Reinforcement Learning - TP 1 October 22, 2015

Master M2 MVA 2015/2016 - Reinforcement Learning - TP 1

By: Lilian Besson (lilian.besson at ens-cachan.fr). Attached programs: The programs for this
TP are included in the zip archive I sent, and are regular MATLAB /Octave programs (tested
with Octave only).

Problem 1 : Retail store management

Question 1

I chose to keep the default parameters, as given in the template mainTP1.m file: M = 15 (size of the
stock), K = 0.8 (delivery cost), h = 0.3 (maintenance cost), ¢ = 0.5 (buying price), p = 1 (selling
price), v = 0.98 (discount factor ie. inflation rate). The distribution of customers is assumed to be a
truncated geometric distribution (of parameter ¢ = 0.1).

I also tried to change them a little bit to check that the behavior is coherent (for instance, a bigger
stock does not change much the situation, increasing the costs reduce the optimal cumulated profit
while increasing selling price does, and a higher inflation can suppress all possibility of profit for the
store manager — all this is logical).

Both the [VI and PI methods are iterative, with a number of steps T', that I choseE] to be 300
for VI, and 10 for PI. Increasing this T" increases the time complexity, and at one point does not
improve accuracy of the answer (as shown in Question 2). Both give the same optimal policy and
value vector (as expectedﬂ):

e VI gave ny,; = [10, 9, 8, 7, 0, 0, 0, 0, O, O, O, O, O, O, O, O 1.

« PI gave n,; = [10, 9, 8, 7, 0, 0, 0, O, 0, O, O, O, O, O, O, O 1.

They both have the same shape (as illustrated below): the manager buys M — z objects when his
stock is almost empty (z < 8 ¥ 4), and does not buy any object if the stock is “full enough”:

Optimal policy with Value Iteration T (mean value: 60.544) optimal policy with Policy Iteration T, (with closed form pol_sval, mean value: 60.594)

(Mg, (%))

to buy (M, (x))

.
Object

Figure 1: Optimal policies 7j,; and 7p;

Tt seems logical: in class we saw that each step of VI is quicker but it requires more steps (and it works well).

2I kept a struggling with a vicious bug for hours: [V pol] = max(Q, [], 2) was returning pol as a vector of indeces
(in [1, M + 1]) while our implementation considered states and actions to be in [0, M]! VI and PI were giving different
results! Just adding pol -= 1 after each evaluation of pol fixed that.

Master MVA 1 Lilian Besson, 2015

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node44.html
http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node43.html
https://bitbucket.org/lbesson/

Reinforcement Learning - TP 1 October 22, 2015

This strategy is quite logical, under the assumption we made on (D;), it prevents the manager
from purchasing too much and from having an empty stock. The fact that there is a fixed cost of
delivery explains also why the manager should buy a lot of objects when needed and nothing otherwise
(it was not easy to tweak this aspect of the model, I did not try to).

The value function (vector V*) has that form: [57.6, 57.8, 58.0, 58.2, 58.5, 58.9, 59.3,
59.6, 59.9, 60.1, 60.4, 60.6, 60.7, 60.9, 61.0, 61. 1. It’s almost constant equals to 60,
and increasing when the initial stock increaseﬂ which is logical (if the initial stock is full, the store
wins more money).

I checked that changing the inflation rate (v, e.g. from 0.98 to 0.92) does not change the optimal
policy but does change the optimal value: decreasing v decreases the reward of our clever manager,
this is also very logical. If 7y is small enough (like 0.70), PI converges in one step! 7* has the same
shape, the threshold 6 is reduced, and the optimal reward is really reduced. I did not try to play with
the other parameters of our MDP, but I'm sure we would observe the same kind of “logical” behavior.

Question 2

For PI, I implemented the three different version of pol_eval (Monte-Carlo simulation, closed form
by inverting the Bellman equation, or fixed point method by iterating the Bellman operator 7). In
practice, I found that the fixed point method is very close to the closed form (ie the exact solution)
from about 200 steps of iteration of 7 on Vj, but is slower (M is not big enough for 200M? < M3 ...),
so I used the closed form option here.

As requested, here is a plot of the error rates for both VI and PI, done a posteriori by using the
final Vi as V* (cf. the functions VI_with_plots.m and PI_with_plots.m).

o 50 100 50 200 250 300

eps k=1..K Steps k=1..K

Figure 2: Decreasing error rates ||[V* — Vi|loo, k = 1...T, for VI (left) and PI (right).

For a fixed number of iteration, PI is clearly the more efficient approach (the scale of the z axis is
different for the right plot, T" is only 10 steps for PI while it is 300 for VI). But for big MDPs, each
step of PI is way costlier than a step for VI. Here, M = 15 so the number of states and actions is
(really) too small to be able to compare (asymptotic) complexity.

3Remember that V* : zg — v (z0) quantifies the long-term ~-discounted cumulative reward if we start from xg
and follow 7*.

Master MVA 2 Lilian Besson, 2015

https://bitbucket.org/lbesson/

Reinforcement Learning - TP 1 October 22, 2015

Problem 2 : Q-Learning as a first RL algorithm

Question 3

The Q-Learning algorithm has been implemented in the file Qlearning.m.

e For a real world reinforcement learning, the distribution D; would really be unknown, and just
observed, but here we need it to be able to perform the step “observe a transition: get a reward
R, and a new state Xy41”.

o For the “suitably exploratory policy”, I tested with a cycling one (selecting a_t = mod(t,M+1))
and a random one (a_t = randi(M+1)-1), and the random one seems to be quicker.

o For the initial state, I tested x9 = 0 or xg = M or a random one, and it does not change the
results at all. That’s logical because the next oen x is already random.

And here are the policies found, for different numbers of iterations (nbit in the code):

Iterations Time H Approximated optimal policy
102 0.9s [12, 6, 0, 15, 0, 13, 3, 8, 8, 5, 4, 6, 13, 1, 11, 3] (bad!)
10 1.52s [10, 8, 15, 15, 14, 2, 10, 9, 1, 5, 4, 11, 1, 2, 1, 2] (bad)
10% 7.27s [13, 12, 14, 12, 11, 9, 6, 4, 0, 0, 0, 1, 0, 9, 13, 51 (meh?/)
10° 665 [10, 9, 7, 9,6, 0,0, 0,0, 0,0,0,0,0,0,2] (better)
106 11m5ls [10, 7,9,7,0,0,0,0,0,0,0,0,0,0,0,0]1 (almost!)
For 7* VI or PI [10, 9, 8, 7, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O] (optimal)

As we can see the Q-Learning algorithm needs a lot of iterations to find the optimal policy n*
(107 might not be enough) but it is able to tell us quite quickly that the manager should only order
big commands or order nothing, and this is mainly because of the fixed cost of delivery.

The action was chosen by cycling in A = {0,..., M}, another option is to choose a; randomly,
but we would very likely get better results if we were choosing the action a in a way to explore where
we have bigger incertitude.

Conclusion

Except Octave specific coding mistakes (like indeces starting in 0 when actions/states were
starting at 0), and the “observe a transition” part of the Q-Learning algorithm, that TP was not
too hard, but I found it interesting and fun to do! I'm looking forward for the next one.

Master MVA 3 Lilian Besson, 2015

http://webdocs.cs.ualberta.ca/~sutton/book/ebook/node65.html
https://bitbucket.org/lbesson/

