
SMPyBandits, a Research Framework for Single and
Multi-Players Multi-Arms Bandits Algorithms in Python

Lilian Besson*

February 28, 2018

Abstract

I present the open-source numerical environment SMPyBandits, written in Python and
designed to be an easy to use framework for experimenting with single- and multi-player
algorithms and in different variations of the multi-armed bandits problem.

Contents

1 Summary 2

1.1 Presentation . 2
1.1.1 Single-Player MAB . 2
1.1.2 Multi-Players MAB . 3

1.2 Purpose . 4
1.3 Features . 4

1.3.1 Examples of configuration for some simulations 4
1.3.2 Documentation . 6
1.3.3 Other noticeable features . 6

1.4 Other remarks . 6
1.4.1 How to run the experiments ? . 7
1.4.2 Examples of illustrations . 7

1.5 Research using SMPyBandits . 9
1.6 Dependencies . 10

*B: Lilian.Besson[AT]CentraleSupelec[.]fr, ORCID: 0000-0003-2767-2563
PhD Student at CentraleSupélec, campus of Rennes, SCEE team & Inria Lille Nord Europe, SequeL team. Thanks
to Emilie Kaufmann and Christophe Moy for their review and support.

1

https://orcid.org/0000-0003-2767-2563

SMPyBandits presentation paper February 28, 2018

1 Summary

This article presents my numerical environment SMPyBandits, written in Python (2 or 3)
[Fou17], for numerical simulations on single-player and multi-players Multi-Armed Bandits
(MAB) algorithms [BCB12].

SMPyBandits is the most complete open-source implementation of state-of-the-art algorithms
tackling various kinds of sequential learning problems referred to as Multi-Armed Bandits. It
aims at being extensive, simple to use and maintain, with a clean and perfectly documented
codebase. But most of all it allows fast prototyping of simulations and experiments, with
an easy configuration system and command-line options to customize experiments while
starting them (see below for an example).

SMPyBandits does not aim at being blazing fast or perfectly memory efficient, and comes with
a pure Python implementation with no dependency except standard open-source Python
packages. Even if some critical parts are also available as a C Python extension, and even by
using Numba [I+17] whenever it is possible, if simulation speed really matters, one should
rather refer to less exhaustive but faster implementations, like for example [Lat16] in C++ or
[Raj17] in Julia.

1.1 Presentation

1.1.1 Single-Player MAB

Multi-Armed Bandit (MAB) problems are well-studied sequential decision making problems
in which an agent repeatedly chooses an action (the “arm” of a one-armed bandit) in order to
maximize some total reward [Rob52, LaiRobbins85]. Initial motivation for their study came
from the modeling of clinical trials, as early as 1933 with the seminal work of Thompson
[Tho33]. In this example, arms correspond to different treatments with unknown, random
effect. Since then, MAB models have been proved useful for many more applications, that
range from cognitive radio [JEMP09] to online content optimization (news article recommen-
dation [LCLS10], online advertising [CL11] or A/B Testing [(author?) [KCG14];Jamieson17]),
or portfolio optimization [SLM12].

This Python package is the most complete open-source implementation of single-player
(classical) bandit algorithms (over 65!). We use a well-designed hierarchical structure and
class inheritance scheme to minimize redundancy in the codebase, and for instance the code
specific to the UCB algorithm [LR85, ACBF02] is as short as this (and fully documented), by
inheriting from the IndexPolicy class:

GitHub.com/SMPyBandits/SMPyBandits 2/12 Lilian Besson

https://perso.crans.org/besson/
https://www.python.org/
https://en.wikipedia.org/wiki/Multi-armed_bandit
https://en.wikipedia.org/wiki/Multi-armed_bandit
http://banditslilian.gforge.inria.fr/docs/Policies.html
http://banditslilian.gforge.inria.fr/uml_diagrams/README.html
http://banditslilian.gforge.inria.fr/docs/Policies.IndexPolicy.html
https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

from numpy import sqrt, log

from .IndexPolicy import IndexPolicy

class UCB(IndexPolicy):

""" The UCB policy for bounded bandits.

Reference: [Lai & Robbins, 1985]. """

def computeIndex(self, arm):

r""" Compute the current index, at time t and

after :math:`N_k(t)` pulls of arm k:

.. math::

I_k(t) = \frac{X_k(t)}{N_k(t)}

+ \sqrt{\frac{2 \log(t)}{N_k(t)}}.

"""

if self.pulls[arm] < 1: # forced exploration

return float('+inf') # in the first steps

else: # or compute UCB index

estimated_mean = (self.rewards[arm] / self.pulls[arm])

exploration_bias = sqrt((2 * log(self.t)) / self.pulls[arm])

return estimated_mean + exploration_bias

1.1.2 Multi-Players MAB

For Cognitive Radio applications, a well-studied extension is to consider M ≥ 2 players,
interacting on the same K arms. Whenever two or more players select the same arm at the
same time, they all suffer from a collision. Different collision models has been proposed,
and the simplest one consist in giving a 0 reward to each colliding players. Without any
centralized supervision or coordination between players, they must learn to access the M
best resources (i.e., arms with highest means) without collisions.

This package implements all the collision models found in the literature, as well as all the
algorithms from the last 10 years or so (including rhoRand from 2009, MEGA from 2015,
MusicalChair from 2016, and our state-of-the-art algorithms RandTopM and MCTopM)
from [BK18a].

GitHub.com/SMPyBandits/SMPyBandits 3/12 Lilian Besson

http://banditslilian.gforge.inria.fr/docs/Environment.CollisionModels.py
http://banditslilian.gforge.inria.fr/docs/PoliciesMultiPlayers.rhoRand.py
http://banditslilian.gforge.inria.fr/docs/Policies.MEGA.py
http://banditslilian.gforge.inria.fr/docs/Policies.MusicalChair.py
http://banditslilian.gforge.inria.fr/docs/PoliciesMultiPlayers.RandTopM.py
http://banditslilian.gforge.inria.fr/docs/PoliciesMultiPlayers.MCTopM.py
https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

1.2 Purpose

The main goal of this package is to implement with the same API most of the existing
single- and multi-player multi-armed bandit algorithms. Each algorithm comes with a clean
documentation page, containing a reference to the research article(s) that introduced it, and
with remarks on its numerical efficiency.

It is neither the first nor the only open-source implementation of multi-armed bandits algo-
rithms, although one can notice the absence of any well-maintained reference implementation.
I built SMPyBandits from a framework called pymaBandits [CGK12], which implemented a
few algorithms and three kinds of arms, in both Python and MATLAB. The goal was twofolds,
first to implement as many algorithms as possible to have a complete implementation of the
current state of research in MAB, and second to implement multi-players simulations with
different models.

Since November 2016, I follow actively the latest publications related to Multi-Armed Bandits
(MAB) research, and usually I implement quickly any new algorithms. For instance, Exp3++,
CORRAL and SparseUCB were each introduced by articles (for Exp3++, for CORRAL, for
SparseUCB) presented at COLT in July 2017, LearnExp comes from a NIPS 2017 paper, and
kl-UCB++ from an ALT 2017 paper.

1.3 Features

With this numerical framework, simulations can run on a single CPU or a multi-core machine
using joblib [Var17], and summary plots are automatically saved as high-quality PNG, PDF
and EPS (ready for being used in research article), using matplotlib [Hun07] and seaborn
[W+17]. Making new simulations is very easy, one only needs to write a configuration script
and no knowledge of the internal code architecture.

1.3.1 Examples of configuration for some simulations

A small script configuration.py is used to import the arm classes, the policy classes and
define the problems and the experiments. For instance, we can compare the standard anytime
klUCB algorithm against the non-anytime variant klUCBPlusPlus algorithm, as well as
UCB (with α = 1) and Thompson (with Beta posterior). See below in Figure 1 for the result
showing the average regret for these 4 algorithms.

from Arms import *; from Policies import *

configuration = {

GitHub.com/SMPyBandits/SMPyBandits 4/12 Lilian Besson

http://banditslilian.gforge.inria.fr/API.html
http://banditslilian.gforge.inria.fr/docs/Policies.Exp3PlusPlus.html
http://banditslilian.gforge.inria.fr/docs/Policies.CORRAL.html
http://banditslilian.gforge.inria.fr/docs/Policies.SparseUCB.html
https://arxiv.org/pdf/1702.06103
https://arxiv.org/abs/1612.06246v2
https://arxiv.org/abs/1706.01383
https://arxiv.org/abs/1706.01383
http://banditslilian.gforge.inria.fr/docs/Policies.LearnExp.html
https://arxiv.org/abs/1702.04825
http://banditslilian.gforge.inria.fr/docs/Policies.klUCBPlusPlus.html
https://hal.inria.fr/hal-01475078
http://banditslilian.gforge.inria.fr/docs/configuration.html
http://banditslilian.gforge.inria.fr/docs/Arms.html
http://banditslilian.gforge.inria.fr/docs/Policies.html
http://banditslilian.gforge.inria.fr/docs/Policies.klUCB.py
http://banditslilian.gforge.inria.fr/docs/Policies.klUCBPlusPlus.py
http://banditslilian.gforge.inria.fr/docs/Policies.UCBalpha.py
http://banditslilian.gforge.inria.fr/docs/Policies.Thompson.py
http://banditslilian.gforge.inria.fr/docs/Policies.Posterior.Beta.html
https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

"horizon": 10000, # Finite horizon of the simulation

"repetitions": 1000, # Number of repetitions

"n_jobs": -1, # Max number of cores for parallelization

Environment configuration, you can set up more than one.

"environment": [{

"arm_type": Bernoulli,

"params": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

}],

Policies that should be simulated, and their parameters.

"policies": [

{"archtype": klUCB, "params": {} },

{"archtype": klUCBPlusPlus,

"params": { "horizon": 10000 } },

{"archtype": UCBalpha,

"params": { "alpha": 1 } },

{"archtype": Thompson, "params": {} },

]}

For a second example, this snippet is a minimal example1 of configuration for multiplayer
simulations, comparing different multi-player algorithms used with the klUCB index policy.
See below in Figure 2 for an illustration.

from Arms import *; from Policies import *
from PoliciesMultiPlayers import *
nbPlayers = 3

configuration = {

"horizon": 10000, # Finite horizon of the simulation

"repetitions": 100, # Number of repetitions

"n_jobs": -1, # Max number of cores for parallelization

Environment configuration, you can set up more than one.

"environment": [{

"arm_type": Bernoulli,

"params": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

}],

Policies that should be simulated, and their parameters.

"successive_players": [

CentralizedMultiplePlay(nbPlayers, nbArms, klUCB).children,

RandTopM(nbPlayers, nbArms, klUCB).children,

MCTopM(nbPlayers, nbArms, klUCB).children,

Selfish(nbPlayers, nbArms, klUCB).children,

1See the file configuration_multiplayers.py in the code for more details.

GitHub.com/SMPyBandits/SMPyBandits 5/12 Lilian Besson

http://banditslilian.gforge.inria.fr/docs/Policies.klUCB.py
http://banditslilian.gforge.inria.fr/docs/configuration_multiplayers.html
https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

rhoRand(nbPlayers, nbArms, klUCB).children,

] }

1.3.2 Documentation

A complete sphinx [B+18] documentation for each algorithms and every piece of
code, included the constants in the different configuration files, is available here:
http://banditslilian.gforge.inria.fr.

1.3.3 Other noticeable features

1.3.3.1 Single-player Policies

• More than 65 algorithms, including all known variants of the UCB, kl-UCB, MOSS and
Thompson Sampling algorithms, as well as other less known algorithms (OCUCB, BESA,
OSSB etc).

• Implementation of very recent Multi-Armed Bandits algorithms, e.g., kl-UCB++,
UCB-dagger, or MOSS-anytime (from this COLT 2016 article).

• Experimental policies: BlackBoxOpt or UnsupervisedLearning (using Gaussian
processes to learn the arms distributions).

1.3.3.2 Arms and problems

• The framework mainly targets stochastic bandits, with arms following Bernoulli,
bounded (truncated) or unbounded Gaussian, Exponential, Gamma or Poisson
distributions.

• The default configuration is to use a fixed problem for N repetitions (e.g. 1000 repetitions,
use MAB.MAB), but there is also a perfect support for “Bayesian” problems where the
mean vector µ1, . . . , µK change at every repetition (see MAB.DynamicMAB).

• There is also a good support for Markovian problems, see MAB.MarkovianMAB, even
though I preferred to not implement policies specifically designed for Markovian
problems.

1.4 Other remarks

• The framework is implemented in an imperative and object oriented style. Algo-
rithm and arms are represented as classes, and the API of the Arms, Policy and
MultiPlayersPolicy classes is clearly documented.

GitHub.com/SMPyBandits/SMPyBandits 6/12 Lilian Besson

http://banditslilian.gforge.inria.fr/
http://banditslilian.gforge.inria.fr/docs/Policies.html
http://banditslilian.gforge.inria.fr/docs/Policies.UCB.py
http://banditslilian.gforge.inria.fr/docs/Policies.klUCB.py
http://banditslilian.gforge.inria.fr/docs/Policies.MOSS.py
http://banditslilian.gforge.inria.fr/docs/Policies.Thompson.py
http://banditslilian.gforge.inria.fr/docs/Policies.OCUCB.py
http://banditslilian.gforge.inria.fr/docs/Policies.OCUCB.py
http://banditslilian.gforge.inria.fr/docs/Policies.OSSB.py
http://banditslilian.gforge.inria.fr/docs/Policies.klUCBPlusPlus.html
http://banditslilian.gforge.inria.fr/docs/Policies.UCBdagger.html
http://banditslilian.gforge.inria.fr/docs/Policies.MOSSAnytime.html
http://proceedings.mlr.press/v48/degenne16.pdf
http://banditslilian.gforge.inria.fr/docs/Policies.BlackBoxOpt.html
http://banditslilian.gforge.inria.fr/docs/Policies.UnsupervisedLearning.html
Arms/Bernoulli.py
Arms/Gaussian.py
Arms/Exponential.py
Arms/Gamma.py
Arms/Poisson.py
Environment/MAB.py
Environment/MAB.py
Environment/MAB.py
http://banditslilian.gforge.inria.fr/API.html
https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

• The code is clean, and a special care is given to keep it compatible for both Python 2
and Python 3.

• The joblib library [Var17] is used for the Evaluator classes, so the simulations are
easily ran in parallel on multi-core machines and servers.2

1.4.1 How to run the experiments ?

For example, this short bash snippet3 shows how to clone the code, install the requirements
for Python 3 (in a virtualenv [BPP16]), and starts some simulation for N = 1000 repetitions
of the default non-Bayesian Bernoulli-distributed problem, for K = 9 arms, an horizon of
T = 10000 and on 4 CPUs.4 Using environment variables (N=1000) when launching the
simulation is not required but it is convenient.

1. get the code in /tmp/, or wherever you want

cd /tmp/

git clone https://GitHub.com/SMPyBandits/SMPyBandits.git

cd SMPyBandits.git

2. just be sure you have the latest virtualenv from Python 3

sudo pip3 install --upgrade virtualenv

3. create and active the virtualenv

virtualenv3 venv || virtualenv venv

. venv/bin/activate

4. install the requirements in the virtualenv

pip3 install -r requirements.txt

5. run a single-player simulation!

N=1000 T=10000 K=9 N_JOBS=4 make single

6. run a multi-player simulation for 3 players!

N=1000 T=10000 M=3 K=9 N_JOBS=4 make moremulti

1.4.2 Examples of illustrations

The two simulations above produce these plots showing the average cumulated regret5 for
each algorithm, which is the reference measure of efficiency for algorithms in the multi-armed
bandits framework.

2Note that SMPyBandits does no need a GPU and is not optimized to run on a cluster. In particular, it does not
take advantage of popular libraries like numexpr, theano or tensorflow.

3See this page of the documentation for more details.
4It takes about 20 to 40 minutes for each simulation, on a standard 4-cores 64 bits GNU/Linux laptop.
5The regret is the difference between the cumulated rewards of the best fixed-armed strategy (which is the

oracle strategy for stationary bandits) and the cumulated rewards of the considered algorithms.

GitHub.com/SMPyBandits/SMPyBandits 7/12 Lilian Besson

http://banditslilian.gforge.inria.fr/logs/main_pylint_log.txt
http://banditslilian.gforge.inria.fr/logs/main_pylint_log.txt
http://banditslilian.gforge.inria.fr/logs/main_pylint3_log.txt
http://banditslilian.gforge.inria.fr/docs/Environment.Evaluator.py
https://github.com/pydata/numexpr
http://www.deeplearning.net/software/theano/
https://www.tensorflow.org/
http://banditslilian.gforge.inria.fr/How_to_run_the_code.html
https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

Figure 1: Single-player simulation showing the regret of 4 algorithms, and the asymptotic
lower-bound from [LR85]. They all perform very well, and at finite time they are empirically
below the asymptotic lower-bound. Each algorithm is known to be order-optimal (i.e., its
regret is proved to match the lower-bound up-to a constant), and each but UCB is known to
be optimal (i.e. with the constant matching the lower-bound).

GitHub.com/SMPyBandits/SMPyBandits 8/12 Lilian Besson

https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

Figure 2: Multi-player simulation showing the regret of 6 algorithms, and the asymptotic
lower-bound from [BK18a]. The best algorithm is the centralized version, but for decentral-
ized algorithms, our proposals outperform the previous state-of-the-art rhoRand policy.

1.5 Research using SMPyBandits

SMPyBandits was used for the following research articles since 2017:6

• For this first article, [BBM+17], SMPyBandits was not used to generate the
main figures, but to explore on a smaller scale many other approaches (using
EvaluatorSparseMultiPlayers).

• For [BK18a], we used SMPyBandits for all the simulations for multi-player bandit
algorithms.7 We designed the two RandTopM and MCTopM algorithms and proved than
they enjoy logarithmic regret in the usual setting, and outperform significantly the
previous state-of-the-art solutions (i.e., rhoRand, MEGA and MusicalChair).

• In [BKM18], we used SMPyBandits to illustrate and compare different aggregation
algorithms.8 We designed a variant of the Exp3 algorithm for online aggregation of
experts [BCB12], called Aggregator. Aggregating experts is a well-studied idea in

6I (Lilian Besson) have started my PhD in October 2016, and this is a part of my on going research since
December 2016. I launched the documentation on March 2017, I wrote my first research articles using this
framework in 2017 and I was finally able to open-source my project in February 2018.

7More details and illustrations are given on the documentation page, MultiPlayers.
8More details and illustrations are given on the documentation page, Aggregation.

GitHub.com/SMPyBandits/SMPyBandits 9/12 Lilian Besson

http://banditslilian.gforge.inria.fr/docs/PoliciesMultiPlayers.rhoRand.html
http://banditslilian.gforge.inria.fr/docs/Environment.EvaluatorSparseMultiPlayers.html
http://banditslilian.gforge.inria.fr/docs/PoliciesMultiPlayers.RandTopM.html
http://banditslilian.gforge.inria.fr/docs/PoliciesMultiPlayers.MCTopM.html
http://banditslilian.gforge.inria.fr/docs/PoliciesMultiPlayers.rhoRand.html
http://banditslilian.gforge.inria.fr/docs/Policies.MEGA.html
http://banditslilian.gforge.inria.fr/docs/Policies.MusicalChair.html
http://banditslilian.gforge.inria.fr/docs/Policies.Aggregator.html
http://perso.crans.org/besson/
http://perso.crans.org/besson/phd/
http://banditslilian.gforge.inria.fr/
http://banditslilian.gforge.inria.fr/MultiPlayers.html
http://banditslilian.gforge.inria.fr/Aggregation.html
https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

sequential learning and in machine learning in general. We showed that it can be used in
practice to select on the run the best bandit algorithm for a certain problem from a fixed
pool of experts. This idea and algorithm can have interesting impact for Opportunistic
Spectrum Access applications [JEMP09] that use multi-armed bandits algorithms for
sequential learning and network efficiency optimization.

• In [BK18b], we used SMPyBandits to illustrate and compare different “doubling trick”
schemes.9 In sequential learning, an algorithm is anytime if it does not need to know the
horizon T of the experiments. A well-known trick for transforming any non-anytime
algorithm to an anytime variant is the “Doubling Trick”: start with an horizon T0 ∈ N,
and when t > Ti, use Ti+1 = 2Ti. We studied two generic sequences of growing horizons
(geometric and exponential), and we proved two theorems that generalized previous
results. A geometric sequence suffices to minimax regret bounds (in RT = O(

√

(T))),
with a constant multiplicative loss ℓ ≤ 4, but cannot be used to conserve a logarithmic
regret bound (in RT = O(log(T))). And an exponential sequence can be used to
conserve logarithmic bounds, with a constant multiplicative loss also ℓ ≤ 4 in the usual
setting. It is still an open question to know if a well-tuned exponential sequence can
conserve minimax bounds or weak minimax bounds (in RT = O(

√

T log(T))).

1.6 Dependencies

The framework is written in Python [Fou17], using matplotlib [Hun07] for 2D plotting,
numpy [vdWCV11] for data storing, random number generations and and operations on
arrays, scipy [JOP+] for statistical and special functions, and seaborn [W+17] for pretty
plotting and colorblind-aware colormaps. Optional dependencies include joblib [Var17] for
parallel simulations, numba [I+17] for automatic speed-up on some small functions, as well
as sphinx [B+18] for generating the documentations. I also acknowledge the use of virtualenv
[BPP16] for launching simulations in isolated environments, and jupyter [K+16] used with
ipython [PG07] to experiment with the code.

References

[ACBF02] Peter Auer, Nicolò Cesa-Bianchi, and Peter Fischer. Finite-time Analysis of the
Multi-armed Bandit Problem. Machine Learning, 47(2):235–256, 2002.

[B+18] Georg Brandl et al. Sphinx: Python documentation generator. Online at: www.
sphinx-doc.org, Februry 2018.

9More details and illustrations are given on the documentation page, DoublingTrick.

GitHub.com/SMPyBandits/SMPyBandits 10/12 Lilian Besson

www.sphinx-doc.org
www.sphinx-doc.org
http://banditslilian.gforge.inria.fr/DoublingTrick.html
https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

[BBM+17] Rémi Bonnefoi, Lilian Besson, Christophe Moy, Émilie Kaufmann, and Jacques
Palicot. Multi-Armed Bandit Learning in IoT Networks: Learning helps even
in non-stationary settings. In 12th EAI Conference on Cognitive Radio Oriented
Wireless Network and Communication, CROWNCOM Proceedings, 2017.

[BCB12] Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret Analysis of Stochastic and
Non-Stochastic Multi-Armed Bandit Problems. Foundations and Trends® in
Machine Learning, 5(1), 2012.

[BK18a] Lilian Besson and Emilie Kaufmann. Multi-Player Bandits Models Revisited. In
Algorithmic Learning Theory, Lanzarote, Spain, April 2018.

[BK18b] Lilian Besson and Emilie Kaufmann. What Doubling Trick Can and Can’t Do
for Multi-Armed Bandits. working paper or preprint, February 2018.

[BKM18] Lilian Besson, Emilie Kaufmann, and Christophe Moy. Aggregation of Multi-
Armed Bandits Learning Algorithms for Opportunistic Spectrum Access. In
IEEE WCNC - IEEE Wireless Communications and Networking Conference, Barcelona,
Spain, April 2018.

[BPP16] Ian Bicking, The Open Planning Project, and PyPA. Virtualenv: a tool to cre-
ate isolated Python environments. Online at: virtualenv.pypa.io/en/
stable, November 2016.

[CGK12] Olivier Cappé, Aurélien Garivier, and Emilie Kaufmann. pymaBandits. Online
at: mloss.org/software/view/415, 2012.

[CL11] Olivier Chapelle and Lihong Li. An Empirical Evaluation of Thompson Sam-
pling. In Advances in Neural Information Processing Systems, pages 2249–2257.
Curran Associates, Inc., 2011.

[Fou17] Python Software Foundation. Python language reference, version 3.6. Online at:
www.python.org, October 2017.

[Hun07] John D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science
& Engineering, 9(3):90–95, 2007.

[I+17] Anaconda Inc. et al. Numba, NumPy aware dynamic Python compiler using
LLVM. Online at: numba.pydata.org, 2017.

[JEMP09] Wassim Jouini, Daniel Ernst, Christophe Moy, and Jacques Palicot. Multi-
Armed Bandit Based Policies for Cognitive Radio’s Decision Making Issues.
In International Conference Signals, Circuits and Systems. IEEE, 2009.

[JOP+] Eric Jones, Travis E. Oliphant, Pearu Peterson, et al. SciPy: Open source scientific
tools for Python. Online at: www.scipy.org, 2001–.

GitHub.com/SMPyBandits/SMPyBandits 11/12 Lilian Besson

virtualenv.pypa.io/en/stable
virtualenv.pypa.io/en/stable
mloss.org/software/view/415
www.python.org
numba.pydata.org
www.scipy.org
https://GitHub.com/SMPyBandits/SMPyBandits

SMPyBandits presentation paper February 28, 2018

[K+16] Thomas Kluyver et al. Jupyter Notebooks – a publishing format for reproducible
computational workflows. In F. Loizides and B. Schmidt, editors, Positioning
and Power in Academic Publishing: Players, Agents and Agendas, pages 87–90. IOS
Press, 2016.

[KCG14] Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the Complexity of
A/B Testing. In Conference on Learning Theory, pages 461–481. PMLR, 2014.

[Lat16] Tor Lattimore. Library for Multi-Armed Bandit Algorithms. Online at: github.
com/tor/libbandit, 2016.

[LCLS10] Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A Contextual-Bandit
Approach to Personalized News Article Recommendation. In International
Conference on World Wide Web, pages 661–670. ACM, 2010.

[LR85] T. L. Lai and Herbert Robbins. Asymptotically Efficient Adaptive Allocation
Rules. Advances in Applied Mathematics, 6(1):4–22, 1985.

[PG07] Fernando Pérez and Brian E. Granger. IPython: a System for Interactive Scientific
Computing. Computing in Science and Engineering, 9(3):21–29, May 2007.

[Raj17] Vishnu Raj. A Julia Package for providing Multi Armed Bandit Experiments.
Online at: github.com/v-i-s-h/MAB.jl, 2017.

[Rob52] Herbert Robbins. Some Aspects of the Sequential Design of Experiments. Bulletin
of the American Mathematical Society, 58(5):527–535, 1952.

[SLM12] Amir Sani, Alessandro Lazaric, and Rémi Munos. Risk-Aversion In Multi-Armed
Bandits. In Advances in Neural Information Processing Systems, pages 3275–3283,
2012.

[Tho33] William R. Thompson. On the Likelihood that One Unknown Probability Ex-
ceeds Another in View of the Evidence of Two Samples. Biometrika, 25, 1933.

[Var17] Gaël Varoquaux. Joblib: running Python functions as pipeline jobs. Online at:
pythonhosted.org/joblib, March 2017.

[vdWCV11] Stéfan van der Walt, Chris S. Colbert, and Gaël Varoquaux. The NumPy Ar-
ray: A Structure for Efficient Numerical Computation. Computing in Science &
Engineering, 13(2):22–30, March 2011.

[W+17] Michael Waskom et al. Seaborn: statistical data visualization. Online at:
seaborn.pydata.org, September 2017.

GitHub.com/SMPyBandits/SMPyBandits 12/12 Lilian Besson

github.com/tor/libbandit
github.com/tor/libbandit
github.com/v-i-s-h/MAB.jl
pythonhosted.org/joblib
seaborn.pydata.org
https://GitHub.com/SMPyBandits/SMPyBandits

	Summary
	Presentation
	Single-Player MAB
	Multi-Players MAB

	Purpose
	Features
	Examples of configuration for some simulations
	Documentation
	Other noticeable features

	Other remarks
	How to run the experiments ?
	Examples of illustrations

	Research using SMPyBandits
	Dependencies

