
Self-Organizing Maps and DSOM
From unsupervised clustering algorithms to

models of cortical plasticity
Research Project Report – “Modeling in Neuroscience” course

Lilian Besson*

Department of Mathematics
École Normale Supérieure de Cachan (France)

lilian.besson@ens-cachan.fr

Abstract

For this mini-project, I studied computational models for unsupervised learn-
ing, starting from a classical one (K-Means), and then some models inspired by
neuroscience or biology: Neural Gas, Neural Fields, and Self-Organizing Maps
(SOM). I mainly focused on the later, and on a variation of the SOM algorithm
where the original time-dependent (learning rate and neighborhood) learning
function is replaced by a time-invariant one, giving the Dynamic SOM (DSOM).

This allows for on-line and continuous learning on both static and dynamic
data distributions. One of the property of the newly proposed algorithm is that
it does not fit the magnification law and the achieved vector density is not di-
rectly proportional to the density of the distribution as found in most vector
quantization algorithms. It also has the advantage of requiring only two param-
eters and not five, making it easier to automatically tune them with a manual
exploration or a grid search.

From a neuroscience point of view, this dynamic extension of the SOM algo-
rithm sheds light on cortical plasticity seen as a dynamic and tight coupling be-
tween the environment and the model. The difference between SOM and DSOM
can be seen as the natural difference between early years learning (in child) and
long-term learning (in adults).

*If needed, see on-line at http://lbo.k.vu/neuro2016 for an e-version of this report, as well as addi-
tional resources (slides, code, figures, complete bibliography etc), open-sourced under the MIT License.

1

http://perso.crans.org/besson/
http://lbo.k.vu/neuro2016
http://lbesson.mit-license.org/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Contents

1 Introduction 3

2 Unsupervised Learning, starting with K-Means 3
2.1 Different types of learning . 3
2.2 Vectorial quantization: a simple unsupervised task 4
2.3 K-Means: a first unsupervised algorithm 6
2.4 Application: color quantization . 7

3 Models of unsupervised learning inspired from neuroscience 8
3.1 Self-Organizing Maps (SOM) . 8

3.1.1 The SOM model . 9
3.1.2 Illustrations for the SOM model . 9
3.1.3 The SOM algorithm . 10
3.1.4 Parameters for a SOM . 11
3.1.5 Quick theoretical study of the SOM algorithm 11

3.2 Neural Gas (NG) . 12
3.3 Dynamic Neural Fields (DNF) . 13

4 Dynamic Self-Organizing Maps (DSOM) 13
4.1 What need for a dynamic model? . 13
4.2 Constant learning rate on a SOM . 14
4.3 Comparisons between NG, SOM, DSOM 15
4.4 Examples of non-stationary distributions 17
4.5 Questions still not answered . 17

5 Conclusion 20

A Appendix 21
A.1 Acknowledgments . 21
A.2 Personal feeling about the project . 21
A.3 References . 21

Project Advisor: Nicolas P. Rougier (MNEMOSYNE team, Inria Bordeaux)
Course: “Modeling in Neuroscience”, by J.-P. Nadal, in 2016,

Master 2 program: Mathématiques, Vision, Apprentissage (MVA)
at ENS de Cachan.

Grade: I got 17.5⇑20 for my project.

Master MVA – ENS Cachan 2⇑22 Lilian Besson

http://www.labri.fr/perso/nrougier/
http://team.inria.fr/mnemosyne/
http://www.inria.fr/
http://www.lps.ens.fr/~nadal/Cours/MVA/
http://www.lps.ens.fr/~nadal/
http://www.math.ens-cachan.fr/version-anglaise/academics/mva-master-degree-227777.kjsp
http://www.ens-cachan.fr/
http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Outline: In this report, we start by introducing the problem of unsupervised learning, and
the main approach we studied, in section 1. Then different classical models are presented
in section 3 (Neural Gas, Neural Fields and Self-Organizing Maps), and each comes with
a short discussion about its parameters; followed in section 4 by the presentation of a new
unsupervised clustering algorithm: Dynamic Self-Organizing Maps [RB11a]. This model is
a simple relaxation of the well-known SOM algorithm, where the learning rate and neigh-
borhood width both become time-invariant but local-dependent. We will also detail some
experiments, comparing NG, SOM and DSOM on several types of both static and dynamic
distributions; and exploring the effects of the 2 parameters of a DSOM model. The DSOM
is also applied to a highly-non-stationary distribution, proving it can be a satisfying model
of long-term learning as encountered in the cortex (“cortical plasticity”). At the end, we
conclude with a short sum-up in section 5, along with a list of references, and links to addi-
tional on-line resources in appendix A.
Note: This report comes along the slides used for the oral presentation, which covers a
similar work, but you might also be interested in reading them0.

1 Introduction

Quick overview of the goals of this project

In machine learning, and in the brain [Doy00], there is different kinds of learning: Super-
vised learning (as found in the cerebellum), Reinforcement learning (as found in the basal
ganglia and the thalamus), and Unsupervised learning (as found in the cortex).

A lot of unsupervised learning models exist, and we will first focus on K-Means, a very
classical one, and then on some models inspired from neuroscience: Neural Gas, Neural
Field & Dynamic NF are presented very quickly, and then Self-Organizing Maps & Dy-

namic SOM are studied more in details.
Unsupervised learning has many applications, including data/image compression (e.g. color

quantization, as used by the GIF image format), automatic clustering, visualization, etc; and
modeling self-organization and online learning (plasticity) in the cortex is only one of the
possible application of these algorithms.

2 Unsupervised Learning, starting with K-Means

2.1 Different types of learning

In Machine Learning: Each type of learning have been thoroughly studied from the 50′s:

– Supervised (or deep) learning means learning from labeled data; for a reference see
e.g. [Bis06]. A very successful application of deep learning from a tremendous
quantity of data is the Google Images application (images.google.com), which
showed in 2012 that images retrieval works in the real-world (almost any image, from
anywhere around the globe, from movies, from comic books etc, is recognized very
quickly).

0 You can find them online: https://goo.gl/GjrwkX or here.

Master MVA – ENS Cachan 3⇑22 Lilian Besson

https://images.google.com/
https://goo.gl/GjrwkX
https://bitbucket.org/lbesson/mva16-project-modelisation-neuro-sciences/downloads/MVA__Modelisation_Neuro_Sciences__project__Lilian_Besson__2015-16__Slides.en.pdf
http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

– Reinforcement learning means learning with feedback (also referred to as reward or
penalty); for a reference see e.g. [SB98]. Another example of a successful application
of reinforcement learning is the very recent success of Google DeepMind’s Alpha Go
project, which showed that reinforcement learning (and deep learning) can give very
powerful AIs (the first AI to ever beat a professional Go player).

– But unsupervised learning is still the harder, the “Holy Grail” of machine learning.

As a lot of studies have shown, the main three different types of learning can be found
in the brain [RB11a, Doy00]. We will not give more details here neither about the differ-
ent types learning nor the neuroscience background and experiments that permitted to the
neuro-biology community to agree on this representation (Fig. 1):

Figure 1: The 3 main types of learning are present in the brain [Doy00, Figure 1].

Why is unsupervised learning harder? In the unsupervised setting, the algorithm has ab-
solutely no idea what the data is: there is no labels, no time organization, and no feed-
back/reward/penalty: just raw data.

As many specialist accord to say, predictive learning is the future. A very recent quote
from Richard Sutton1 and Yann LeCun2 illustrates this:

“AlphaGo is missing one key thing: the ability to learn how the world works.” Richard has
long advocated that the ability to predict is an essential component of intelligence. Pre-
dictive (unsupervised) learning is one of the things some of us see as the next obstacle
to better AI.

Figure 2: Yann LeCun quoting Richard Sutton in February 2016.

2.2 Vectorial quantization: a simple unsupervised task

Let � = {x1, . . . , x�} be samples in a space �. We want to cluster the data, and this directly
raises a few questions:

– How to cluster similar data together? Similar in what sense?

1 One of the father of reinforcement learning, cf. [SB98].
2 One of the father of deep learning.

Master MVA – ENS Cachan 4⇑22 Lilian Besson

https://www.deepmind.com/alpha-go.html
http://www.imdb.com/title/tt0071853/
https://www.facebook.com/yann.lecun/posts/10153442884182143
http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

– How many groups there is? � clusters �� : find �.

– What are the best representatives of each group? “Centroids” Û� .

– Can we identify close groups (and merge them) ?

For instance, in Fig. 3 below is showed points in 2� (i.e. � ⊂ R2), and our human eyes
directly see they are organized in groups (“clusters”), about 16 of them. A first clustering,
easy to obtain, is shown in the middle, it consists in dividing the square in 16 small sub-
squares, all equal (their centers is shown as a big white circle). A second clustering, way
more visually satisfying, is shown on the right: this one consists of 16 Voronoï diagrams,
and is obtained with a Delaunay algorithm.

Figure 3: For 2D points, examples of a bad quantization and a good quantization

Let start by clarifying mathematically what a vectorial quantization algorithm can be.
Let � be the data space (containing the dataset � ⊂ �), a compact manifold3 in R

�.

Definition 2.1. A vectorial quantization of � is simply defined by a function Φ, and a set � ⊂ �,
so that ∀x ∈ �, Φ(x) ∈ � (i.e. Φ ∶ � → �).

� is usually finite, or at least discrete, and is called the codebook: � = {�1, . . . , ��}.
Examples 2.2. Assume we have data lying in � = R (real line), and we want to quantize them.
First, for a discrete and finite codebook, � = {±1}: we can take Φ(�) = sign(�), there is only 2

prototypes (��)�=1..�.
Secondly, for a discrete but infinite codebook, � = Z: we can take Φ(�) = ︀�︀ or ︂�︂, here there is an
infinite number of prototypes (��)�=1..�.

So a natural question is: can we generalize to any data? We would like to automatically
find the target/compressed set � (the codebook), and the clustering function Φ, for any
dataset � in a set � ?

We can sum up the notations used hereafter, and express mathematically the goal. For
a finite codebook � = {�1, . . . , ��}, we define the clusters by ��

def= {x ∈ � ∶ Φ(x) = w�}. We
assume the data x� are drawn from a target probability density � on �.

First, define the (continuous) distortion of the VQ as:

J(Φ) def= ∑
�=1..�

E�,�i
︀︁x −w�︁2︀ = ∑

�=1..�
∫

�i

︁x −w�︁2 �(x) dx. (1)

3 As no mathematical proofs of convergence, correctness or stability are done in the report, this hypothesis
is not used. But it is a classical assumption, usually required for the few theoretical work on the SOM and
DSOM algorithms, see for instance [CFP87, CFP98].

Master MVA – ENS Cachan 5⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

But as always in machine learning and inference, the target distribution � is unknown.
We assume that only unbiased observations x� are available (� = 1..�), and so we define the

empirical distortion as Ĵ(Φ) def= 1

�

�∑
�=1
∑

xj∈�i

︁x� −w�︁2. And the goal is to minimize the empirical

distortion Ĵ.

A “classical” problem The vector quantization problem, as defined above, is nothing but
a clustering problem, and this has been studied a lot in the last 30 years.
As a consequence, plenty of algorithms have been proposed, including K-Means (1), Elas-
tic Net (a L1-L2 penalized least-squares regression), (Dynamic) Self-Organizing Map (2)
[RB11a], and (Growing/Dynamic) Neural Gas (3), (Dynamic) Neural Field (4) [RD11].
And vector quantization counts many applications, like compression of data (images etc),
automatic classification/categorization4 etc.

Additionally to these applications, an interesting consequence of the NG, SOM and
DSOM models will be there connexions with the learning processes as found in human
or primates (see later).

2.3 K-Means: a first unsupervised algorithm

Before studying clustering models inspired from biology, let start by quickly reviewing a
well-known one: the K-Means algorithm.

It clusters data by trying to separate the � samples x� in � groups of equal variance, min-
imizing a criterion known as the “distortion” J(Φ). This algorithm requires �, the number
of clusters, to be specified before-hand, as most unsupervised models. There is strategies
to try to find a good value for � automatically (based on a grid-search), but the question of
the “best possible �” is mathematically unfunded.

K-Means also has the advantage of scaling well to large number of samples, and as a
consequence it has been used across a large range of application areas in many different
fields. For example, Fig. 4 below shows 10 clusters, obtained by K-Means from the well
known MNIST hand-written digits dataset5, after a dimension reduction of the digit dataset
to 2 dimensions.

Figure 4: Example: K-Means clustering on the digits dataset (PCA-reduced data).

4 E.g. in 2013 Netflix “automatically” discovered the main movie genres from its database of movies ratings.
5 In scikit-learn [PVG+11], it is obtained with datasets.load_digits.

Master MVA – ENS Cachan 6⇑22 Lilian Besson

http://scikit-learn.org/dev/modules/clustering.html#k-means
http://scikit-learn.org/dev/modules/generated/sklearn.linear_model.ElasticNet.html
http://scikit-learn.org/dev/modules/generated/sklearn.linear_model.ElasticNet.html
http://scikit-learn.org/dev/modules/clustering.html#k-means
https://www.netflix.com/
http://scikit-learn.org/dev/
http://scikit-learn.org/dev/modules/generated/sklearn.datasets.load_digits.html
http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Description of the K-Means algorithm K-Means aims at dividing a set of � samples � ={x1, . . . , x�}, into � disjoint clusters �� , each described by the mean Û� of the samples in
the cluster. The means are called the cluster “centroids”6. Aims to choose centroids that
minimize the distortion:

J(Φ) = 1

�

�∑
�=1

min
Ûj∈�
(︀︀x� − Û� ︀︀2) . (2)

Convergence & implementation K-Means is equivalent to the Expectation-Maximization
algorithm with a small, all-equal, diagonal covariance matrix. And the E-M algorithm con-
verges, as it strictly minimizes the distortion at each step. So K-Means converges indeed,
but it can fall down to a local minimum: and that is one of the reason why a dynamic unsu-
pervised learning algorithm can be useful.

K-Means is quick and efficient (with K-Means++ initialization), usually converges well,
and is easy to implement. It is available in scikit-learn [PVG+11], as clustering.KMeans,
and for this project I also reimplemented it myself, see kmeans.py (on-line).

2.4 Application: color quantization

A nice application of any clustering algorithm can be color quantization for pictures or
movies [Blo08].

Let start with a simple example, on a picture of a flower, with only two color channels
(green and red), in order to visualize easily the color space as a 2� space (red/green). In this
color-space, we can cluster all its colors (being the data x�), into only 16 Voronoï diagrams

(16 is an arbitrary choice), as shown in Fig. 5b below.

(a) Flower “Rosa gold glow” (from Wikipedia).

(b) In the red/green color space.

Figure 5: Color quantization on a two-color flower picture (red/green).

An important observation to make from this first experiment is the well-known fact,
that K-Means fits what is often referred as the “magnification law”:

High density regions tend to have more associated prototypes than low-density regions.
6 Note that they are not, in general, points from � (although they live in the same space).

Master MVA – ENS Cachan 7⇑22 Lilian Besson

http://scikit-learn.org/dev/modules/mixture.html#expectation-maximization
http://scikit-learn.org/dev/modules/mixture.html#expectation-maximization
https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm
http://ilpubs.stanford.edu:8090/778
http://scikit-learn.org/dev/
http://scikit-learn.org/dev/modules/generated/sklearn.clustering.KMeans.html
https://bitbucket.org/lbesson/mva16-project-modelisation-neuro-sciences/src/master/src/kmeans.py
http://scikit-learn.org/dev/auto_examples/cluster/plot_color_quantization.html
https://en.wikipedia.org/wiki/Voronoi_diagram
http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Color quantization for a real-world photo Let apply7 a color quantization compression
on a larger photo8, of 3648 × 2736 pixels, and 75986 colors.

(a) With a random codebook. (b) With a K-Means codebook (optimal).

Figure 6: Color quantization, from 75986 to 32 colors.

We clearly see that the compressed picture on the right (compressed with a codebook
obtained by K-Means clustering) is visually better (and it is clearer on the HD pictures).
They offer a (theoretical) compression factor of 75986⇑32 = 2374 ≃ 2300: that’s huge!

In practice, photos from digital camera are already compressed (in JPEG), and this man-
ual compression with color quantization does not really work. But this technique is used
for the standard image format GIF, which uses a color palette of only 256 colors. It is clear
that such a compression technique can be useful if the same color palette can be used for
several images [Blo08], a for a short movie (showing only one scene) or small animated
images, and this is exactly the main purpose of the GIF format.

Note that the SOM, NG, and DSOM algorithm can also be applied to color quantization,
and they give the same results, but we only included an illustration for K-Means to keep
this report as concise as possible.

3 Models of unsupervised learning inspired from neuroscience

After having recalled what is unsupervised learning and the clustering or vectorial quan-
tization problem in the previous section, we present here three clustering algorithms, in-
spired by neuro-biology or neuroscience: the Self-Organizing Map (SOM, 3.1), the Neural
Gas (NG, 3.2), and the (Dynamic) Neural Fields (DNF, 3.3).

3.1 Self-Organizing Maps (SOM)

The first biologically inspired model will take his inspiration from the visual cortex organi-
zation. Visual areas in the brain appear to be spatially organized (thanks to unsupervised
training), in such a way that physically close neurones in the cortex visual handle input
signal physically close in the retina [Koh82].

7 The script reproducing this experiment is plot_color_quantization.py.
8 See online for the full quality picture and its two compressed versions. The photo is from Heimaey in

Iceland.

Master MVA – ENS Cachan 8⇑22 Lilian Besson

http://scikit-learn.org/dev/auto_examples/cluster/plot_color_quantization.html
https://en.wikipedia.org/wiki/JPEG
https://en.wikipedia.org/wiki/GIF
https://bitbucket.org/lbesson/mva16-project-modelisation-neuro-sciences/src/master/src/scikit-learn-examples/plot_color_quantization.py
https://bitbucket.org/lbesson/mva16-project-modelisation-neuro-sciences/src/master/fig/
https://bitbucket.org/lbesson/mva16-project-modelisation-neuro-sciences/src/master/fig/Heimaey.jpg
https://bitbucket.org/lbesson/mva16-project-modelisation-neuro-sciences/src/master/fig/color-quantization/
https://en.wikipedia.org/wiki/Heimaey
https://en.wikipedia.org/wiki/Heimaey
http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Figure 7: This is referred as “Retinotropic” Organization.

In 1982, from these observations (Fig. 7), T. Kohonen tried to model the spatial organiza-
tion of the visual cortex [Koh82, Koh98], and by doing so he developed the Self-Organizing
Map (SOM) model. A good reference is [Fau94, Part 4.2].

3.1.1 The SOM model

Let start by considering a map of � neurons, fully inter-connected. We add a topology on the
map, in R

�, and each neuron � is linked with all the input signal (the weight vector w� is
called the “prototype” of a neuron). Each time a new input data x is presented, the neuron
with the closest prototype wins, and the prototypes of the winner (and his neighbors) are
updated, to become closer to the input data. We iterate this step as long as we have training
data (or we can cycle back in some cases).

3.1.2 Illustrations for the SOM model

A few figures9 will help visualizing these assumptions made on the model.

Figure 8: 5 × 5 fully inter-connected neuronal map.

Each neuron � has a fixed position p� in R
� (� = 2, 3 usually), but an evolving prototype

w� (lying in the data space �). As soon as we add a topology on the map, with natural
coordinates in R

�, an inter-neuron Euclidean distance ︁ ⋅ ︁ appears:

9 They are borrowed from [Rou13].

Master MVA – ENS Cachan 9⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

(a) Natural coordinates. (b) Euclidean distances.

Figure 9: Natural topology on a 5 × 5 map.

Each neuron is linked with all input signals x, as shown below with two inputs x0, x1:

Figure 10: Two inputs x0, x1 for this 5 × 5 dense neuronal map.

3.1.3 The SOM algorithm

With these notations, the SOM learning algorithm is simply two repeated steps:
1. Choosing the winning neuron: Simply take the index of the neuron minimizing the

distances between x (new input) and the prototypes w� : �win ∈ arg min
�=1..�

�(x, w�).
Remark 3.1. Issue with this arg min: This computation of an arg min requires a centralized
entity, so it is not a distributed model. And this is not a very realistic model of cortex organization,
as there is no “super-neuron” in the brain in charge of centralized computations. Any realistic model
of the cortex has to take into account the highly non-centralized architecture of the brain [Doy00].

2. Learning step: At each step, a new input x is given to the neural map, and the
winning unit and all its neighbors will update their prototypes to become closer to x, with
this vectorial update rule:

w�(� + 1)←w�(�) + �(�) ⋅ ℎ(w�(�) − x) ⋅ (w�(�) − x) (3)

Where �(�) > 0 refers to a (decreasing10) learning rate and ℎ(⋅) is a neighborhood function.
The neighborhood function is used in the update rule only with the distance between the

sample x and the winning neuron, so this is a fully isotropic model, and this is a satisfactory
property if we want to model the cortex, as it is (almost) isotropic [Doy00].

Fig. 11 shows different functions ℎ that can be used as a neighborhood function:

10 Note that it does not need to go to zero when �→∞, and in fact � is usually bounded by �end.

Master MVA – ENS Cachan 10⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Figure 11: Different learning rate as a function of distance from the winning neuron.

3.1.4 Parameters for a SOM

We first need to specify the values taken by the time �: � = �init . . . �end, it starts at �init = 0, and
finishes at �end = �� ∈ N∗. One issue this raises is that the end time �� has to be decided in
advanced, so the basic SOM algorithm cannot offer online learning.

The vectorial update rule has now to be written ∆w�
def= �(�) ⋅ ℎà(�, �, �win) ⋅ (x −w�).

The learning rate �(�), is usually chosen as a decreasing function of �. We choose the last
and first values 0 ≤ �end ≪ �init, and propose to use this simple formula [RB11a, Fau94]:

�(�) def= �init (�end

�init
)�⇑�f

. (4)

A second issue this choice raises is that the map is (almost) fixed after a certain time, so
the SOM algorithm will probably fail to follow highly moving dynamic distribution.

And for the neighborhood function ℎà and width à(�), the usual form in the literature
is a Gaussian on neuron positions p� [Fau94]:

ℎà(�, �, �win) def= exp(−︁p� − p�win︁2
2à(�)2) . (5)

As for the width à(�), it should also be decreasing, so we choose the last and first values
0 < àend ≪ àinit, and use the same geometrical formula [Fau94]:

à(�) def= àinit (àend

àinit
)�⇑�f

. (6)

3.1.5 Quick theoretical study of the SOM algorithm

By sake of conciseness, this is the only theoretical consideration on an algorithm presented
in this report, but a similar analysis could be done for the NG and DSOM algorithms.

Theorem 3.2 (Computational Complexity of SOM algorithm). Consider a Self-Organizing
Map of � neurons, each being �-dimensional, and feed it input data x� that are �-dimensional (i.e. all
p� ∈ R�, and all x� ∈ R�).

Then each of the �� learning steps of the SOM algorithm costs about�((�+�×�)�) elementary
operations.

Therefore, the final theoretical complexity for the SOM algorithm is:

�(��(�� + ��2)) . (7)

Master MVA – ENS Cachan 11⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Proof. When a new training sample x is presented to the map:

– Computing �win requires to consider all the neurons, taking the arg min of distances
on neuron positions p� (in dimension �), so it takes �(��) elementary operations;

– So computing ℎà(�, �, �win) requires one computation of �win, and requires to compute
a distance of two neuron positions p� and p�win , so �(� + ��) = �(��);

– Computing the vectorial difference (x −w�) takes �(�) (in R
�);

– So for each neuron of the � neurons, the update rule requires �(� + � × �) operations.

Note that the dimension � is usually 2 or 3, the size of the neural map � is usually small
(8× 8 or 32× 32 in the experiments below), and the dimension � of the data should never be
too big (� = 2 or 3 below). The only parameter that will be big is �� , the number of training
samples given to the map, e.g. it is 10000 in the experiments below.

3.2 Neural Gas (NG)

We observed above some weaknesses of this first clustering algorithm (SOM), and it will
be our starting point to introduce the Dynamic SOM extension in section 4. Let us quickly
present two others models of unsupervised learning, also inspired from neuro-biology, the
Neural Gas model and then the Neural Field model.

The Neural Gas model This second model is very similar to a SOM, but it has no under-
lying topology for the neuron space R

�, we only consider the prototypes w�.
The same kind of learning algorithm will be used, except that for the Neural Gas, for

a new input x, all neurons � are ordered by increasing distance of w to x, and assigned a
rank ��(x) (in 1..�), and this rank is used for updating their prototypes.

The name “gas” comes from this idea: all particles (neurons) influence any other, but the
effect of their influence decreases quickly with distance. Note that this idea of using a sort
seems counter-intuitive from a biological point of view. As for Self-Organizing Maps and
their arg min, the sorting step for Neural Gas cannot be computed in a decentralized man-
ner, and therefore the NG model is also not a satisfactory model of cortical self-organization
[RB11a, Doy00]. And because of the use of this sorting algorithm, there is a unavoidable
log(�) additional factor in the algorithm computational complexity11.

The update rule for Neural Gas is inspired from the one for SOM, but is modified to use
the ranks ��(x) instead of the distances ︁x −w�win︁ in the neighborhood ℎ(⋅):

∆w�
def= �(�) ⋅ ℎà(�, �, x) ⋅ (x −w�). (8)

The same formulas are used for the learning rate �(�) and width à(�), both decreasing with
time geometrically. But the neighborhood function is now a inverse exponential on ranks
(i.e. a Laplace function):

ℎà(�, �, x) def= exp(−��(x)
à(�)) . (9)

11 In fact, I am not perfectly sure about this point, because we are only sorting the integer indexes list ︁1..�︁,
so maybe an efficient sorting algorithm (e.g. counting sort) could be used to sort the neurons in a time only�(�)
and not�(� log(�)). None of the reference articles talk about computational complexity of the algorithms they
present, so I have no reference for this question.

Master MVA – ENS Cachan 12⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

The basic Neural Gas algorithm, as presented above, does not allow online learning,
and suffer from the same weaknesses as the SOM model. Some extensions to the Neural
Gas model has been developed to try to fix this, mainly the Growing NG or Dynamic NG
models.

By lack of both time and space, we do not cover the Neural Gas model more in details,
for all the details see [Fau94] for the basic model, and [RB11a] for a unified point of view
and the NG model presented with the same notations as the SOM/DSOM model.

3.3 Dynamic Neural Fields (DNF)

In this subsection, we present very quickly the Dynamic Neural Field (DNF) model, based
on its presentation in [RD11], without giving more details. Neural Fields are another fam-
ily of models, inspired from continuous LeapField models (from EEG), rather than neural
networks, for instance see [Fau94] for an old-fashion presentation of the classical model.
N. Rougier and G. Detorakis developed in 2011 an extension of the NF model to make it
work on dynamic distribution, and to also model self-organization.
They considered a membrane potential � , which follows this functional PDE:

á
�� (x, �)

��
= −� (x, �) + ℎ + �(x, �) +∫

�
� (︁x − y︁) ⋅ �(� (y, �)) dy. (10)

Where � (x, �) is the membrane potential at position x ∈ � and at time � (continuous in
paragraph), � (︁x − y︁) is the lateral connection weight between x and y; � is the mean
firing rate, ℎ is the resting potential; and �(x, �) is the input at position x. Then the PDE is
solved with a numerical discretization, and a simple forward Euler scheme.

In order for this DNF solution to also models self-organization, they considered a new
learning rule, slightly different from one the used by the SOM and NG algorithms:

– If a neuron is “close enough” to the data, there is no need for others to learn anything:
the winner can represent the data alone;

– If there is no neuron close enough to the data, any neuron learns the data according
to its own distance to the data.

We conclude here section 3, after having presented the SOM, NG and DNF models.

4 Dynamic Self-Organizing Maps (DSOM)

For this last section, we go back to the SOM model, and after summing up a few of its
strengths and weaknesses as presented above, we introduce Dynamic Self-Organizing Maps,
as a simple extension of SOM. We conclude by presenting illustrated results of some exper-
iments, comparing SOM, NG and DSOM, and also demonstrating the effects of the two
hyper-parameters of a DSOM (elasticity and learning rate).

4.1 What need for a dynamic model?

As exposed above, the SOM model has some weaknesses,

– The map topology can not correspond to the data topology, this can ruins the learning
possibility (e.g. if the initialization messed up).

Master MVA – ENS Cachan 13⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

– The map can fail to deploy correctly in the first learning steps, and we get big aggre-
gates of prototypes (we fall into a local minimum of distortion).

– The map is fixed after training, as learning rate goes to �end ≪ 1 (no long-term learn-
ing, i.e. only stationary distributions). This has the advantage of modeling parts of
the learning process in early years (in child), but implies that a SOM cannot model
long-term or life-long learning (in adult).

– And similarly, we have to know the ending learning time �� in advance, i.e. the num-
ber of training examples given to the map, so the SOM model cannot be used for
online learning.

4.2 Constant learning rate on a SOM

Based on these observations and the few weaknesses of the SOM model, N. Rougier and
Y. Boniface has proposed in [RB11a] an extension called the Dynamic Self-Organizing Maps
(DSOM). To obtain the DSOM model, we simply need to change the update rule ∆w�, and
neighborhood function. At each new input data x, update the winning prototype (and its
neighbors):

∆w�
def= �0 ⋅ ︁x −w�︁� ⋅ ℎÖ(�, �win, x) ⋅ (x −w�). (11)

Where �0 > 0 is now a constant learning rate, Ö > 0 is a elasticity / plasticity parameter, and
ℎÖ is a time-invariant neighborhood12 function:

ℎÖ(�, �win, x) def= exp(− 1

Ö2

︁p� − p�win︁2︁x −w�win︁2�) . (12)

Remark 4.1. Interpretation: It is like having time-invariant but local dependent learning rate
� and width à. This implies that both parameters will (virtually) behave like if they were à̃

def=
Ö ⋅ ︁x − w�︁� . �̃

def= �0 ⋅ ︁x − w�︁� . The closer the winning prototype w�win is to x, the smaller
both à̃, �̃ will be, and the smaller the update on the prototypes will be; and conversely. This is a very
logical learning rule: no need to update w�win a lot if it already represents well the input x, but the
prototype very far away should be more affected.

There is several consequences of having a constant learning rate:

– Online learning, as there is no need to specify an end time �� , the map can accept
data as long as needed.

– And long-term learning, �(�) does not → 0 with � →∞, so the map can still evolve as
long as necessary in the future.

– Less parameters: instead of 5 parameters (�� , àinit, àend, �init, �end) for the SOM algo-
rithm, the DSOM algorithm only needs 2 parameters, a constant learning rate �0 and
an elasticity Ö.

– But convergence seems harder, and stability is not achievable, so DSOM has less the-
oretical guarantee.

12 As a convention, we ask ℎη(�, �win, x)
def

= 0 if x =wiwin to avoid the pole, and to get a continuous neighbor-
hood function ℎη .

Master MVA – ENS Cachan 14⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

4.3 Comparisons between NG, SOM, DSOM

In this subsection, we present a series of numerical experiments done with programs writ-
ten in Python, to implement and compare the NG, SOM and DSOM models. The programs
used were borrowed from [RB11b].

The experiment setup was quite simple: Three networks (NG, SOM, DSOM) of � = 8× 8

nodes (in R
2) are trained for �� = 20000 iterations, on various distributions � on a 2� square

︁0, 1︁× ︁0, 1︁. The initialization for prototypes w� is purely random (uniform on the square).
Decreasing distortion J is showed as function of training time above the final codebook
map. It is always decreasing.

In all the following figures, the small blue points are the training samples x� , and the big
white points are the vectors of the codebook w�. A short observation is given along each
figure.

Figure 12: A simple uniform distribution.

– We observe in Fig. 12 that DSOM gives a smoother map than SOM, and this is true in
general (for well chosen parameters).

Figure 13: A simple ring distribution.

– We observe in Fig. 13 that the distortion usually decreases more quickly and smoothly

Master MVA – ENS Cachan 15⇑22 Lilian Besson

http://docs.python.org/2/
http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

with a DSOM than a NG/SOM. This is a very nice property, as it indicates a quicker con-
vergence.

Figure 14: Double ring distribution.

– We observe in Fig. 14 that on this double ring distribution, the Neural Gas achieves a
way lower final distortion, and this is logical as both the SOM and the DSOM will be forced
to use nodes in the middle of the two rings, where the target density is null. This is one
example where we would obtain a better final map if the SOM/DSOM model were fitting
the magnification law.

Figure 15: Issue for wrongly designed topology: 4 nodes for 5 data points.

– We observe in Fig. 15 that if the topology is not correctly designed, e.g. as here if there
is only 4 nodes but 5 data points, the neural map models perform worse than the Neural
Gas.

– In Fig. 16 is considered a first non-stationary distribution on the square, we considered
a uniform distribution on a quarter, moving after each 5000 iterations: first ︁0, 0.5︁ × ︁0, 0.5︁
(3), then ︁0.5, 1︁ × ︁0.5, 1︁ (2), then ︁0, 0.5︁ × ︁0.5, 1︁ (1), and finally ︁0.5, 1︁ × ︁0, 0.5︁ (4). The
Neural Gas only has a short-term learning ability, and we see most of its neurons are stuck
in the first quarter (3). the SOM does a better job, but the parameters �end, àend are probably
too small or �� is too small, and the SOM stops learning before the last move of the dynamic

Master MVA – ENS Cachan 16⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Figure 16: Non-stationary distribution, moving from quarters 3 → 2 → 1 → 4, at regular
epochs.

distribution: most of its neurons are in the quarter (1). And the DSOM is extremely versatile
here, and it allows long-term learning (all its neurons followed each of the 4 quarters). This
observation allows to affirm that the DSOM algorithm can model the cortical plasticity as a
tight coupling between model and environment.

4.4 Examples of non-stationary distributions

We finish with a last example of a DSOM applied to several distributions. First, it is applied
on a stationary distributions (a cube or a sphere in 3�), and then on two non-stationary
distribution: a 2� manifold continuously changed from a sphere to a cube, or conversely
from a cube to a sphere.

The experimental setup is similar to the first experiment. A DSOM with � = 32 × 32

nodes (in R
3) has been trained for �� = 10000 iterations. On a set of 10000 points uniformly

distributed over the surface of a sphere or a cube of radius 0.5 centered at (0.5, 0.5, 0.5) in
R

3. Initialization has been done by placing initial code vectors at the center of the sphere.
The elasticity parameter Ö has been set to 1. We observe self-organization on a sphere or
cubic surface, or self-reorganization from sphere to cubic surface (or inverse).

The results of these 4 experiments are short animations (about 50 seconds), all availables
online on http://www.labri.fr/perso/nrougier/coding/article/article.html.

4.5 Questions still not answered

Magnification law for a DSOM ? One observation we made about the K-Means algorithm
was that it fit the magnification law, and the same is true for both the Neural Gas and the
Neural Field models. But we can observe on Fig. 18 that both the SOM and DSOM algorithm
do not fit the “magnification law”: the resulting map is almost exactly the same13 for the
three different densities.

13 Up to a random rotation – which is a very satisfactory observation. Indeed, we notice that if the distribu-
tion � is isotropic, the SOM and DSOM models are also isotropic, i.e. no particular direction is favored, so in
case of finite codebook an alignment direction is randomly picked by the map at the beginning of the training
process (and this is always true for these kinds of maps).

Master MVA – ENS Cachan 17⇑22 Lilian Besson

http://www.labri.fr/perso/nrougier/coding/article/article.html#appendix-b
http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Figure 17: Non-stationary distribution: a DSOM going from a sphere to a cube distribution.

Figure 18: DSOM is invariant regarding local density of the target distribution � .

But is it good news or bad news? Well this depends14 on the context where the SOM/DSOM
is used, for some distribution we would like to have a denser prototypes density where the
empirical density is more important, but for other cases we would like to keep a pseudo-
uniform prototypes density.

Elasticity The influence of the elasticity parameter can be understood from the Fig. 19
below. A more detailed analysis of this parameter Ö is given in [RB11a, Sec. 3.2].

A natural question is: can we find a way to automatically tune the elasticity or width
parameter? (àinit and àend for SOM, or Ö for DSOM).

It seems hard to do, because in this unsupervised setting, the only measure of quality
we can get from the resulting map is the distortion, and as the above Fig. 19 shows, three
different values of Ö can give completely different distribution of the final prototypes of
the DSOM map, but exactly the same final distortions (and very similar evolution of the
distortions).

If we quit the fully unsupervised world, and allow to “visually judge” the quality of
the final maps, then we can select the best Ö among the list of explored parameters (here, it

14 I have not worked more on this question.

Master MVA – ENS Cachan 18⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

Figure 19: Influence of the elasticity parameter Ö (3 DSOM: Ö = 1, 2, 3).

seems that Ö = 3 gives the best final quantization). So one has to be cautious that any kind
of grid search (either for elasticity or width), based only on the distortion criteria, cannot be
enough to select the best value.

Harder questions These harder questions are included here but have not been answered,
mainly because of limited time:

– What topology to adopt for higher dimension data (what if � ≥ 2, 3) ? Example of
image processing with NG/SOM/DSOM In [RB11a], an example of use of a three maps
(NG/SOM/DSOM) on a higher dimensional dataset is presented. It consists in a vectorial
quantization tasks, not on the color-space of an image (� = 2) on a similarity graph from
small patches of an image (� = 8 × 8 = 64).

– If there is a need for a topological rupture (for instance if the distribution � can clearly be
split in some sub separate distributions): how to let a DSOM decides to split in 2 (or more)
sub-maps? We could imagine a strategy similar to a graph cut, when too many neurons are
far from another group of neurons, we cut all the links between the two blobs, and restart
from there with two separate DSOM.

– And the worse unanswered question is about the theoretical warranties of all these
unsupervised algorithms. One have to keep in mind that both convergence and stability has
not been proved for any of the SOM, NG and DSOM algorithm, as well as K-Means (for just
one random initialization, there is always a chance of finding a local minimum). The Self-
Organized DNF model as presented in [RD11] has a better warranty of convergence. But
stability even seems unachievable if we want to keep long-term learning (online learning).

Master MVA – ENS Cachan 19⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

5 Conclusion

In this report, we started by recalling what are the different types of learning, found in
machine learning and also found in the brain, as some neuro-biology experiments showed.
Supervised learning and reinforcement already are applied on daily technology, and so is
unsupervised learning, but even if the latter is still the harder, it is the main future direction
of research in machine learning these days.

One example of unsupervised task is data clustering, and we explained why cluster-
ing algorithms can be useful, by first applying the K-Means algorithm to color quantiza-
tion for photos compression, and then by studying several biology-inspired models of self-
organization and learning (Neural Gas, Neural Fields, SOM and DSOM); which all model
correctly some aspect of these two properties of the brain.

Based on numerical experiments comparing NG, SOM and DSOM, we showed the
strength and weaknesses of the 3 models, and detailed why a dynamic model can be use-
ful. DSOM takes the advantage by not requiring a centralized computation, having less
parameters, and allowing for online and long-term learning, on both static and dynamic
distributions. So DSOM appears as an effective model of self-organization in the brain as
well as cortical plasticity, modeling the life-long learning process observed in adults. But,
despite their weaknesses (the main one being the need for a centralized computation unit),
both the NG and SOM models are satisfying models of self-organization and the early-year
learning process observed in child.

Experimentally, we also applied K-Means and a SOM for color quantization and image
compression, on several examples; then we compared NG, SOM and DSOM on several
stationary and non-stationary distributions in 2D [RB11a]; and we also compared SOM
and DSOM on a higher dimension distribution (from image processing) [RB11a]. And all
experiments confirmed the different intuitions we had about the models.

Some theoretical question has been answered, along with two statements on the compu-
tational complexity of the SOM and DSOM algorithms, but some theoretical and practical
questions are still to be answered, including: how to automatically choosing elasticity Ö?
does a (D)SOM always converges? is a self-organized map stable? We conclude this report
with these open questions, hoping to be able to come back on them and finish this work in
the future.

Master MVA – ENS Cachan 20⇑22 Lilian Besson

http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

A Appendix

A.1 Acknowledgments

I would like to thank Nicolas P. Rougier as he replied quickly to my initial queries and pro-
vided useful initial directions of research; and Jean-Pierre Nadal (the professor in charge of
the course) for an interesting course on neuroscience and modeling aspects in neuroscience.

A.2 Personal feeling about the project

I enjoyed working on this small project, and as usual for this kind of maths, I liked the
different aspects we touched with this project: algorithms, algorithm complexity proofs,
implementations, numerical simulations, models inspired from neuroscience or biology,
etc. With more time, I would have liked to try to apply the algorithms presented here on
a real-world problem or on a more complete neuroscience experiment; and I would have
liked to try longer to answer the harder questions.

This work is dedicated to the memory of Nicolas Pajor. /

A.3 References

[Bis06] Christopher M Bishop (2006). Pattern Recognition and Machine Learning. Springer.

[Blo08] Dan S. Bloomberg (2008). Color quantization using octrees. URL http://www.

leptonica.com/color-quantization.html, online tutorial, published on
www.leptonica.com.

[CFP87] Marie Cottrell, Jean-Claude Fort, and Gilles Pagès (1987). Étude d’un algorithme
d’auto-organisation. Annales de l’Institut Henri Poincaré, 23(1):1–20.

[CFP98] Marie Cottrell, Jean-Claude Fort, and Gilles Pagès (1998). Theoretical Aspects of
the SOM Algorithm. Neurocomputing, 21(1):119–138. URL http://arxiv.org/

abs/0704.1696v1.

[DK03] Jeremiah D. Deng and Nikola K. Kasabov (2003). On-line Pattern Analysis by
Evolving Self-Organizing Maps. Neurocomputing, 51:87–103.

[Doy00] Kenji Doya (2000). Complementary roles of basal ganglia and cerebellum in learning
and motor control. Current opinion in NeuroBiology, 10(6):732–739.

[Fau94] Laurene Fausett (1994). Fundamentals of Neural Networks: Architectures, Algo-
rithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA. ISBN
0-13-334186-0.

[Koh82] Teuvo Kohonen (1982). Self-Organized Formation of Topologically Correct Feature
Maps. Biological Cybernetics, 43(1):59–69.

[Koh98] Teuvo Kohonen (1998). The Self-Organizing Map. Neurocomputing, 21(1):1–6.

Master MVA – ENS Cachan 21⇑22 Lilian Besson

http://www.labri.fr/perso/nrougier/
http://www.lps.ens.fr/%7Enadal/
http://www.math.ens-cachan.fr/version-francaise/haut-de-page/annuaire/pajor-nicolas-67614.kjsp?RH=DL_MATH
http://www.leptonica.com/color-quantization.html
http://www.leptonica.com/color-quantization.html
http://arxiv.org/abs/0704.1696v1
http://arxiv.org/abs/0704.1696v1
http://perso.crans.org/besson/

Self-Organizing Maps & DSOM – Neuro-Science project May 23, 2016

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay (2011). Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830.
URL http://scikit-learn.org/dev/about.html.

[RB11a] Nicolas P. Rougier and Yann Boniface (2011). Dynamic Self-Organizing
Map. Neurocomputing, 74(11):1840–1847. URL https://hal.inria.fr/

inria-00495827.

[RB11b] Nicolas P. Rougier and Yann Boniface (2011). Dynamic Self-Organizing Map. URL
http://www.loria.fr/~rougier/DSOM/dsom.tgz, python code sources.

[RD11] Nicolas P. Rougier and Georgios Detorakis (June 2011). Self-Organizing Dy-
namic Neural Fields. In Springer, editor, International Conference on Cognitive Neu-
rodynamics, volume III of Advances in Cognitive Neurodynamics. Niseko village,
Hokkaido, Japan. URL https://hal.inria.fr/inria-00587508.

[Rou13] Nicolas P. Rougier (2013). Dynamic Self-Organizing Map. URL http://www.

labri.fr/perso/nrougier/coding/article/article.html, slides for
a course on self-organization.

[SB98] Richard S. Sutton and Andrew G. Barto (1998). Reinforcement Learning: An Intro-
duction, volume 1. MIT Press, Cambridge, MA. URL http://webdocs.cs.

ualberta.ca/~sutton/book/the-book.html.

(Note: a more detailed bibliography is available on-line, in HTML, PDF and BibTEX.)

License?

Note that this article has not been published on any conference, journal or pre-print plat-
form. It was just the result of a small research Master project.

This paper (and the additional resources – including code, images etc) are publicly pub-
lished under the terms of the MIT License. Copyright 2015-2016, © Lilian Besson.

Master MVA – ENS Cachan 22⇑22 Lilian Besson

http://scikit-learn.org/dev/about.html
https://hal.inria.fr/inria-00495827
https://hal.inria.fr/inria-00495827
http://www.loria.fr/~rougier/DSOM/dsom.tgz
https://hal.inria.fr/inria-00587508
http://www.labri.fr/perso/nrougier/coding/article/article.html
http://www.labri.fr/perso/nrougier/coding/article/article.html
http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
http://webdocs.cs.ualberta.ca/~sutton/book/the-book.html
https://bitbucket.org/lbesson/mva16-project-modelisation-neuro-sciences/src/master/biblio/
https://bitbucket.org/lbesson/mva16-project-modelisation-neuro-sciences/
https://bitbucket.org/lbesson/mva16-project-modelisation-neuro-sciences/
http://lbesson.mit-license.org/
http://perso.crans.org/besson/

	Introduction
	Unsupervised Learning, starting with K-Means
	Different types of learning
	Vectorial quantization: a simple unsupervised task
	K-Means: a first unsupervised algorithm
	Application: color quantization

	Models of unsupervised learning inspired from neuroscience
	Self-Organizing Maps (SOM)
	The SOM model
	Illustrations for the SOM model
	The SOM algorithm
	Parameters for a SOM
	Quick theoretical study of the SOM algorithm

	Neural Gas (NG)
	Dynamic Neural Fields (DNF)

	Dynamic Self-Organizing Maps (DSOM)
	What need for a dynamic model?
	Constant learning rate on a SOM
	Comparisons between NG, SOM, DSOM
	Examples of non-stationary distributions
	Questions still not answered

	Conclusion
	Appendix
	Acknowledgments
	Personal feeling about the project
	References

