Research internship

"Splines as universal solutions of L1-regularization problems"

Student:

Lilian Besson lilian.besson@ens-cachan.fr, Tel: +33 6 28 41 22 57. Mathematics department, ENS Cachan.

Note: This internship will constitute the 3rd trimester of my M.Sc.¹ in 2015–2016.

Subject²:

 L_1 -regularization methods have shown to be very powerful for a large variety of image processing modalities as they tend to promote sparse solutions [5,6]. From a theoretical point of view, these methods exhibit strong links with the spline theory, in which a signal is described as a piecewise smooth function generated by a differential operator. This connection is well-understood for instance for the simple case of piecewise constant functions, which correspond to the derivative operator [5,7].

The goal of this project is to develop a theory for a more general class of operators. It will involve studying the conditions of invertibility of differential operators, with a particular emphasis on fractional operators.

We aim at strengthening the current framework [2], one goal being to develop a theorem extending the previous work done in the same team [3,4]. After an intense theoretical research phase, we plan to try to provide experimental evidence and examples of the results, in a way inspired from the current work the research group [1,3,4].

Keywords math. foundations of image processing; splines theory; wavelets; L_1 -regularization.

Details of the internship

Period and duration:

• From 18th of April to 27th of August 2016, 4 months and a half.

Location:

• With the Bio-Medical Imaging Group (LIB), at EPFL, in Lausanne (Switzerland).

Supervision:

- Julien Fageot, julien.fageot@epfl.ch, BM 4.139, Tel: +41 021 693 37 01 (Swiss) 50%;
- Michael Unser, michael.unser@epfl.ch, BM 4.136, Tel: +41 021 693 51 75 (Swiss) 50%.

¹ The MVA, Master of Machine Learning, Vision and Applied Mathematics.

² This internship proposal was first offered on the BIG/LIB website, here http://bigwww.epfl.ch/teaching/projects/subject.html#id_3734.

Internship tutor:

Gabriel Peyré³, gabriel.peyre@ceremade.dauphine.fr, CEREMADE, Paris Dauphine University.

Bibliographic references

Main references:

- [1] M. Unser & J. Fageot & J.P. Ward, Splines are universal solutions of linear inverse problems with generalized TV-regularization, December 2015 (under review).
- [2] T. Blu & M. Unser, *Self-Similarity: Part I Splines and Operators*, IEEE Transactions on Signal Processing, vol.55, no.4, pp.1352-1363, April 2007, http://bigwww.epfl.ch/publications/unser0701. html.

Other references:

- [3] K.N. Chaudhury & M. Unser, On the shift ability of dual-tree complex wavelet transforms, IEEE Transactions on Signal Processing, vol.58, no.1, pp.221-232, January 2010, http://bigwww.epfl.ch/publications/chaudhury0904.html.
- [4] J.P. Ward & M. Unser, *Harmonic singular integrals and steerable wavelets in* L₂(R), Applied and Computational Harmonic Analysis, vol.36, no.2, pp.183-197, March 2014, http://bigwww.epfl.ch/publications/ward1401.html.
- [5] P. Tafti & M. Unser, An introduction to sparse stochastic processes, mainly chapter 5 ("Operators and their inverses"), Cambridge University Press, December 2013, http://www.sparseprocesses.org/.
- [6] S. Foucart & H. Rauhut, A Mathematical Introduction to Compressive Sensing, Springer, 2013, http: //link.springer.com/book/10.1007/978-0-8176-4948-7.
- [7] S.D. Fisher & J.W. Jerome, Splines solutions to L₁-extremal problems in one and several variables, Journal of Approximation Theory 13.1 (1975): 73-83 (historical perspective).

Some of these research papers are previous work by the BIG team, cf. http://bigwww.epfl.ch/publications/.

Figure 1: Artist view of regular and fractional splines.

 $^{^3}$ As required, he is a professor at the MVA master, he taught the "Sparsity and Compressive Sensing" course, for which I ranked first and got 19/20, with this small project http://lbo.k.vu/pcs2016.