A Quadratic Discriminant Analysis (QDA)
The doc is here : http://scikit-learn.org/dev/modules/generated/sklearn.qda.QDA.html#sklearn.qda.QDA
$ python QDA.py
Opening the file 'train.csv' and 'test.csv'...
Learning...
Proportion of perfect fitting for the training dataset = 80.58%
Class priors (sum to 1) = [ 0.61616162 0.38383838].
For the attribute pclass , mean=[ 2.53187614 1.9502924 ].
For the attribute sex , mean=[ 0.85245902 0.31871345].
For the attribute age , mean=[ 0.38018875 0.35687223].
For the attribute sibsp , mean=[ 0.55373406 0.47368421].
For the attribute parch , mean=[ 0.32969035 0.46491228].
For the attribute fare , mean=[ 0.04317124 0.09446154].
For the attribute embarked , mean=[ 0.94899818 0.81578947].
Score for test part = 81.63%
Score for test part = 81.97%
Score for test part = 74.15%
Score for test part = 79.59%
Score for test part = 83.67%
Predicting for the testing dataset
Prediction: wrote in the file csv/QDA_best.csv.
The score for this classifier.