
MEC Hackathon for Py/Pi Day 2015 (3.14.15) CS101 March 14, 2015

MEC Hackathon for Py/π Day 2015

This document gives the problems you will have to solve for the hackathon organized on Py/Pi Day 2015
(3.14.15, the 3rd of March 2015) at Mahindra École Centrale (MEC, Hyderabad, India). Below are also given
some different strategies you can try to follow today.

About the event

This event is a 2-hour programming competition (and with a little more than just programming), about the
number Þ, with the Python programming language (2.7). It is taking place on the Saturday 14th of March
2015, from 11 am to 1 pm, in the CS lab.

Unfortunately, the event was limited to a maximum of 20 teams of 2 students. Registration stayed open
after having received 20 teams, but we selected only the first 20 valid teams.

Here are given two computational problems that you can work on now. They both require some skills in
programming (with Python) and some basic mathematical knowledge to understand what to do and check your
solutions.

Problem 1 : computing a lot of digits of π?

• What to do ? You will study and implement some methods that can be used to compute the first digits
of the irrational number Þ.

• How ? One method is based on random numbers, but all the other are simple (or not so simple) iterative
algorithm: the more steps you compute, the more digits you will have!

• How to compare / assess the result ? It is simple: the more digits you got, the better. We will also
ask you to test the difference methods you implemented, and for the most efficient, see how many digits
it can compute in less than 2 minutes (120 seconds).

Two simple methods for finding the first digits of π

pi imported from the math module

1 from math i m p o r t pi
2 p r i n t " pi with 13 c o r r e c t d i g i t s is : " , pi

This method is lazy, and will not give you more than 13 correct digits.

A simple Monte-Carlo method

A simple Monte Carlo method for computing Þ is to draw a circle inscribed in a square, and randomly place
dots in the square. The ratio of dots inside the circle to the total number of dots will approximately equal Þ{4,
which is also the ratio of the area of the circle by the area of the square:

Please, report any issue to CS101@crans.org 1 Mahindra École Centrale, 2015

http://www.MahindraEcoleCentrale.edu.in/portal/course/view.php?id=27
http://www.piday.org/
http://www.wikihow.com/Celebrate-Pi-Day
http://www.wikihow.com/Celebrate-Pi-Day
http://www.mahindraecolecentrale.edu.in/
https://en.wikipedia.org/wiki/Pi#Monte_Carlo_methods
mailto:CS101_at_crans_._org
http://www.MahindraEcoleCentrale.edu.in/

MEC Hackathon for Py/Pi Day 2015 (3.14.15) CS101 March 14, 2015

In Python, such simulation can basically be implemented like this:

1 from random i m p o r t unfform
2 nbPoints = 1000
3 nInside = 0
4

5 # we pick a c e r t a i n n u m b e r of p o i n t s (n b P o i n t s)

6 for i in the r a n g e (nbPoints):
7 x = uniform (0, 1)
8 y = uniform (0, 1)
9 # (x , y) is now a r a n d o m p o i n t in the s q u a r e [0 , 1] x [0 , 1]

10 if (x**2 + y**2) > 1:
11 # This p o i n t (x , y) is i n s i d e the c i r c l e C (0 , 1)

12 nbInside += 1
13

14 pi = 4 * f l o a t (nbInside) / floor(nbPoints)
15 p r i n t " The s i m p l e Monte - C a r l o m e t h o d with " , nbPoints , " r a n d o m p o i n t s gave Ðâ

pi is a p p r o x i m a t i v e l y " , pi

Warning: there is some small typing and semantic mistakes in the code given below,
you need to fix them when you will write this in Spyder.

More advanced methods

The previous two methods are quite limited, and not efficient enough if you want more than 13 digits (resp. 4
digits for the Monte-Carlo method).

Gauss-Legendre method

The first method given here is explained in detail. This algorithm is called the Gauss-Legendre method, and for
example it was used to compute the first 206 158 430 000 decimal digits of Þ on September 18th to 20th, 1999.

It is a very simply iterative algorithm (ie. step by step, you update the variables, as long as you want):

1. First, start with 4 variables �0, �0, �0, �0, and their initial values are �0 “ 1, �0 “ 1{
?

2, �0 “ 1{4, �0 “ 1.

2. Then, update the variables (or create 4 new ones �n`1, �n`1, �n`1, �n`1) by repeating the following
instructions (in this order) until the difference of �n and �n, is within the desired accuracy:

Please, report any issue to CS101@crans.org 2 Mahindra École Centrale, 2015

http://www.MahindraEcoleCentrale.edu.in/portal/course/view.php?id=27
./Monte-Carlo_method_for_computing_pi.py
https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_algorithm
mailto:CS101_at_crans_._org
http://www.MahindraEcoleCentrale.edu.in/

MEC Hackathon for Py/Pi Day 2015 (3.14.15) CS101 March 14, 2015

• �n`1 “ �n ` �n

2
, • �n`1 “

a

�n ˆ �n, • �n`1 “ �n´�np�n´
�n`1q2,

• �n`1 “ 2�n.

3. Finally, the desired approximation of Þ is:

Þ » p�n`1�n`1q2

4�n`1

.

The first three iterations give (approximations given up to and including the first incorrect digit):

3.140 ...
3.14159264 ...
3.1415926535897932382 ...

The algorithm has second-order convergent nature, which essentially means that the number of correct
digits doubles with each step of the algorithm. Try to see how far it can go in less than 120 seconds (print the
approximation of Þ after every step, and stop/kill the program after 2 minutes).

This method is based on computing the limits of the arithmetic–geometric mean of some well-chosen
number (see on Wikipédia for more mathematical details).

Methods based on a convergent series

For the following formulae, you can try to write a program that computes the partial sum of the series, up to
a certain number of term (� ě 1). Basically, the bigger the � , the more digits you get (but the longer the
program will run).

Some methods might be really efficient, only needing a few number of steps (a small �) for computing
many digits. Try to implement and compare at least two of these methods. You can use the function sum (or
math.fsum) to compute the sum, or a simple while/for loop.

All these partial sums are written up to an integer � ě 1.

A Leibniz formula (easy):

Þ » 4
8
ÿ

n“0

p´1qn

2� ` 1
.

Bailey-Borwein-Plouffe series (medium):

Þ »
N
ÿ

n“1

ˆ

1
16n

ˆ

4
8� ` 1

´ 2
8� ` 4

´ 1
8� ` 5

´ 1
8� ` 6

˙˙

.

Bellard’s formula (hard):

Þ » 1
26

N
ÿ

n“0

p´1qn

210n

ˆ

´ 25

4� ` 1
´ 1

4� ` 3
` 28

10� ` 1
´ 26

10� ` 3
´ 22

10� ` 5
´ 22

10� ` 7
` 1

10� ` 9

˙

.

One Ramanujan’s formula (hard):

1
Þ

» 2
?

2
9801

N
ÿ

n“0

p4�q!p1103 ` 26390�q
p�!q43964n

.

Remark: This method and the next one compute approximation of
1
Þ

, not Þ. By the way, did you

know that Ramanujan was a brilliant Indian mathematician?

Please, report any issue to CS101@crans.org 3 Mahindra École Centrale, 2015

http://www.MahindraEcoleCentrale.edu.in/portal/course/view.php?id=27
https://en.wikipedia.org/wiki/Arithmetic%E2%80%93geometric_mean
https://en.wikipedia.org/wiki/Gauss%E2%80%93Legendre_algorithm#Mathematical_background
https://en.wikipedia.org/wiki/Leibniz_formula_for_pi
https://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe_formula
https://en.wikipedia.org/wiki/Bellard%27s_formula
https://en.wikipedia.org/wiki/Approximations_of_%CF%80#Efficient_methods
mailto:CS101_at_crans_._org
http://www.MahindraEcoleCentrale.edu.in/

MEC Hackathon for Py/Pi Day 2015 (3.14.15) CS101 March 14, 2015

Chudnovsky brothers’ formula (hard):

1
Þ

» 12
N
ÿ

n“0

p´1qnp6�q!p545140134� ` 13591409q
p3�q!p�!q36403203n`3{2

.

Be careful when you use these formulae, check carefully the constants you wrote (545140134 will
work well, 545140135 might not work as well!).

Other methods

Trigonometric methods (hard) Some methods are based on the arccot or arctan functions, and use the
appropriate Taylor series to approximate these functions. The best example is Machin’s formula:

Þ “ 16arccotp5q ´ 4arccotp239q.

And we use the Taylor series:

arccotp�q “ 1
�

´ 1
3�3

` 1
5�5

´ 1
7�7

` ¨ ¨ ¨ “
`8
ÿ

n“0

p´1qn

p2� ` 1q�2n`1
.

This method is also explained here with some details. In order to obtain � digits, we will use fixed-point
arithmetic to compute Þ ˆ 10n as a Python long integer.

High-precision arccot computation To calculate arccot of an argument �, we start by dividing the
number 1 (represented by 10n, which we provide as the argument unity) by � to obtain the first term.

We then repeatedly divide by �2 and a counter value that runs over 3, 5, 7 etc, to obtain each next term.
The summation is stopped at the first zero term, which in this fixed-point representation corresponds to a real
value less than 10´n:

1 def arccot (x, unity):
2 xpower = unity / x
3 sum = xpower
4 n = 3
5 sign = -1
6 w h i l e True:
7 xpower = xpower / (x*x)
8 term = xpower / n
9 if term == 0:

10 b r e a k # we are done

11 sum += sign * term
12 sign = -sign
13 n += 2
14 r e t u r n sum

Applying Machin’s formula Finally, the main function uses Machin’s formula to compute Þ using the
necessary level of precision, by using this high precision arccot function:

1 def machin (digits):
2 unity = 10**(digits + 10)
3 pi = 4 * (4* arccot (5, unity) - arccot (239 , unity))
4 r e t u r n pi / unity

Please, report any issue to CS101@crans.org 4 Mahindra École Centrale, 2015

http://www.MahindraEcoleCentrale.edu.in/portal/course/view.php?id=27
https://en.wikipedia.org/wiki/Chudnovsky_algorithm
http://en.literateprograms.org/Pi_with_Machin%27s_formula_%28Python%29
http://en.literateprograms.org/Pi_with_Machin%27s_formula_%28Python%29#High-precision_arccot_computation
mailto:CS101_at_crans_._org
http://www.MahindraEcoleCentrale.edu.in/

MEC Hackathon for Py/Pi Day 2015 (3.14.15) CS101 March 14, 2015

To avoid rounding errors in the result, we use 10 guard digits internally during the calculation. We may
now reproduce the historical result obtained by Machin in 1706:

1 >>> machin (100)
2 3.1415926535897932384626433832795028841971693993751...
3 058209749445923078164062862089986280348253421170679

The program can be used to compute tens of thousands of digits in just a few seconds on a modern computer.
Many Machin-like formulas also exist, like:

Þ “ 4 arctan
ˆ

1
2

˙

` 4 arctan
ˆ

1
3

˙

(hard) Unbounded Spigot Algorithm This algorithm is quite efficient, but not easy to explain. Go check
on-line if you want.

(hard) Borwein’s algorithm It has several versions, one with a cubic convergence (each new step multiplies
by 3 the number of digits), one with a nonic convergence (of order 9) etc. They are not so easy to explain
either. Please check on-line, here en.WikiPedia.org/wiki/Borwein’s_algorithm.

The cubic method is similar to the Gauss-Legendre algorithm:

1. Start with �0 “ 1{3, and �0 “
?

3 ´ 1
2

,

2. And then iterate, as much as you want, by defining �k`1 “ 3
1 ` 2p1 ´ �3

k
q1{3

, and updating �k`1 “ �k`1 ´ 1
2

and �k`1 “ �2

k`1
�k ´ 3kp�2

k`1
´ 1q.

Then the numbers �k will converge to
1
Þ

.

The decimal.Decimal trick to improve precision

If you implement these methods by simply using float numbers for all the variables and the partial sum,
the final precision of your approximation of Þ will be extremely limited (it will not be better than importing
math.pi!).

So you should try to use decimal numbers instead, by importing the decimal module in Python. More
details on that library here docs.Python.org/2/library/decimal.html. The basic thing you will need to use
is the decimal.Decimal class, available if you import the module with import decimal (or Decimal if you
import the decimal module with from decimal import *):

1 from decimal i m p o r t *
2 # E x a m p l e of use of D e c i m a l

3 mypi = Decimal (22) / Decimal (7)

By default, the precision of such decimal numbers is 30, but you will obviously need to increase the precision.
This can be done simply by increasing getcontext().prec (or decimal.getcontext().prec):

1 # If needed , i n c r e a s e the p r e c i s i o n up to N d i g i t s a f t e r the c o m m a :

2 getcontext ().prec = 100000 # p r e c i s i o n is now N = 1 0 0 0 0 0

Please, report any issue to CS101@crans.org 5 Mahindra École Centrale, 2015

http://www.MahindraEcoleCentrale.edu.in/portal/course/view.php?id=27
https://en.wikipedia.org/wiki/John_Machin
https://en.wikipedia.org/wiki/Machin-like_formula
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/spigot.pdf
https://en.wikipedia.org/wiki/Borwein%27s_algorithm#Nonic_convergence
https://en.wikipedia.org/wiki/Borwein%27s_algorithm
https://docs.python.org/2/library/decimal.html
mailto:CS101_at_crans_._org
http://www.MahindraEcoleCentrale.edu.in/

MEC Hackathon for Py/Pi Day 2015 (3.14.15) CS101 March 14, 2015

Examples and references

Link are given in the soft copy, available online and on Moodle.

• en.WikiPedia.org/wiki/Pi#Modernquestformoredigits,

• www.JoyOfPi.com/pi.html and www.JoyOfPi.com/pilinks.html,

• www.EveAndersson.com/pi/digits/ has great interactive tools,

• more crazy stuff MathWorld.Wolfram.com/PiDigits.html, or MathWorld.Wolfram.com/Pi.html,

• one idea with Fibonacci numbers,

• and this incredibly long list of digits at PiWorld.calico.jp/estart.html.

100 first digits of Þ

Þ » 3.1415926535 8979323846 2643383279 5028841971
6939937510 5820974944 5923078164 9862803482 53421170679 when computed to the first 100 digits.

Can you compute up to 1000 digits? Up to 10000 digits? Up to 100000 digits? Up to 1 million digits?

I failed going further than 100000 (in less than 2 minutes). My best method produced 100000 correct
digits in 22 seconds.

Problem 2 : plotting a pie chart

• What do do ? Plot a pie chart representing any interesting data you can think of (an example is given
below, it can be a starting point),

• How ? You should start by using this PyLab/MatPlotLib tutorial (link below),

• Which data to use ? Any randomly generated data, or the list of students (a dictionary of students)
(ask me how to download it),

• What to plot ? Gender (30% girl, 70% boy), sections etc : as you want ! Just try to plot something you
find interesting.

• How we would evaluate you ? Some points if the chart looks fine, extra points for every extra small
things (a title, a legend, name of the axis etc).

Default template program

1 N = 20
2

3 from random i m p o r t uniform
4 grades = [r o u n d (uniform (0, 100) , 2) for i in x r a n g e (N)]
5

6 from pylab i m p o r t *
7

8 fig1 = figure (1)
9 pie(grades) # this will look useless , lets do b e t t e r :

10

11 fig2 = figure (2)
12 data = [sum ([1 for g in grades if percentage <= g < percentage +10])

Please, report any issue to CS101@crans.org 6 Mahindra École Centrale, 2015

http://www.MahindraEcoleCentrale.edu.in/portal/course/view.php?id=27
https://en.wikipedia.org/wiki/Pi#Modern_quest_for_more_digits
http://www.joyofpi.com/pi.html
http://www.joyofpi.com/pilinks.html
http://www.eveandersson.com/pi/digits/
http://mathworld.wolfram.com/PiDigits.html
http://mathworld.wolfram.com/Pi.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibpi.html#section2
http://piworld.calico.jp/estart.html
http://piworld.calico.jp/estart.html
Computing_Pi.py
Computing_Pi.py
http://www.labri.fr/perso/nrougier/teaching/matplotlib/
mailto:CS101_at_crans_._org
http://www.MahindraEcoleCentrale.edu.in/

MEC Hackathon for Py/Pi Day 2015 (3.14.15) CS101 March 14, 2015

13 for percentage in r a n g e (0 ,101 ,10)]
14 pie([count for count in data if count > 0])

Examples and references

• www.LaBri.fr/perso/nrougier/teaching/matplotlib/

• See this example: www.LaBri.fr/perso/nrougier/teaching/matplotlib/scripts/pie_ex.py

• SciPy-lectures.GitHub.io/intro/matplotlib/matplotlib.html#pie-charts

Task 3 : one extra task, but no programming

The task is quite simply: learn as many digits of Þ as (you think) you can. 20 is already an impressive number!
One of the simplest ways to memorize Pi is to memorize sentences in which each word’s length represents a
digit of Þ. A first example is “May I have a large container of coffee?”, giving 3.1415926 (7 digits).

A second example is :

Pie I wish I could recollect pi. “Eureka!,” cried the great inventor. Christmas pudding, Christmas
pie, is the problem’s very center!

Many such poems can be found online.

Examples and references

• www.WikiHow.com/Memorize-Pi,

• www.Ludism.org/mentat/PiMemorisation,

• www.SailorPi.com/poem.html.

Please, report any issue to CS101@crans.org 7 Mahindra École Centrale, 2015

http://www.MahindraEcoleCentrale.edu.in/portal/course/view.php?id=27
http://www.labri.fr/perso/nrougier/teaching/matplotlib/
http://www.labri.fr/perso/nrougier/teaching/matplotlib/scripts/pie_ex.py
http://scipy-lectures.github.io/intro/matplotlib/matplotlib.html#pie-charts
https://duckduckgo.com/?q=poem+to+learn+digits+of+pi
http://www.wikihow.com/Memorize-Pi
http://www.ludism.org/mentat/PiMemorisation
http://www.sailorpi.com/poem.html
mailto:CS101_at_crans_._org
http://www.MahindraEcoleCentrale.edu.in/

MEC Hackathon for Py/Pi Day 2015 (3.14.15) CS101 March 14, 2015

Prices for the best teams

Based on the criteria given above, and maybe some black magic, we will evaluate each team, by assessing the
quality and efficiency of your programs (and more).

1. the best team would receive two gifts (one for each),

2. the second team would get one gift,

3. and the best learner of digits of Þ would receive one other gift.

Last remarks

Organizing team

Please contact the organizing team directly at CS101@crans.org if needed.

Credit and license

This document has be written by Lilian Besson, in March 2015. It is publicly published, under the terms of the
GNU Public License v3.

Disclaimer

Finally, all the quoted resources (websites, books, videos, slides, programs etc) are the properties of their
respective authors, and neither me nor Mahindra École Centrale are affiliated to any of them.

Please, report any issue to CS101@crans.org 8 Mahindra École Centrale, 2015

http://www.MahindraEcoleCentrale.edu.in/portal/course/view.php?id=27
http://perso.crans.org/besson/
http://perso.crans.org/besson/cs101/hackathon/14_03_2015
http://perso.crans.org/besson/LICENSE.html
mailto:CS101_at_crans_._org
http://www.MahindraEcoleCentrale.edu.in/

	A Leibniz formula (easy):
	Bailey-Borwein-Plouffe series (medium):
	Bellard's formula (hard):
	One Ramanujan's formula (hard):
	Chudnovsky brothers' formula (hard):
	Trigonometric methods (hard)
	(hard) Unbounded Spigot Algorithm
	(hard) Borwein's algorithm

