
Reinforcement Learning - TP 2 November 12, 2015

Master M2 MVA 2015/2016 - Reinforcement Learning - TP 2

The stochastic multi-armed bandit problem

By: Lilian Besson (lilian.besson at ens-cachan.fr). Attached programs: The programs for
this TP are included in the zip archive I sent, and are regular MATLAB/Octave programs1.

1 Building a MAB problem

I did not create any other arm class, but in the examples below I used at least each distribution
once.

For this first part, we considered this MAB problem, for which the best arm is the first one
(with mean 0.5):

• Arm1 “ Bernoullip0.5q (mean: 0.5),

• Arm2 “ Betap3, 7q (mean: 0.3),

• Arm3 “ Expp3q (mean: 0.31674),

• Arm4 “ Finitepr0.10.30.70.8s, r0.20.40.10.3sq (mean: 0.45),

2 The UCB algorithm

See the file naive.m and UCB.m (they are well commented) for the implementation, and the main
file mainTP2.m for the demo.

Below in Figure 1 is plotted the observed regret on one simulation, comparing the naive
strategy with the UCB algorithm (with two different values of 𝛼 “ 0.02, 0.5):

Figure 1: Regret for one simulation, naive vs UCB (left 𝛼 “ 0.02, right 𝛼 “ 0.5).
1 Note: I only tested my programs with GNU Octave, and version v4 at least is required – the classdef feature

is new in Octave version 4.0.

Master MVA 1 Lilian Besson, 2015

https://www.gnu.org/software/octave/NEWS-4.0.html
https://bitbucket.org/lbesson/

Reinforcement Learning - TP 2 November 12, 2015

As expected, even without trying to use the “best” value for 𝛼, the naive strategy is performing
badly compared to UCB (ie. naive regret is bigger).

Question 1

For the same MAB problem, instead of comparing two strategies on just one simulation, we
consider 4 strategies (naive, and 3 values of 𝛼 for UCB), and we compare them based on their
empirical mean regret (average on nbSimulation simulations, 50 in our test, to not be too time
consuming).
Below is showed the key part of that simulation (for the 3rd evaluated strategy, a UCB with
𝛼 “ 0.25):

1 T = 4000; alpha = 0.25;
2 all_rews3 = zeros (nbSimulation ,T);
3 % S i m u l a t e a lot of times one (r a n d o m) run of UCB on this MAB
4 for i = 1: nbSimulation
5 [rews3 , draws3] = UCB(T,alpha ,MAB);
6 % C o m p u t e the e s t i m a t e d r e g r e t of this ith s i m u l a t i o n
7 all_rews3 (i ,:) = maxmu * (1:T) - c u m s u m (rews3);
8 end ;
9 % At the end , c o m p u t e the a v e r a g e of the e s t i m a t e d r e g r e t

10 avg_rews3 = mean (all_rews3 , 1);

Below in Figure 2 is plotted the observed mean regret (on 40 simulations), comparing the
naive strategy with the UCB algorithm (with three different values of 𝛼 “ 0.02, 0.5):

Figure 2: Two comparisons of naive vs 3 UCB, based on the average regrets.

The best value for 𝛼 seemed to be 0.02, which is coherent with the one predicted by the
course. In the lecture, we saw that the optimal value for 𝜌 was about 0.2, and 𝜌

b

log 𝑡
2𝑁 “

b

𝛼 log 𝑡
𝑁

so 𝛼 “ 𝜌2

2 , and so if 𝜌˚ » 0.2, 𝛼˚ » 0.02.
Another observation is that all the UCB performed better than the naive strategy, because we

chose valid values of 𝛼. For some badly chosen 𝛼, UCB will perform worse.

Master MVA 2 Lilian Besson, 2015

https://bitbucket.org/lbesson/

Reinforcement Learning - TP 2 November 12, 2015

3 Complexity of a bandit problem

In order to plot the lower bound when comparing the UCB and Thompson sampling algorithms,
we implemented the complexity for a MAB problem with 𝐾 Bernoulli arms in the file complexity.m.
That bound comes from Example 2 in a paper by Lai and Robbins in 1985, and we can compute
it concretely, thanks to the fact that the Kullback-Leibler divergence between two Bernoulli
distributions is easy to compute (with a formula).
Note: computing the bound requires to have access to the parameters of the Bernoulli (their
means), and not just to be able to observe events: it is not simulation-based.

4 A Bayesian idea for Bernoulli bandit problems

1. In the Thompson.m file we implemented the Thompson Sampling algorithm, as described
in the assignment. It’s a basic randomized algorithm, which selects at each step the arm to pull
based on a Beta distribution (the posterior distribution). Cf. the file for more details, it’s also
well commented.

Below is included the key part of that simulation, showing what happens at each time step:

1 % Beta d i s t r i b u t i o n used to chose the a c t i o n
2 theta_t = betarnd (S + 1, N - S + 1);
3 % Pick the next arm A_t : B a y e s i a n b a n d i t a l g o r i t h m s c h o o s e an Ðâ

a c t i o n
4 % based on the c u r r e n t p o s t e r i o r (Beta) d i s t r i b u t i o n s over the Ðâ

p a r a m e t e r s of the arms
5 [~, A_t] = max (theta_t);
6 % U p d a t e r e w a r d s and nb of v i s i t s
7 rew_t = MAB{A_t }. play (); % This r e w a r d * is * r a n d o m !
8 N(A_t) = N(A_t) + 1; % One more visit of A_t
9 S(A_t) = S(A_t) + rew_t; % More r e w a r d !

10 % A p p e n d the c h o s e n arm and o b t a i n e d r e w a r d
11 rews = [rews rew_t];
12 draws = [draws A_t];

2. I don’t think we can call the Thompson Sampling algorithm “optimistic” anymore, because
it does not build confidence intervals at all. UCB is optimistic in the sense that it keeps an
estimation of the average and confidence on each arms, picking the one that has the biggest Upper
Confidence Bound (average + confidence). Thompson Sampling simply keeps in memory and
slowly improves an estimation of the underlying hidden parameters of the random arms, but it
does not have any idea of how trustworthy the estimations are.

Question 2

To conclude, we wanted to compare the two algorithms UCB vs Thompson Sampling. The second
one only works for Bernoulli MAB, so we first chose a “simple” Bernoulli MAB (where UCB will

Master MVA 3 Lilian Besson, 2015

https://dx.doi.org/10.1016:0196-8858(85)90002-8
https://bitbucket.org/lbesson/

Reinforcement Learning - TP 2 November 12, 2015

be able to quickly identify the best arm), and an “harder” one when we guess that Thompson
Sampling will really be useful.

• “Easy” Bernoulli MAB, 3 arms of parameters 0.5, 0.7, 0.4. Best one has mean 0.7 (far from
the other arms). Complexity was computed to be 7.8184.

• “Hard” Bernoulli MAB, 4 arms of parameters 0.43, 0.45, 0.5, 0.4. Best one has mean 0.5 (less
far from the other arms). Complexity was computed to be 133.58.

On the plot below (Figure 3), we compare the regrets of Thompson Sampling with the
regrets of UCB, for one simulation. We observe what we were expecting: UCB can work better
than Thompson (if it is lucky) on the easy MAB, but Thompson is really better on the harder
MAB problem:

Figure 3: Comparing UCB vs Thompson Sampling, “easy” (left), and “hard” (right) Bernoulli
MAB.

And the next plot (Figure 4) compare the average regrets (for 20 simulation, all this was
really slow so it would have taken a lot of time to do more). We observe that the previous plot
came from a lucky run of UCB: in average, Thompson is better for the easy MAB. It is harder to
interpret the result of the plot on the right for the harder MAB, where both algorithms perform
as well.

Figure 4: Comparing mean regrets of UCB vs Thompson Sampling, “easy” (left), and “hard”
(right) MAB.

Master MVA 4 Lilian Besson, 2015

https://bitbucket.org/lbesson/

Reinforcement Learning - TP 2 November 12, 2015

Finally, we can compare these average regrets of UCB and Thompson with the Lai and
Robbins’s bound:

Figure 5: Comparing mean regrets of UCB vs Thompson Sampling vs Lai and Robbins’s bound.

These last plots show that the theoretical lower bound is in fact above the other curves,
which would be really weird if it was not an asymptotic bound. In our limited-time simulation,
the horizon was finite and quite small (𝑇 “ 3000), so we should be not surprised to observe
this behavior: for “small” values of 𝑇 , the bound is very pessimistic. And additionally, for more
complex MAB problems, the bound is observed to be really less accurate.

Conclusion

The TP was interesting, thanks.
I did a little extra for the UCB and naive implementation, the two functions will draw

and keep updated a plot showing their current estimated means for each arms (just change
doPlot = false to doPlot = true in main.m). It was interesting to see how evolve the
means during the iteration of UCB. I also try to plot the confidence intervals for UCB, but
it turned out to be pretty slow (I should have done the same plot optimization trick with
HandlePlot but ran out of time to finish it).

Master MVA 5 Lilian Besson, 2015

https://bitbucket.org/lbesson/

	Building a MAB problem
	The UCB algorithm
	Complexity of a bandit problem
	A Bayesian idea for Bernoulli bandit problems

