
Reinforcement Learning - TP 3 November 23, 2015

Master M2 MVA 2015/2016 - Reinforcement Learning - TP 3

Adversarial bandits

By: Lilian Besson (lilian.besson at ens-cachan.fr). Attached programs: The programs
for this TP are included in the zip archive I sent, and are regular MATLAB/Octave
programs1.

1 EWT and EXP3 versus an oblivious adversary

Rem: The EXP3 strategy needs two parameters, Ö, Ñ, and note that the last EXP3 algorithm
seen in class used three parameters, Ö, Ñ and Ò. We were not sure the value to chose for Ò, and
not sure if the lecture slides and the TP assignment used to same convention. We assumed that
Ò (from the slide) is Ñ in the programs, and that Ñ (from the slide, the offset on �̂�

�) is zero.

Question 1

We compared the two algorithms EWT (which knows the full game matrix) and EXP3 (which
observe only one reward after choosing an action), for these three adversarial settings:

• A constant setting, for example player B (the opponent) always chooses the go to the bar
(action 2). We expect EWF and EXP3 to be almost as efficient, as they will both quickly
detect that action 1 is the best for player A.

• A “tricky” setting, in the sense that B will choose his worse action (action 2) for a while
(to make A believe that action 2 is the best, because ��p1, 2q “ ´1 ă 1 “ ��p2, 2q), and
after only plays action 1 (the best action for him). We expect EWF to be really quicker
to react to this change of behavior than EXP3.

• A “random” setting, ie. each action for B is chosen at random. We expect both algorithm
the be quite ineffective, with a high regret.

The plots included below were drawn for a time horizon of � “ 500, and for which we chose
Ö “ Ñ “

a

p2 logp2q{ppexpp1q ´ 1q�qq and Ò “ 0, as given by a formula in the slide (to minimize
the error bound). Remark that Ö, Ñ have to vary with �, and they have to be non-increasing
and Ñ 0 when � Ñ `8 (which is indeed the case for this formula).

Below in Figures 1, 2 and 3 are plotted the observed regrets, of the two algorithms EWF
versus EXP3, playing successively against the three strategies described above:

1 Note: I only tested my programs with GNU Octave, and version v4 at least is required – the classdef

feature is new in Octave version 4.0.

Master MVA 1 Lilian Besson, 2015

https://www.gnu.org/software/octave/NEWS-4.0.html
https://bitbucket.org/lbesson/

Reinforcement Learning - TP 3 November 23, 2015

Figure 1: Regrets of EWF versus regrets of EXP3 against a constant adversary B.

Figure 2: Regrets of EWF versus regrets of EXP3 against a tricky adversary B.

Master MVA 2 Lilian Besson, 2015

https://bitbucket.org/lbesson/

Reinforcement Learning - TP 3 November 23, 2015

Figure 3: Regrets of EWF versus regrets of EXP3 against a random adversary B.

The plots show exactly the behavior we expected: EWF is better than EXP3 (it reads the
entire � when EXP3 read one value at a time), EXP3 is really bad against a constant “stupid”
player when EWF is optimal, and both are as inefficient against a random player.

2 EXP3 versus EXP3: Nash equilibrium

See the file EXP3vEXP3.m (it is well commented) for the implementation, and the second part
in the main file mainTP3.m for the demo.

Question 2

Below the core of that simulation, where two EXP3 objects play against each other:

1 for t = 1:n % Time h o r i z o n n

2 % A and B plays , both have same i n t e r f a c e

3 % (but i n t e r n a l w e i g h t s will e v o l v e d i f f e r e n t l y)

4 actionA = exp3A .play ();

5 ActionsA (t) = actionA ;

6 actionB = exp3B .play ();

7 ActionsA (t) = actionB ;

8

9 % Get r e w a r d for these two a c t i o n s

10 reward = G(actionA , actionB);

11 RewardsA (t) = reward ;

12 % Both p l a y e r reacts , r e s p e c t i v e l y to r and -r

Master MVA 3 Lilian Besson, 2015

https://bitbucket.org/lbesson/

Reinforcement Learning - TP 3 November 23, 2015

13 exp3A . getReward (reward);

14 exp3B . getReward (- reward); % R_B (i , j) = - R_A (i , j)

15 end ;

In the 3rd part in the mainTP3.m file, we then compute the required quantity ��,�, ��,� and
�‹

� and �‹
� like this (respectively estimated probability of player A or B to pick the first action,

and last estimation is used as optimal �‹):

1 % Run the EXP3 vs EXP3 s i m u l a t i o n

2 [ActionsA , ActionsB , RewardsA] = EXP3vEXP3 (n, eta , beta , G);

3

4 % C o m p u t e p_A , n and p_B , n and ’ o p t i m a l value ’ p_A ^* p_B ^*

5 p_A_n = c u m s u m (ActionsA == 1) ./ (1:n);

6 p_A_star = p_A_n (end);

7 p_B_n = c u m s u m (ActionsB == 1) ./ (1:n);

8 p_B_star = p_B_n (end);

For this simulation, we observe a bigger time horizon of � “ 5000, and use the same formula
for Ö » 0.0127 but chose a bigger Ñ » 1.27.

Below in Figure 4 is plotted the observed mean frequencies of choosing the action 1 for
player A and B (on 20 simulations).

Figure 4: Checking that ��,� and ��,� resp. converge to �‹
� » 0.48 and �‹

� » 0.

As expected, we observed indeed that these mean empirical frequencies ��,� “ 1

�

ř�
�“1

1p�t“1q

(choices of 1 for player A) and ��,� “ 1

�

ř�
�“1

1p�t“1q (choices of 1 for player B) do converge to
two values, respectively �‹

� » 0.48 and �‹
� » 0.

Master MVA 4 Lilian Besson, 2015

https://bitbucket.org/lbesson/

Reinforcement Learning - TP 3 November 23, 2015

The value of the game is the limit of
ř�

�“1
p��p��, ��qq{�, which is computed in Octave

and plotted as cumsum(RewardsA) ./ (1:n):

Figure 5: Checking that
ř�

�“1
p��p��, ��qq{� converges to 0.489.

We computed the value of the game to be 0.489. In fact, because ��,� Ñ�8 �‹
� » 0 and due

to the special value of � (best �-reward is 1), it is satisfactory to observe the value to be about
Vp�q » 1 ˆ �‹

�, and ��,� Ñ�8 �‹
� » 0.48.

Remark: I think in practice this value depends on the numerical values chosen for the
parameters (Ö, Ñ etc), but I guess it should have converged to 1{2 (because of the special shape
of the matrix �). So finding a limit value of 0.489 is correct, with a relative error of 2.2%.

3 Stochastic bandit or adversarial bandit

This time, the file Thompson.m was given. We wrote the EXP3Stochastic function by following
the explanations in the slides.

Below is included the key part of that simulation, showing what happens at each time step:

1 actionA = exp3.play (); % A plays

2 Actions (t) = actionA ;

3 % D i f f e r e n t from E X P 3 p l a y : B plays from the MAB

4 % R e w a r d X_ {i , t } is drawn from the arm c h o s e n by A

5 X_it = MAB{ actionA }. play ();

6 Rewards (t) = X_it; % A r e c i e v e s r e w a r d from this a c t i o n

7 exp3. getReward (X_it); % A u p d a t e s its w e i g h t s this a c t i o n

Master MVA 5 Lilian Besson, 2015

https://bitbucket.org/lbesson/

Reinforcement Learning - TP 3 November 23, 2015

Question 3

To conclude, we wanted to compare the two algorithms: Thompson Sampling versus a stochastic
EXP3. Thompson sampling one only works for Bernoulli MAB, so we first chose a “simple”
Bernoulli MAB (where EXP3 will be able to quickly identify the best “arm” ie. the best action
to play), and an “harder” one when we guess that Thompson Sampling will be more efficient2.

• “Easy” Bernoulli MAB, 3 arms of parameters 0.5, 0.7, 0.4. Best one has mean 0.7 (quite
far from the other arms). Complexity was computed to be 7.8.

• “Hard” Bernoulli MAB, 4 arms of parameters 0.43, 0.45, 0.49, 0.48. Best one has mean
0.49 (really close from the other arms). Complexity was computed to be 199.73.

On the plot below (Figure 6), we compare the rewards of Thompson Sampling with the
rewards of EXP3, for one simulation. We observe what we were expecting: EXP3’s performance
is not very far from Thompson’s, and they seem to have the same behavior on the harder MAB
problem:

Figure 6: One run of Thompson Sampling vs EXP3, “easy” (left), and “hard” (right) Bernoulli MAB.

And the next plot (Figures 7 and 8) compare the average regrets (for 20 simulation3). We
clearly observe what the previous plot started to show: in average, Thompson is really better
than EXP3 (at least for an easy MAB). It is harder to interpret the result of the plot on the
right for the harder MAB, where both algorithms perform “as badly”.

2 I chose the same Bernoulli Multi-Armed Bandits problems as in the TP2, in order to also compare UCB

versus EXP3. Long story short: for simple MAB, UCB beats Thompson which beats EXP3, but for harder MAB,

it’s the opposite.
3 All these simulations were really slow so it would have taken a lot of time to do more. . .

Master MVA 6 Lilian Besson, 2015

https://bitbucket.org/lbesson/

Reinforcement Learning - TP 3 November 23, 2015

Figure 7: Comparing mean regrets of Thompson Sampling vs EXP3, on a “easy” Bernoulli MAB

(� “ 7.8), on � “ 20 simulations.

Figure 8: Comparing mean regrets of Thompson Sampling vs EXP3, “hard” (right) Bernoulli MAB

(� “ 199.7), on � “ 20 simulations.

Master MVA 7 Lilian Besson, 2015

https://bitbucket.org/lbesson/

Reinforcement Learning - TP 3 November 23, 2015

Finally, to conclude, we observed that the exploratory/exploitation algorithm (EXP3) seems
more interesting for harder Bernoulli bandit problems (it is closer to Thompson) but never
appear better that the Thompson Sampling method.

Additionally, on harder problems, both performs more “erratically”, which is seen in the
plot on the right because the curve is really less smooth in comparison to the one for easy MAB
problem.

Conclusion

The TP was interesting, thanks.

I wanted to try apply the EXP3 vs EXP3 on a more complex zero-sum game (not 2
players, or more than 2 ˆ 2 rewards) but it would have require a (way) more complex
algorithm. However, I was able to use it for another example of 2 ˆ 2 zero-sum game
(another matrix �, 3 ˆ �), and observed similar results (the value of the game was » 1.5
and same behavior when comparing EXP3 and Thompson Sampling).

Remark: Inspired by the Object Oriented point of view we took last time to implement
the arms, I implemented the EWFplay, EXP3play and EXP3vEXP3 functions thanks to two
objects, EWF.m and EXP3.m (which provides two methods: .play() to draw an arm, and
.getReward(r) to update the weights).

Master MVA 8 Lilian Besson, 2015

https://bitbucket.org/lbesson/

	EWT and EXP3 versus an oblivious adversary
	EXP3 versus EXP3: Nash equilibrium
	Stochastic bandit or adversarial bandit

