A representation tool for Titanic dataset.
The doc is here : http://scikit-learn.org/dev/modules/classes.html
Je veux essayer d’utiliser les algorithmiques de clustering, de changement de représentations etc...
$ python Representation.py
Opening the file 'train.csv' and 'test.csv'...
chi2:
For the attribute pclass , chi2=30.8736994366 , and pval=2.75378563203e-08.
For the attribute sex , chi2=92.7024469789 , and pval=6.07783826353e-22.
For the attribute age , chi2=0.308599072344 , and pval=0.578541125456.
For the attribute sibsp , chi2=2.58186537899 , and pval=0.108094210127.
For the attribute parch , chi2=10.0974991118 , and pval=0.00148470675869.
For the attribute fare , chi2=8.81917152221 , and pval=0.00298081971968.
For the attribute embarked , chi2=4.16460364538 , and pval=0.0412770695637.
f_regression:
For the attribute pclass , F=284.129532979 , and pval=1.57151971664e-55.
For the attribute sex , F=56.9535623581 , and pval=1.1039238328e-13.
For the attribute age , F=376.857543848 , and pval=2.92484272456e-70.
For the attribute sibsp , F=54.6074317492 , and pval=3.39321085969e-13.
For the attribute parch , F=103.639800789 , and pval=4.23490268583e-23.
For the attribute fare , F=306.822356392 , and pval=3.05741568504e-59.
For the attribute embarked , F=278.555265732 , and pval=1.31527257165e-54.
f_classif:
For the attribute pclass , F=115.031272188 , and pval=2.53704738798e-25.
For the attribute sex , F=372.405723602 , and pval=1.40606613088e-69.
For the attribute age , F=4.35351608908 , and pval=0.0372170837268.
For the attribute sibsp , F=1.11057220411 , and pval=0.292243928698.
For the attribute parch , F=5.9634638366 , and pval=0.0147992453747.
For the attribute fare , F=63.030764228 , and pval=6.12018934192e-15.
For the attribute embarked , F=14.3305250028 , and pval=0.000163650058954.