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Master M2 MVA 2015/2016 - Reinforcement Learning - TP 4

Mountain Car

By: Lilian Besson (lilian.besson at ens-cachan.fr). Attached programs: The programs for this
TP are included in the zip archive I sent, and are regular MATLAB/Octave programs1.

1 Position of the problem

Question 0 : What do you think the optimal value function looks like?

The car has to go to the left at full speed, climb up, and then to the right full speed until it reaches the
right side.

So the optimal value function � ‹ (as a 2D heat map) should be hot for negative �, regardless of the
speed, and hot for positive speed and positive � (and cold for the rest).

The robot is happy if it is going into the good direction to the objective (� Ñ 0.6, � ą 0), and has to
learn to be happy if it is going to the left with high speed (� Ñ ´1.2, absp�q ąą 0).

2 Modeling

Question 1 : How are the characteristics of a feature function Φ stored in

its corresponding vector theta?

For the action2 index � P t1, 2, 3u, the parameters of the �-th Gaussian Φi are its mean Ûi and its
diagonal covariance Σi, which are stored in the big vector theta as mui = theta[4*(i-1)+1:2] and
sigmai = theta[4*(i-1)+3:4].

For a concrete implementation of this “parameter extraction”, see the attached file phiQ.m. It does a
switch... case... case... end on action a (P t´1, 0, 1u) and not on an index � P t1, 2, 3u.

2.1 Some additionnal functions

• createQ.m: was given by the TP, uses the coefficients �i (stored in alpha) and features �i (stored
in thetas) to create the function Q,

• argmax.m: is just a manual patch on a missing function in Octave/Matlab: [~, i] = max(v) ô
i = argmax(v),

• valueFunction.m: uses the idea given in the TP:

V = @(s) max(arrayfun(@(a)Q(s,a), [-1,0,1]))

in order to return the associated Value function � for a � function (in a general setting the
[-1,0,1] should be replaced by A the action space, finite or not).

• policy.m: does the same but with an argmax and not a max, in order to get the policy: from state
� to the action Þp�q “ � with the highest value (ie. Þ is the greedy policy according the � ).

1 Note: I only tested my programs with GNU Octave, but both version 3 and 4 should work, on Windows or on Linux.
2 For the action set A “ t´1, 0, 1u in this order, see actionPossib in fitted_q.m and LSTD.m, we simply have � “ � ´ 2.
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Therefore, we are able to create an initial guess of the �-function, with this snippet (head of
mainTP4.m):

1 d = 20; % N u m b e r of features , a r b i t r a r y c h o i c e !

2 thetasQ = rand_featureQ (d); % R a n d o m f e a t u r e s

3 alpha = ones (1, d) / d; % A r b i t r a r y i n i t i a l weights ,Ðâ

sum to 1

4 Q = createQ (alpha , thetasQ ); % R a n d o m Q f u n c t i o n

We can display (with the given function plotf.m) the value function � Q (given by �), and the
greedy policy ÞV (given by � ), see Figures 1, 2 below:

Figure 1: Initial value function �init created with arbitrary (uniform) initial weights, Ði “ 1{�.

Figure 2: Initial greedy policy ÞVinit created with arbitrary (uniform) initial weights, Ði “ 1{�.
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3 Approximate Value Iteration: Fitted-Q

Below is displayed in Figure 3 the final Value function � ‹

Fitted-Q obtained by the Fitted-Q algorithm,
and then in Figure 4 its greedy policy.

Figure 3: Value function � ‹

Fitted-Q returned by the Fitted-Q algorithm.

Figure 4: Greedy policy ÞV ‹

Fitted-Q function returned by the Fitted-Q algorithm.

We used the following parameters:

• d = 20: number of features (ie. dimension of the function space EQ). It has to be relatively small
to have a quick enough program, but big enough to have a set of functions expressive enough (as
always, a trade-off between complexity and expressiveness).
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• thetasQ = rand_featureQ(d): generate random features ãi : p�, �q ÞÑ ãip�, �q (so we should try
several times the same program, in order to be confident in our result).

• nbIter = 200: is the time horizon of the simulation (number of iterations in the algorithm).

• n = 50: is the number of trajectories3 to try (in “parallel” – even if our implementation is sequential)
for the Fitted-Q algorithm. As usual, we have a trade-off between time complexity (a big � implies a
longer execution time) and confidence/efficiency (a small � gives less trustworthy/efficient results).

• gamma = 0.8: is the discount parameter, used as before in the RL course (the future rewards
are geometrically decreasing by a Òt factor). I have not tried other values.

For Fitted-Q, the algorithm was not so hard to implement, runs quickly (for small values of nbIter

and n) but does not give extraordinary results.

4 Approximate Policy Iteration: LSTD

Below is displayed in Figure 5 the final Value function � ‹

LSTD obtained by the LSTD algorithm, and
then in Figure 6 its greedy policy.

Figure 5: Value function � ‹

LSTD returned by the LSTD algorithm.

3 See the slides of the course (lecture 05) for the details.
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Figure 6: Greedy policy ÞV ‹

LSTD function returned by the LSTD algorithm.

We used the following parameters:

• nbIter = 30 is the time horizon of the simulation (and it has to be smaller than the one for
Fitted-Q, as each time step is computationally heavier).

For LSTD, I felt that it was harder to implement, and it runs way less quickly than Fitted-Q (for
small values of nbIter and n), but apparently it gives better results (but please mind that it is hard to
evaluate the quality of a given � or Þ).
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Conclusion

In fact, the final � ‹ given by both algorithm (Fitted-Q and LSTD) did not seem really good. . .

LSTD was running very slowly on my machine (several minutes for 10 steps), and both algorithm
are highly dependent on our lucky drawing of the (random) features, and are also influenced by the
numerical values chosen for the simulation parameters:

• Number of features: d = 20,

• Number of iterations: nbIter = 200 (or 10 for LSTD),

• Number of simulations: n = 50,

• And the discount factor: gamma = 0.8.

In order to get better results4, we should improve the numerical efficiency of LSTD (I checked
twice, but maybe one line is wrongly coded and could be improved), or try to use a better machine (or
MATLAB, which seemed quicker than Octave on some friends’ machine during the TP).

But another importance direction to look at is the simulation parameters, and tweaking them
correctly could drastically improve the general quality of the approximated optimal value function � ‹.

This last TP was interesting and useful, as the whole course, so thanks! It was fun to try to
solve a problem “less artificial” than last TPs.
Even if nothing was required, I wanted to finish it quickly and send the two � ‹ obtained with
Fitted-Q and LSTD.

4 At least a policy which is able to start going left, then right, and which is not initially stuck in � “ 0, � “ 0 and
decide to chose action Þp0, 0q “ 0 ie. not doing anything. . .
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