42]: # Curryfied version def renyi_entropy_3(alphas, X): res = np.zeros_like(alphas) for i, alpha in enumerate(alphas): res[i] = renyi_entropy(alpha, X) return res # ---- # ## Plotting some values # In[56]: alphas = np.linspace(0, 10, 1000) # In[59]: renyi_entropy_3(alphas, X1)[:10] # In[71]: def plot_renyi_entropy(alphas, X): fig = plt.figure() plt.plot(alphas, renyi_entropy_3(alphas, X)) plt.xlabel(r"Value for $\alpha$") plt.ylabel(r"Value for $H_{\alpha}(X)$") plt.title(r"Réniy entropy for $X={}$".format(X[:10])) plt.show() # return fig # In[72]: plot_renyi_entropy(alphas, X1) # In[73]: plot_renyi_entropy(alphas, X2) # In[74]: plot_renyi_entropy(alphas, X3) # In[75]: plot_renyi_entropy(alphas, X4) # In[76]: plot_renyi_entropy(alphas, X5) # In[77]: plot_renyi_entropy(alphas, X6) # ---- # ## Conclusion # It is not surprising that $H_{\alpha}(X)$ appears to be continuous as a function of $\alpha$, as one can easily verify that it is.