Top

kullback_leibler module

Kullback-Leibler divergence functions and klUCB utilities.

.. warning::

All functions are *not* vectorized, and assume only one value for each argument.
If you want vectorized function, use the wrapper :py:class:`numpy.vectorize`:

>>> import numpy as np
>>> klBern_vect = np.vectorize(klBern)
>>> klBern_vect([0.1, 0.5, 0.9], 0.2)  # doctest: +ELLIPSIS
array([0.036..., 0.223..., 1.145...])
>>> klBern_vect(0.4, [0.2, 0.3, 0.4])  # doctest: +ELLIPSIS
array([0.104..., 0.022..., 0...])
>>> klBern_vect([0.1, 0.5, 0.9], [0.2, 0.3, 0.4])  # doctest: +ELLIPSIS
array([0.036..., 0.087..., 0.550...])

For some functions, you would be better off writing a vectorized version manually, for instance if you want to fix a value of some optional parameters:

>>> # WARNING using np.vectorize gave weird result on klGauss
>>> # klGauss_vect = np.vectorize(klGauss, excluded="y")
>>> def klGauss_vect(xs, y, sig2x=0.25):  # vectorized for first input only
...    return np.array([klGauss(x, y, sig2x) for x in xs])
>>> klGauss_vect([-1, 0, 1], 0.1)  # doctest: +ELLIPSIS
array([2.42, 0.02, 1.62])
#!/usr/bin/env python
# -*- coding: utf-8 -*-
""" Kullback-Leibler divergence functions and klUCB utilities.

- Faster implementation can be found in a C file, in the ``C`` folder, or a Cython file, and should be compiled to speedup computations.
- Cf. https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
- Reference: [Filippi, Cappe & Garivier - Allerton, 2011](https://arxiv.org/pdf/1004.5229.pdf) and [Garivier & Cappe, 2011](https://arxiv.org/pdf/1102.2490.pdf)


.. warning::

    All functions are *not* vectorized, and assume only one value for each argument.
    If you want vectorized function, use the wrapper :py:class:`numpy.vectorize`:

    >>> import numpy as np
    >>> klBern_vect = np.vectorize(klBern)
    >>> klBern_vect([0.1, 0.5, 0.9], 0.2)  # doctest: +ELLIPSIS
    array([0.036..., 0.223..., 1.145...])
    >>> klBern_vect(0.4, [0.2, 0.3, 0.4])  # doctest: +ELLIPSIS
    array([0.104..., 0.022..., 0...])
    >>> klBern_vect([0.1, 0.5, 0.9], [0.2, 0.3, 0.4])  # doctest: +ELLIPSIS
    array([0.036..., 0.087..., 0.550...])

    For some functions, you would be better off writing a vectorized version manually, for instance if you want to fix a value of some optional parameters:

    >>> # WARNING using np.vectorize gave weird result on klGauss
    >>> # klGauss_vect = np.vectorize(klGauss, excluded="y")
    >>> def klGauss_vect(xs, y, sig2x=0.25):  # vectorized for first input only
    ...    return np.array([klGauss(x, y, sig2x) for x in xs])
    >>> klGauss_vect([-1, 0, 1], 0.1)  # doctest: +ELLIPSIS
    array([2.42, 0.02, 1.62])
"""
from __future__ import division, print_function  # Python 2 compatibility

__author__ = "Lilian Besson"
__version__ = "0.1"

from math import log, sqrt, exp

import numpy as np


eps = 1e-15  #: Threshold value: everything in [0, 1] is truncated to [eps, 1 - eps]


# --- Simple Kullback-Leibler divergence for known distributions


def klBern(x, y):
    r""" Kullback-Leibler divergence for Bernoulli distributions. https://en.wikipedia.org/wiki/Bernoulli_distribution#Kullback.E2.80.93Leibler_divergence

    .. math:: \mathrm{KL}(\mathcal{B}(x), \mathcal{B}(y)) = x \log(\frac{x}{y}) + (1-x) \log(\frac{1-x}{1-y}).

    >>> klBern(0.5, 0.5)
    0.0
    >>> klBern(0.1, 0.9)  # doctest: +ELLIPSIS
    1.757779...
    >>> klBern(0.9, 0.1)  # And this KL is symmetric  # doctest: +ELLIPSIS
    1.757779...
    >>> klBern(0.4, 0.5)  # doctest: +ELLIPSIS
    0.020135...
    >>> klBern(0.01, 0.99)  # doctest: +ELLIPSIS
    4.503217...

    - Special values:

    >>> klBern(0, 1)  # Should be +inf, but 0 --> eps, 1 --> 1 - eps  # doctest: +ELLIPSIS
    34.539575...
    """
    x = min(max(x, eps), 1 - eps)
    y = min(max(y, eps), 1 - eps)
    return x * log(x / y) + (1 - x) * log((1 - x) / (1 - y))


def klBin(x, y, n):
    r""" Kullback-Leibler divergence for Binomial distributions. https://math.stackexchange.com/questions/320399/kullback-leibner-divergence-of-binomial-distributions

    - It is simply the n times :func:`klBern` on x and y.

    .. math:: \mathrm{KL}(\mathrm{Bin}(x, n), \mathrm{Bin}(y, n)) = n \times \left(x \log(\frac{x}{y}) + (1-x) \log(\frac{1-x}{1-y}) \right).

    .. warning:: The two distributions must have the same parameter n, and x, y are p, q in (0, 1).

    >>> klBin(0.5, 0.5, 10)
    0.0
    >>> klBin(0.1, 0.9, 10)  # doctest: +ELLIPSIS
    17.57779...
    >>> klBin(0.9, 0.1, 10)  # And this KL is symmetric  # doctest: +ELLIPSIS
    17.57779...
    >>> klBin(0.4, 0.5, 10)  # doctest: +ELLIPSIS
    0.20135...
    >>> klBin(0.01, 0.99, 10)  # doctest: +ELLIPSIS
    45.03217...

    - Special values:

    >>> klBin(0, 1, 10)  # Should be +inf, but 0 --> eps, 1 --> 1 - eps  # doctest: +ELLIPSIS
    345.39575...
    """
    x = min(max(x, eps), 1 - eps)
    y = min(max(y, eps), 1 - eps)
    return n * (x * log(x / y) + (1 - x) * log((1 - x) / (1 - y)))


def klPoisson(x, y):
    r""" Kullback-Leibler divergence for Poison distributions. https://en.wikipedia.org/wiki/Poisson_distribution#Kullback.E2.80.93Leibler_divergence

    .. math:: \mathrm{KL}(\mathrm{Poisson}(x), \mathrm{Poisson}(y)) = y - x + x \times \log(\frac{x}{y}).

    >>> klPoisson(3, 3)
    0.0
    >>> klPoisson(2, 1)  # doctest: +ELLIPSIS
    0.386294...
    >>> klPoisson(1, 2)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    0.306852...
    >>> klPoisson(3, 6)  # doctest: +ELLIPSIS
    0.920558...
    >>> klPoisson(6, 8)  # doctest: +ELLIPSIS
    0.273907...

    - Special values:

    >>> klPoisson(1, 0)  # Should be +inf, but 0 --> eps, 1 --> 1 - eps  # doctest: +ELLIPSIS
    33.538776...
    >>> klPoisson(0, 0)
    0.0
    """
    x = max(x, eps)
    y = max(y, eps)
    return y - x + x * log(x / y)


def klExp(x, y):
    r""" Kullback-Leibler divergence for exponential distributions. https://en.wikipedia.org/wiki/Exponential_distribution#Kullback.E2.80.93Leibler_divergence

    .. math::

        \mathrm{KL}(\mathrm{Exp}(x), \mathrm{Exp}(y)) = \begin{cases}
        \frac{x}{y} - 1 - \log(\frac{x}{y}) & \text{if} x > 0, y > 0\\
        +\infty & \text{otherwise}
        \end{cases}

    >>> klExp(3, 3)
    0.0
    >>> klExp(3, 6)  # doctest: +ELLIPSIS
    0.193147...
    >>> klExp(1, 2)  # Only the proportion between x and y is used  # doctest: +ELLIPSIS
    0.193147...
    >>> klExp(2, 1)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    0.306852...
    >>> klExp(4, 2)  # Only the proportion between x and y is used  # doctest: +ELLIPSIS
    0.306852...
    >>> klExp(6, 8)  # doctest: +ELLIPSIS
    0.037682...

    - x, y have to be positive:

    >>> klExp(-3, 2)
    inf
    >>> klExp(3, -2)
    inf
    >>> klExp(-3, -2)
    inf
    """
    if x <= 0 or y <= 0:
        return float('+inf')
    else:
        x = max(x, eps)
        y = max(y, eps)
        return x / y - 1 - log(x / y)


def klGamma(x, y, a=1):
    r""" Kullback-Leibler divergence for gamma distributions. https://en.wikipedia.org/wiki/Gamma_distribution#Kullback.E2.80.93Leibler_divergence

    - It is simply the a times :func:`klExp` on x and y.

    .. math::

        \mathrm{KL}(\Gamma(x, a), \Gamma(y, a)) = \begin{cases}
        a \times \left( \frac{x}{y} - 1 - \log(\frac{x}{y}) \right) & \text{if} x > 0, y > 0\\
        +\infty & \text{otherwise}
        \end{cases}

    .. warning:: The two distributions must have the same parameter a.

    >>> klGamma(3, 3)
    0.0
    >>> klGamma(3, 6)  # doctest: +ELLIPSIS
    0.193147...
    >>> klGamma(1, 2)  # Only the proportion between x and y is used  # doctest: +ELLIPSIS
    0.193147...
    >>> klGamma(2, 1)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    0.306852...
    >>> klGamma(4, 2)  # Only the proportion between x and y is used  # doctest: +ELLIPSIS
    0.306852...
    >>> klGamma(6, 8)  # doctest: +ELLIPSIS
    0.037682...

    - x, y have to be positive:

    >>> klGamma(-3, 2)
    inf
    >>> klGamma(3, -2)
    inf
    >>> klGamma(-3, -2)
    inf
    """
    if x <= 0 or y <= 0:
        return float('+inf')
    else:
        x = max(x, eps)
        y = max(y, eps)
        return a * (x / y - 1 - log(x / y))


def klNegBin(x, y, r=1):
    r""" Kullback-Leibler divergence for negative binomial distributions. https://en.wikipedia.org/wiki/Negative_binomial_distribution

    .. math:: \mathrm{KL}(\mathrm{NegBin}(x, r), \mathrm{NegBin}(y, r)) = r \times \log((r + x) / (r + y)) - x \times \log(y \times (r + x) / (x \times (r + y))).

    .. warning:: The two distributions must have the same parameter r.

    >>> klNegBin(0.5, 0.5)
    0.0
    >>> klNegBin(0.1, 0.9)  # doctest: +ELLIPSIS
    -0.711611...
    >>> klNegBin(0.9, 0.1)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    2.0321564...
    >>> klNegBin(0.4, 0.5)  # doctest: +ELLIPSIS
    -0.130653...
    >>> klNegBin(0.01, 0.99)  # doctest: +ELLIPSIS
    -0.717353...

    - Special values:

    >>> klBern(0, 1)  # Should be +inf, but 0 --> eps, 1 --> 1 - eps  # doctest: +ELLIPSIS
    34.539575...

    - With other values for `r`:

    >>> klNegBin(0.5, 0.5, r=2)
    0.0
    >>> klNegBin(0.1, 0.9, r=2)  # doctest: +ELLIPSIS
    -0.832991...
    >>> klNegBin(0.1, 0.9, r=4)  # doctest: +ELLIPSIS
    -0.914890...
    >>> klNegBin(0.9, 0.1, r=2)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    2.3325528...
    >>> klNegBin(0.4, 0.5, r=2)  # doctest: +ELLIPSIS
    -0.154572...
    >>> klNegBin(0.01, 0.99, r=2)  # doctest: +ELLIPSIS
    -0.836257...
    """
    x = max(x, eps)
    y = max(y, eps)
    return r * log((r + x) / (r + y)) - x * log(y * (r + x) / (x * (r + y)))


def klGauss(x, y, sig2x=0.25, sig2y=None):
    r""" Kullback-Leibler divergence for Gaussian distributions of means ``x`` and ``y`` and variances ``sig2x`` and ``sig2y``, :math:`\nu_1 = \mathcal{N}(x, \sigma_x^2)` and :math:`\nu_2 = \mathcal{N}(y, \sigma_x^2)`:

    .. math:: \mathrm{KL}(\nu_1, \nu_2) = \frac{(x - y)^2}{2 \sigma_y^2} + \frac{1}{2}\left( \frac{\sigma_x^2}{\sigma_y^2} - 1 \log\left(\frac{\sigma_x^2}{\sigma_y^2}\right) \right).

    See https://en.wikipedia.org/wiki/Normal_distribution#Other_properties

    - By default, sig2y is assumed to be sig2x (same variance).

    .. warning:: The C version does not support different variances.

    >>> klGauss(3, 3)
    0.0
    >>> klGauss(3, 6)
    18.0
    >>> klGauss(1, 2)
    2.0
    >>> klGauss(2, 1)  # And this KL is symmetric
    2.0
    >>> klGauss(4, 2)
    8.0
    >>> klGauss(6, 8)
    8.0

    - x, y can be negative:

    >>> klGauss(-3, 2)
    50.0
    >>> klGauss(3, -2)
    50.0
    >>> klGauss(-3, -2)
    2.0
    >>> klGauss(3, 2)
    2.0

    - With other values for `sig2x`:

    >>> klGauss(3, 3, sig2x=10)
    0.0
    >>> klGauss(3, 6, sig2x=10)
    0.45
    >>> klGauss(1, 2, sig2x=10)
    0.05
    >>> klGauss(2, 1, sig2x=10)  # And this KL is symmetric
    0.05
    >>> klGauss(4, 2, sig2x=10)
    0.2
    >>> klGauss(6, 8, sig2x=10)
    0.2

    - With different values for `sig2x` and `sig2y`:

    >>> klGauss(0, 0, sig2x=0.25, sig2y=0.5)  # doctest: +ELLIPSIS
    -0.0284...
    >>> klGauss(0, 0, sig2x=0.25, sig2y=1.0)  # doctest: +ELLIPSIS
    0.2243...
    >>> klGauss(0, 0, sig2x=0.5, sig2y=0.25)  # not symmetric here!  # doctest: +ELLIPSIS
    1.1534...

    >>> klGauss(0, 1, sig2x=0.25, sig2y=0.5)  # doctest: +ELLIPSIS
    0.9715...
    >>> klGauss(0, 1, sig2x=0.25, sig2y=1.0)  # doctest: +ELLIPSIS
    0.7243...
    >>> klGauss(0, 1, sig2x=0.5, sig2y=0.25)  # not symmetric here!  # doctest: +ELLIPSIS
    3.1534...

    >>> klGauss(1, 0, sig2x=0.25, sig2y=0.5)  # doctest: +ELLIPSIS
    0.9715...
    >>> klGauss(1, 0, sig2x=0.25, sig2y=1.0)  # doctest: +ELLIPSIS
    0.7243...
    >>> klGauss(1, 0, sig2x=0.5, sig2y=0.25)  # not symmetric here!  # doctest: +ELLIPSIS
    3.1534...

    .. warning:: Using :class:`Policies.klUCB` (and variants) with :func:`klGauss` is equivalent to use :class:`Policies.UCB`, so prefer the simpler version.
    """
    if sig2y is None or - eps < (sig2y - sig2x) < eps:
        return (x - y) ** 2 / (2. * sig2x)
    else:
        return (x - y) ** 2 / (2. * sig2y) + 0.5 * ((sig2x/sig2y)**2 - 1 - log(sig2x/sig2y))


# --- KL functions, for the KL-UCB policy

def klucb(x, d, kl, upperbound, lowerbound=float('-inf'), precision=1e-6, max_iterations=50):
    """ The generic KL-UCB index computation.

    - x: value of the cum reward,
    - d: upper bound on the divergence,
    - kl: the KL divergence to be used (:func:`klBern`, :func:`klGauss`, etc),
    - upperbound, lowerbound=float('-inf'): the known bound of the values x,
    - precision=1e-6: the threshold from where to stop the research,
    - max_iterations: max number of iterations of the loop (safer to bound it to reduce time complexity).

    .. note:: It uses a **bisection search**, and one call to ``kl`` for each step of the bisection search.

    For example, for :func:`klucbBern`, the two steps are to first compute an upperbound (as precise as possible) and the compute the kl-UCB index:

    >>> x, d = 0.9, 0.2   # mean x, exploration term d
    >>> upperbound = min(1., klucbGauss(x, d, sig2x=0.25))  # variance 1/4 for [0,1] bounded distributions
    >>> upperbound  # doctest: +ELLIPSIS
    1.0
    >>> klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-3, max_iterations=10)  # doctest: +ELLIPSIS
    0.9941...
    >>> klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-6, max_iterations=10)  # doctest: +ELLIPSIS
    0.994482...
    >>> klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-3, max_iterations=50)  # doctest: +ELLIPSIS
    0.9941...
    >>> klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-6, max_iterations=100)  # more and more precise!  # doctest: +ELLIPSIS
    0.994489...

    .. note:: See below for more examples for different KL divergence functions.
    """
    value = max(x, lowerbound)
    u = upperbound
    _count_iteration = 0
    while _count_iteration < max_iterations and u - value > precision:
        _count_iteration += 1
        m = (value + u) / 2.
        if kl(x, m) > d:
            u = m
        else:
            value = m
    return (value + u) / 2.


def klucbBern(x, d, precision=1e-6):
    """ KL-UCB index computation for Bernoulli distributions, using :func:`klucb`.

    - Influence of x:

    >>> klucbBern(0.1, 0.2)  # doctest: +ELLIPSIS
    0.378391...
    >>> klucbBern(0.5, 0.2)  # doctest: +ELLIPSIS
    0.787088...
    >>> klucbBern(0.9, 0.2)  # doctest: +ELLIPSIS
    0.994489...

    - Influence of d:

    >>> klucbBern(0.1, 0.4)  # doctest: +ELLIPSIS
    0.519475...
    >>> klucbBern(0.1, 0.9)  # doctest: +ELLIPSIS
    0.734714...

    >>> klucbBern(0.5, 0.4)  # doctest: +ELLIPSIS
    0.871035...
    >>> klucbBern(0.5, 0.9)  # doctest: +ELLIPSIS
    0.956809...

    >>> klucbBern(0.9, 0.4)  # doctest: +ELLIPSIS
    0.999285...
    >>> klucbBern(0.9, 0.9)  # doctest: +ELLIPSIS
    0.999995...
    """
    upperbound = min(1., klucbGauss(x, d, sig2x=0.25))  # variance 1/4 for [0,1] bounded distributions
    # upperbound = min(1., klucbPoisson(x, d))  # also safe, and better ?
    return klucb(x, d, klBern, upperbound, precision)


def klucbGauss(x, d, sig2x=0.25, precision=0.):
    """ KL-UCB index computation for Gaussian distributions.

    - Note that it does not require any search.

    .. warning:: it works only if the good variance constant is given.

    - Influence of x:

    >>> klucbGauss(0.1, 0.2)  # doctest: +ELLIPSIS
    0.416227...
    >>> klucbGauss(0.5, 0.2)  # doctest: +ELLIPSIS
    0.816227...
    >>> klucbGauss(0.9, 0.2)  # doctest: +ELLIPSIS
    1.216227...

    - Influence of d:

    >>> klucbGauss(0.1, 0.4)  # doctest: +ELLIPSIS
    0.547213...
    >>> klucbGauss(0.1, 0.9)  # doctest: +ELLIPSIS
    0.770820...

    >>> klucbGauss(0.5, 0.4)  # doctest: +ELLIPSIS
    0.947213...
    >>> klucbGauss(0.5, 0.9)  # doctest: +ELLIPSIS
    1.170820...

    >>> klucbGauss(0.9, 0.4)  # doctest: +ELLIPSIS
    1.347213...
    >>> klucbGauss(0.9, 0.9)  # doctest: +ELLIPSIS
    1.570820...

    .. warning:: Using :class:`Policies.klUCB` (and variants) with :func:`klucbGauss` is equivalent to use :class:`Policies.UCB`, so prefer the simpler version.
    """
    return x + sqrt(2 * sig2x * d)


def klucbPoisson(x, d, precision=1e-6):
    """ KL-UCB index computation for Poisson distributions, using :func:`klucb`.

    - Influence of x:

    >>> klucbPoisson(0.1, 0.2)  # doctest: +ELLIPSIS
    0.450523...
    >>> klucbPoisson(0.5, 0.2)  # doctest: +ELLIPSIS
    1.089376...
    >>> klucbPoisson(0.9, 0.2)  # doctest: +ELLIPSIS
    1.640112...

    - Influence of d:

    >>> klucbPoisson(0.1, 0.4)  # doctest: +ELLIPSIS
    0.693684...
    >>> klucbPoisson(0.1, 0.9)  # doctest: +ELLIPSIS
    1.252796...

    >>> klucbPoisson(0.5, 0.4)  # doctest: +ELLIPSIS
    1.422933...
    >>> klucbPoisson(0.5, 0.9)  # doctest: +ELLIPSIS
    2.122985...

    >>> klucbPoisson(0.9, 0.4)  # doctest: +ELLIPSIS
    2.033691...
    >>> klucbPoisson(0.9, 0.9)  # doctest: +ELLIPSIS
    2.831573...
    """
    upperbound = x + d + sqrt(d * d + 2 * x * d)  # looks safe, to check: left (Gaussian) tail of Poisson dev
    return klucb(x, d, klPoisson, upperbound, precision)


def klucbExp(x, d, precision=1e-6):
    """ KL-UCB index computation for exponential distributions, using :func:`klucb`.

    - Influence of x:

    >>> klucbExp(0.1, 0.2)  # doctest: +ELLIPSIS
    0.202741...
    >>> klucbExp(0.5, 0.2)  # doctest: +ELLIPSIS
    1.013706...
    >>> klucbExp(0.9, 0.2)  # doctest: +ELLIPSIS
    1.824671...

    - Influence of d:

    >>> klucbExp(0.1, 0.4)  # doctest: +ELLIPSIS
    0.285792...
    >>> klucbExp(0.1, 0.9)  # doctest: +ELLIPSIS
    0.559088...

    >>> klucbExp(0.5, 0.4)  # doctest: +ELLIPSIS
    1.428962...
    >>> klucbExp(0.5, 0.9)  # doctest: +ELLIPSIS
    2.795442...

    >>> klucbExp(0.9, 0.4)  # doctest: +ELLIPSIS
    2.572132...
    >>> klucbExp(0.9, 0.9)  # doctest: +ELLIPSIS
    5.031795...
    """
    if d < 0.77:  # XXX where does this value come from?
        upperbound = x / (1 + 2. / 3 * d - sqrt(4. / 9 * d * d + 2 * d))
        # safe, klexp(x,y) >= e^2/(2*(1-2e/3)) if x=y(1-e)
    else:
        upperbound = x * exp(d + 1)
    if d > 1.61:  # XXX where does this value come from?
        lowerbound = x * exp(d)
    else:
        lowerbound = x / (1 + d - sqrt(d * d + 2 * d))
    return klucb(x, d, klGamma, upperbound, lowerbound, precision)


# FIXME this one is wrong!
def klucbGamma(x, d, precision=1e-6):
    """ KL-UCB index computation for Gamma distributions, using :func:`klucb`.

    - Influence of x:

    >>> klucbGamma(0.1, 0.2)  # doctest: +ELLIPSIS
    0.202...
    >>> klucbGamma(0.5, 0.2)  # doctest: +ELLIPSIS
    1.013...
    >>> klucbGamma(0.9, 0.2)  # doctest: +ELLIPSIS
    1.824...

    - Influence of d:

    >>> klucbGamma(0.1, 0.4)  # doctest: +ELLIPSIS
    0.285...
    >>> klucbGamma(0.1, 0.9)  # doctest: +ELLIPSIS
    0.559...

    >>> klucbGamma(0.5, 0.4)  # doctest: +ELLIPSIS
    1.428...
    >>> klucbGamma(0.5, 0.9)  # doctest: +ELLIPSIS
    2.795...

    >>> klucbGamma(0.9, 0.4)  # doctest: +ELLIPSIS
    2.572...
    >>> klucbGamma(0.9, 0.9)  # doctest: +ELLIPSIS
    5.031...
    """
    if d < 0.77:  # XXX where does this value come from?
        upperbound = x / (1 + 2. / 3 * d - sqrt(4. / 9 * d * d + 2 * d))
        # safe, klexp(x,y) >= e^2/(2*(1-2e/3)) if x=y(1-e)
    else:
        upperbound = x * exp(d + 1)
    if d > 1.61:  # XXX where does this value come from?
        lowerbound = x * exp(d)
    else:
        lowerbound = x / (1 + d - sqrt(d * d + 2 * d))
    # FIXME specify the value for a !
    return klucb(x, d, klGamma, max(upperbound, 1e2), min(-1e2, lowerbound), precision)


# --- Debugging

if __name__ == "__main__":
    # Code for debugging purposes.
    from doctest import testmod
    print("\nTesting automatically all the docstring written in each functions of this module :")
    testmod(verbose=True)

    print("\nDone for tests of 'kullback_leibler.py' ...")

Module variables

var eps

Functions

def klBern(

x, y)

Kullback-Leibler divergence for Bernoulli distributions. https://en.wikipedia.org/wiki/Bernoulli_distribution#Kullback.E2.80.93Leibler_divergence

.. math:: \mathrm{KL}(\mathcal{B}(x), \mathcal{B}(y)) = x \log(\frac{x}{y}) + (1-x) \log(\frac{1-x}{1-y}).

klBern(0.5, 0.5) 0.0 klBern(0.1, 0.9) # doctest: +ELLIPSIS 1.757779... klBern(0.9, 0.1) # And this KL is symmetric # doctest: +ELLIPSIS 1.757779... klBern(0.4, 0.5) # doctest: +ELLIPSIS 0.020135... klBern(0.01, 0.99) # doctest: +ELLIPSIS 4.503217...

  • Special values:

klBern(0, 1) # Should be +inf, but 0 --> eps, 1 --> 1 - eps # doctest: +ELLIPSIS 34.539575...

def klBern(x, y):
    r""" Kullback-Leibler divergence for Bernoulli distributions. https://en.wikipedia.org/wiki/Bernoulli_distribution#Kullback.E2.80.93Leibler_divergence

    .. math:: \mathrm{KL}(\mathcal{B}(x), \mathcal{B}(y)) = x \log(\frac{x}{y}) + (1-x) \log(\frac{1-x}{1-y}).

    >>> klBern(0.5, 0.5)
    0.0
    >>> klBern(0.1, 0.9)  # doctest: +ELLIPSIS
    1.757779...
    >>> klBern(0.9, 0.1)  # And this KL is symmetric  # doctest: +ELLIPSIS
    1.757779...
    >>> klBern(0.4, 0.5)  # doctest: +ELLIPSIS
    0.020135...
    >>> klBern(0.01, 0.99)  # doctest: +ELLIPSIS
    4.503217...

    - Special values:

    >>> klBern(0, 1)  # Should be +inf, but 0 --> eps, 1 --> 1 - eps  # doctest: +ELLIPSIS
    34.539575...
    """
    x = min(max(x, eps), 1 - eps)
    y = min(max(y, eps), 1 - eps)
    return x * log(x / y) + (1 - x) * log((1 - x) / (1 - y))

def klBin(

x, y, n)

Kullback-Leibler divergence for Binomial distributions. https://math.stackexchange.com/questions/320399/kullback-leibner-divergence-of-binomial-distributions

  • It is simply the n times :func:klBern on x and y.

.. math:: \mathrm{KL}(\mathrm{Bin}(x, n), \mathrm{Bin}(y, n)) = n \times \left(x \log(\frac{x}{y}) + (1-x) \log(\frac{1-x}{1-y}) \right).

.. warning:: The two distributions must have the same parameter n, and x, y are p, q in (0, 1).

klBin(0.5, 0.5, 10) 0.0 klBin(0.1, 0.9, 10) # doctest: +ELLIPSIS 17.57779... klBin(0.9, 0.1, 10) # And this KL is symmetric # doctest: +ELLIPSIS 17.57779... klBin(0.4, 0.5, 10) # doctest: +ELLIPSIS 0.20135... klBin(0.01, 0.99, 10) # doctest: +ELLIPSIS 45.03217...

  • Special values:

klBin(0, 1, 10) # Should be +inf, but 0 --> eps, 1 --> 1 - eps # doctest: +ELLIPSIS 345.39575...

def klBin(x, y, n):
    r""" Kullback-Leibler divergence for Binomial distributions. https://math.stackexchange.com/questions/320399/kullback-leibner-divergence-of-binomial-distributions

    - It is simply the n times :func:`klBern` on x and y.

    .. math:: \mathrm{KL}(\mathrm{Bin}(x, n), \mathrm{Bin}(y, n)) = n \times \left(x \log(\frac{x}{y}) + (1-x) \log(\frac{1-x}{1-y}) \right).

    .. warning:: The two distributions must have the same parameter n, and x, y are p, q in (0, 1).

    >>> klBin(0.5, 0.5, 10)
    0.0
    >>> klBin(0.1, 0.9, 10)  # doctest: +ELLIPSIS
    17.57779...
    >>> klBin(0.9, 0.1, 10)  # And this KL is symmetric  # doctest: +ELLIPSIS
    17.57779...
    >>> klBin(0.4, 0.5, 10)  # doctest: +ELLIPSIS
    0.20135...
    >>> klBin(0.01, 0.99, 10)  # doctest: +ELLIPSIS
    45.03217...

    - Special values:

    >>> klBin(0, 1, 10)  # Should be +inf, but 0 --> eps, 1 --> 1 - eps  # doctest: +ELLIPSIS
    345.39575...
    """
    x = min(max(x, eps), 1 - eps)
    y = min(max(y, eps), 1 - eps)
    return n * (x * log(x / y) + (1 - x) * log((1 - x) / (1 - y)))

def klExp(

x, y)

Kullback-Leibler divergence for exponential distributions. https://en.wikipedia.org/wiki/Exponential_distribution#Kullback.E2.80.93Leibler_divergence

.. math::

\mathrm{KL}(\mathrm{Exp}(x), \mathrm{Exp}(y)) = \begin{cases}
\frac{x}{y} - 1 - \log(\frac{x}{y}) & \text{if} x > 0, y > 0\\
+\infty & \text{otherwise}
\end{cases}

klExp(3, 3) 0.0 klExp(3, 6) # doctest: +ELLIPSIS 0.193147... klExp(1, 2) # Only the proportion between x and y is used # doctest: +ELLIPSIS 0.193147... klExp(2, 1) # And this KL is non-symmetric # doctest: +ELLIPSIS 0.306852... klExp(4, 2) # Only the proportion between x and y is used # doctest: +ELLIPSIS 0.306852... klExp(6, 8) # doctest: +ELLIPSIS 0.037682...

  • x, y have to be positive:

klExp(-3, 2) inf klExp(3, -2) inf klExp(-3, -2) inf

def klExp(x, y):
    r""" Kullback-Leibler divergence for exponential distributions. https://en.wikipedia.org/wiki/Exponential_distribution#Kullback.E2.80.93Leibler_divergence

    .. math::

        \mathrm{KL}(\mathrm{Exp}(x), \mathrm{Exp}(y)) = \begin{cases}
        \frac{x}{y} - 1 - \log(\frac{x}{y}) & \text{if} x > 0, y > 0\\
        +\infty & \text{otherwise}
        \end{cases}

    >>> klExp(3, 3)
    0.0
    >>> klExp(3, 6)  # doctest: +ELLIPSIS
    0.193147...
    >>> klExp(1, 2)  # Only the proportion between x and y is used  # doctest: +ELLIPSIS
    0.193147...
    >>> klExp(2, 1)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    0.306852...
    >>> klExp(4, 2)  # Only the proportion between x and y is used  # doctest: +ELLIPSIS
    0.306852...
    >>> klExp(6, 8)  # doctest: +ELLIPSIS
    0.037682...

    - x, y have to be positive:

    >>> klExp(-3, 2)
    inf
    >>> klExp(3, -2)
    inf
    >>> klExp(-3, -2)
    inf
    """
    if x <= 0 or y <= 0:
        return float('+inf')
    else:
        x = max(x, eps)
        y = max(y, eps)
        return x / y - 1 - log(x / y)

def klGamma(

x, y, a=1)

Kullback-Leibler divergence for gamma distributions. https://en.wikipedia.org/wiki/Gamma_distribution#Kullback.E2.80.93Leibler_divergence

  • It is simply the a times :func:klExp on x and y.

.. math::

\mathrm{KL}(\Gamma(x, a), \Gamma(y, a)) = \begin{cases}
a \times \left( \frac{x}{y} - 1 - \log(\frac{x}{y}) \right) & \text{if} x > 0, y > 0\\
+\infty & \text{otherwise}
\end{cases}

.. warning:: The two distributions must have the same parameter a.

klGamma(3, 3) 0.0 klGamma(3, 6) # doctest: +ELLIPSIS 0.193147... klGamma(1, 2) # Only the proportion between x and y is used # doctest: +ELLIPSIS 0.193147... klGamma(2, 1) # And this KL is non-symmetric # doctest: +ELLIPSIS 0.306852... klGamma(4, 2) # Only the proportion between x and y is used # doctest: +ELLIPSIS 0.306852... klGamma(6, 8) # doctest: +ELLIPSIS 0.037682...

  • x, y have to be positive:

klGamma(-3, 2) inf klGamma(3, -2) inf klGamma(-3, -2) inf

def klGamma(x, y, a=1):
    r""" Kullback-Leibler divergence for gamma distributions. https://en.wikipedia.org/wiki/Gamma_distribution#Kullback.E2.80.93Leibler_divergence

    - It is simply the a times :func:`klExp` on x and y.

    .. math::

        \mathrm{KL}(\Gamma(x, a), \Gamma(y, a)) = \begin{cases}
        a \times \left( \frac{x}{y} - 1 - \log(\frac{x}{y}) \right) & \text{if} x > 0, y > 0\\
        +\infty & \text{otherwise}
        \end{cases}

    .. warning:: The two distributions must have the same parameter a.

    >>> klGamma(3, 3)
    0.0
    >>> klGamma(3, 6)  # doctest: +ELLIPSIS
    0.193147...
    >>> klGamma(1, 2)  # Only the proportion between x and y is used  # doctest: +ELLIPSIS
    0.193147...
    >>> klGamma(2, 1)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    0.306852...
    >>> klGamma(4, 2)  # Only the proportion between x and y is used  # doctest: +ELLIPSIS
    0.306852...
    >>> klGamma(6, 8)  # doctest: +ELLIPSIS
    0.037682...

    - x, y have to be positive:

    >>> klGamma(-3, 2)
    inf
    >>> klGamma(3, -2)
    inf
    >>> klGamma(-3, -2)
    inf
    """
    if x <= 0 or y <= 0:
        return float('+inf')
    else:
        x = max(x, eps)
        y = max(y, eps)
        return a * (x / y - 1 - log(x / y))

def klGauss(

x, y, sig2x=0.25, sig2y=None)

Kullback-Leibler divergence for Gaussian distributions of means x and y and variances sig2x and sig2y, :math:\nu_1 = \mathcal{N}(x, \sigma_x^2) and :math:\nu_2 = \mathcal{N}(y, \sigma_x^2):

.. math:: \mathrm{KL}(\nu_1, \nu_2) = \frac{(x - y)^2}{2 \sigma_y^2} + \frac{1}{2}\left( \frac{\sigma_x^2}{\sigma_y^2} - 1 \log\left(\frac{\sigma_x^2}{\sigma_y^2}\right) \right).

See https://en.wikipedia.org/wiki/Normal_distribution#Other_properties

  • By default, sig2y is assumed to be sig2x (same variance).

.. warning:: The C version does not support different variances.

klGauss(3, 3) 0.0 klGauss(3, 6) 18.0 klGauss(1, 2) 2.0 klGauss(2, 1) # And this KL is symmetric 2.0 klGauss(4, 2) 8.0 klGauss(6, 8) 8.0

  • x, y can be negative:

klGauss(-3, 2) 50.0 klGauss(3, -2) 50.0 klGauss(-3, -2) 2.0 klGauss(3, 2) 2.0

  • With other values for sig2x:

klGauss(3, 3, sig2x=10) 0.0 klGauss(3, 6, sig2x=10) 0.45 klGauss(1, 2, sig2x=10) 0.05 klGauss(2, 1, sig2x=10) # And this KL is symmetric 0.05 klGauss(4, 2, sig2x=10) 0.2 klGauss(6, 8, sig2x=10) 0.2

  • With different values for sig2x and sig2y:

klGauss(0, 0, sig2x=0.25, sig2y=0.5) # doctest: +ELLIPSIS -0.0284... klGauss(0, 0, sig2x=0.25, sig2y=1.0) # doctest: +ELLIPSIS 0.2243... klGauss(0, 0, sig2x=0.5, sig2y=0.25) # not symmetric here! # doctest: +ELLIPSIS 1.1534...

klGauss(0, 1, sig2x=0.25, sig2y=0.5) # doctest: +ELLIPSIS 0.9715... klGauss(0, 1, sig2x=0.25, sig2y=1.0) # doctest: +ELLIPSIS 0.7243... klGauss(0, 1, sig2x=0.5, sig2y=0.25) # not symmetric here! # doctest: +ELLIPSIS 3.1534...

klGauss(1, 0, sig2x=0.25, sig2y=0.5) # doctest: +ELLIPSIS 0.9715... klGauss(1, 0, sig2x=0.25, sig2y=1.0) # doctest: +ELLIPSIS 0.7243... klGauss(1, 0, sig2x=0.5, sig2y=0.25) # not symmetric here! # doctest: +ELLIPSIS 3.1534...

.. warning:: Using :class:Policies.klUCB (and variants) with :func:klGauss is equivalent to use :class:Policies.UCB, so prefer the simpler version.

def klGauss(x, y, sig2x=0.25, sig2y=None):
    r""" Kullback-Leibler divergence for Gaussian distributions of means ``x`` and ``y`` and variances ``sig2x`` and ``sig2y``, :math:`\nu_1 = \mathcal{N}(x, \sigma_x^2)` and :math:`\nu_2 = \mathcal{N}(y, \sigma_x^2)`:

    .. math:: \mathrm{KL}(\nu_1, \nu_2) = \frac{(x - y)^2}{2 \sigma_y^2} + \frac{1}{2}\left( \frac{\sigma_x^2}{\sigma_y^2} - 1 \log\left(\frac{\sigma_x^2}{\sigma_y^2}\right) \right).

    See https://en.wikipedia.org/wiki/Normal_distribution#Other_properties

    - By default, sig2y is assumed to be sig2x (same variance).

    .. warning:: The C version does not support different variances.

    >>> klGauss(3, 3)
    0.0
    >>> klGauss(3, 6)
    18.0
    >>> klGauss(1, 2)
    2.0
    >>> klGauss(2, 1)  # And this KL is symmetric
    2.0
    >>> klGauss(4, 2)
    8.0
    >>> klGauss(6, 8)
    8.0

    - x, y can be negative:

    >>> klGauss(-3, 2)
    50.0
    >>> klGauss(3, -2)
    50.0
    >>> klGauss(-3, -2)
    2.0
    >>> klGauss(3, 2)
    2.0

    - With other values for `sig2x`:

    >>> klGauss(3, 3, sig2x=10)
    0.0
    >>> klGauss(3, 6, sig2x=10)
    0.45
    >>> klGauss(1, 2, sig2x=10)
    0.05
    >>> klGauss(2, 1, sig2x=10)  # And this KL is symmetric
    0.05
    >>> klGauss(4, 2, sig2x=10)
    0.2
    >>> klGauss(6, 8, sig2x=10)
    0.2

    - With different values for `sig2x` and `sig2y`:

    >>> klGauss(0, 0, sig2x=0.25, sig2y=0.5)  # doctest: +ELLIPSIS
    -0.0284...
    >>> klGauss(0, 0, sig2x=0.25, sig2y=1.0)  # doctest: +ELLIPSIS
    0.2243...
    >>> klGauss(0, 0, sig2x=0.5, sig2y=0.25)  # not symmetric here!  # doctest: +ELLIPSIS
    1.1534...

    >>> klGauss(0, 1, sig2x=0.25, sig2y=0.5)  # doctest: +ELLIPSIS
    0.9715...
    >>> klGauss(0, 1, sig2x=0.25, sig2y=1.0)  # doctest: +ELLIPSIS
    0.7243...
    >>> klGauss(0, 1, sig2x=0.5, sig2y=0.25)  # not symmetric here!  # doctest: +ELLIPSIS
    3.1534...

    >>> klGauss(1, 0, sig2x=0.25, sig2y=0.5)  # doctest: +ELLIPSIS
    0.9715...
    >>> klGauss(1, 0, sig2x=0.25, sig2y=1.0)  # doctest: +ELLIPSIS
    0.7243...
    >>> klGauss(1, 0, sig2x=0.5, sig2y=0.25)  # not symmetric here!  # doctest: +ELLIPSIS
    3.1534...

    .. warning:: Using :class:`Policies.klUCB` (and variants) with :func:`klGauss` is equivalent to use :class:`Policies.UCB`, so prefer the simpler version.
    """
    if sig2y is None or - eps < (sig2y - sig2x) < eps:
        return (x - y) ** 2 / (2. * sig2x)
    else:
        return (x - y) ** 2 / (2. * sig2y) + 0.5 * ((sig2x/sig2y)**2 - 1 - log(sig2x/sig2y))

def klNegBin(

x, y, r=1)

Kullback-Leibler divergence for negative binomial distributions. https://en.wikipedia.org/wiki/Negative_binomial_distribution

.. math:: \mathrm{KL}(\mathrm{NegBin}(x, r), \mathrm{NegBin}(y, r)) = r \times \log((r + x) / (r + y)) - x \times \log(y \times (r + x) / (x \times (r + y))).

.. warning:: The two distributions must have the same parameter r.

klNegBin(0.5, 0.5) 0.0 klNegBin(0.1, 0.9) # doctest: +ELLIPSIS -0.711611... klNegBin(0.9, 0.1) # And this KL is non-symmetric # doctest: +ELLIPSIS 2.0321564... klNegBin(0.4, 0.5) # doctest: +ELLIPSIS -0.130653... klNegBin(0.01, 0.99) # doctest: +ELLIPSIS -0.717353...

  • Special values:

klBern(0, 1) # Should be +inf, but 0 --> eps, 1 --> 1 - eps # doctest: +ELLIPSIS 34.539575...

  • With other values for r:

klNegBin(0.5, 0.5, r=2) 0.0 klNegBin(0.1, 0.9, r=2) # doctest: +ELLIPSIS -0.832991... klNegBin(0.1, 0.9, r=4) # doctest: +ELLIPSIS -0.914890... klNegBin(0.9, 0.1, r=2) # And this KL is non-symmetric # doctest: +ELLIPSIS 2.3325528... klNegBin(0.4, 0.5, r=2) # doctest: +ELLIPSIS -0.154572... klNegBin(0.01, 0.99, r=2) # doctest: +ELLIPSIS -0.836257...

def klNegBin(x, y, r=1):
    r""" Kullback-Leibler divergence for negative binomial distributions. https://en.wikipedia.org/wiki/Negative_binomial_distribution

    .. math:: \mathrm{KL}(\mathrm{NegBin}(x, r), \mathrm{NegBin}(y, r)) = r \times \log((r + x) / (r + y)) - x \times \log(y \times (r + x) / (x \times (r + y))).

    .. warning:: The two distributions must have the same parameter r.

    >>> klNegBin(0.5, 0.5)
    0.0
    >>> klNegBin(0.1, 0.9)  # doctest: +ELLIPSIS
    -0.711611...
    >>> klNegBin(0.9, 0.1)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    2.0321564...
    >>> klNegBin(0.4, 0.5)  # doctest: +ELLIPSIS
    -0.130653...
    >>> klNegBin(0.01, 0.99)  # doctest: +ELLIPSIS
    -0.717353...

    - Special values:

    >>> klBern(0, 1)  # Should be +inf, but 0 --> eps, 1 --> 1 - eps  # doctest: +ELLIPSIS
    34.539575...

    - With other values for `r`:

    >>> klNegBin(0.5, 0.5, r=2)
    0.0
    >>> klNegBin(0.1, 0.9, r=2)  # doctest: +ELLIPSIS
    -0.832991...
    >>> klNegBin(0.1, 0.9, r=4)  # doctest: +ELLIPSIS
    -0.914890...
    >>> klNegBin(0.9, 0.1, r=2)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    2.3325528...
    >>> klNegBin(0.4, 0.5, r=2)  # doctest: +ELLIPSIS
    -0.154572...
    >>> klNegBin(0.01, 0.99, r=2)  # doctest: +ELLIPSIS
    -0.836257...
    """
    x = max(x, eps)
    y = max(y, eps)
    return r * log((r + x) / (r + y)) - x * log(y * (r + x) / (x * (r + y)))

def klPoisson(

x, y)

Kullback-Leibler divergence for Poison distributions. https://en.wikipedia.org/wiki/Poisson_distribution#Kullback.E2.80.93Leibler_divergence

.. math:: \mathrm{KL}(\mathrm{Poisson}(x), \mathrm{Poisson}(y)) = y - x + x \times \log(\frac{x}{y}).

klPoisson(3, 3) 0.0 klPoisson(2, 1) # doctest: +ELLIPSIS 0.386294... klPoisson(1, 2) # And this KL is non-symmetric # doctest: +ELLIPSIS 0.306852... klPoisson(3, 6) # doctest: +ELLIPSIS 0.920558... klPoisson(6, 8) # doctest: +ELLIPSIS 0.273907...

  • Special values:

klPoisson(1, 0) # Should be +inf, but 0 --> eps, 1 --> 1 - eps # doctest: +ELLIPSIS 33.538776... klPoisson(0, 0) 0.0

def klPoisson(x, y):
    r""" Kullback-Leibler divergence for Poison distributions. https://en.wikipedia.org/wiki/Poisson_distribution#Kullback.E2.80.93Leibler_divergence

    .. math:: \mathrm{KL}(\mathrm{Poisson}(x), \mathrm{Poisson}(y)) = y - x + x \times \log(\frac{x}{y}).

    >>> klPoisson(3, 3)
    0.0
    >>> klPoisson(2, 1)  # doctest: +ELLIPSIS
    0.386294...
    >>> klPoisson(1, 2)  # And this KL is non-symmetric  # doctest: +ELLIPSIS
    0.306852...
    >>> klPoisson(3, 6)  # doctest: +ELLIPSIS
    0.920558...
    >>> klPoisson(6, 8)  # doctest: +ELLIPSIS
    0.273907...

    - Special values:

    >>> klPoisson(1, 0)  # Should be +inf, but 0 --> eps, 1 --> 1 - eps  # doctest: +ELLIPSIS
    33.538776...
    >>> klPoisson(0, 0)
    0.0
    """
    x = max(x, eps)
    y = max(y, eps)
    return y - x + x * log(x / y)

def klucb(

x, d, kl, upperbound, lowerbound=-inf, precision=1e-06, max_iterations=50)

The generic KL-UCB index computation.

  • x: value of the cum reward,
  • d: upper bound on the divergence,
  • kl: the KL divergence to be used (:func:klBern, :func:klGauss, etc),
  • upperbound, lowerbound=float('-inf'): the known bound of the values x,
  • precision=1e-6: the threshold from where to stop the research,
  • max_iterations: max number of iterations of the loop (safer to bound it to reduce time complexity).

.. note:: It uses a bisection search, and one call to kl for each step of the bisection search.

For example, for :func:klucbBern, the two steps are to first compute an upperbound (as precise as possible) and the compute the kl-UCB index:

x, d = 0.9, 0.2 # mean x, exploration term d upperbound = min(1., klucbGauss(x, d, sig2x=0.25)) # variance 1/4 for [0,1] bounded distributions upperbound # doctest: +ELLIPSIS 1.0 klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-3, max_iterations=10) # doctest: +ELLIPSIS 0.9941... klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-6, max_iterations=10) # doctest: +ELLIPSIS 0.994482... klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-3, max_iterations=50) # doctest: +ELLIPSIS 0.9941... klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-6, max_iterations=100) # more and more precise! # doctest: +ELLIPSIS 0.994489...

.. note:: See below for more examples for different KL divergence functions.

def klucb(x, d, kl, upperbound, lowerbound=float('-inf'), precision=1e-6, max_iterations=50):
    """ The generic KL-UCB index computation.

    - x: value of the cum reward,
    - d: upper bound on the divergence,
    - kl: the KL divergence to be used (:func:`klBern`, :func:`klGauss`, etc),
    - upperbound, lowerbound=float('-inf'): the known bound of the values x,
    - precision=1e-6: the threshold from where to stop the research,
    - max_iterations: max number of iterations of the loop (safer to bound it to reduce time complexity).

    .. note:: It uses a **bisection search**, and one call to ``kl`` for each step of the bisection search.

    For example, for :func:`klucbBern`, the two steps are to first compute an upperbound (as precise as possible) and the compute the kl-UCB index:

    >>> x, d = 0.9, 0.2   # mean x, exploration term d
    >>> upperbound = min(1., klucbGauss(x, d, sig2x=0.25))  # variance 1/4 for [0,1] bounded distributions
    >>> upperbound  # doctest: +ELLIPSIS
    1.0
    >>> klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-3, max_iterations=10)  # doctest: +ELLIPSIS
    0.9941...
    >>> klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-6, max_iterations=10)  # doctest: +ELLIPSIS
    0.994482...
    >>> klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-3, max_iterations=50)  # doctest: +ELLIPSIS
    0.9941...
    >>> klucb(x, d, klBern, upperbound, lowerbound=0, precision=1e-6, max_iterations=100)  # more and more precise!  # doctest: +ELLIPSIS
    0.994489...

    .. note:: See below for more examples for different KL divergence functions.
    """
    value = max(x, lowerbound)
    u = upperbound
    _count_iteration = 0
    while _count_iteration < max_iterations and u - value > precision:
        _count_iteration += 1
        m = (value + u) / 2.
        if kl(x, m) > d:
            u = m
        else:
            value = m
    return (value + u) / 2.

def klucbBern(

x, d, precision=1e-06)

KL-UCB index computation for Bernoulli distributions, using :func:klucb.

  • Influence of x:

klucbBern(0.1, 0.2) # doctest: +ELLIPSIS 0.378391... klucbBern(0.5, 0.2) # doctest: +ELLIPSIS 0.787088... klucbBern(0.9, 0.2) # doctest: +ELLIPSIS 0.994489...

  • Influence of d:

klucbBern(0.1, 0.4) # doctest: +ELLIPSIS 0.519475... klucbBern(0.1, 0.9) # doctest: +ELLIPSIS 0.734714...

klucbBern(0.5, 0.4) # doctest: +ELLIPSIS 0.871035... klucbBern(0.5, 0.9) # doctest: +ELLIPSIS 0.956809...

klucbBern(0.9, 0.4) # doctest: +ELLIPSIS 0.999285... klucbBern(0.9, 0.9) # doctest: +ELLIPSIS 0.999995...

def klucbBern(x, d, precision=1e-6):
    """ KL-UCB index computation for Bernoulli distributions, using :func:`klucb`.

    - Influence of x:

    >>> klucbBern(0.1, 0.2)  # doctest: +ELLIPSIS
    0.378391...
    >>> klucbBern(0.5, 0.2)  # doctest: +ELLIPSIS
    0.787088...
    >>> klucbBern(0.9, 0.2)  # doctest: +ELLIPSIS
    0.994489...

    - Influence of d:

    >>> klucbBern(0.1, 0.4)  # doctest: +ELLIPSIS
    0.519475...
    >>> klucbBern(0.1, 0.9)  # doctest: +ELLIPSIS
    0.734714...

    >>> klucbBern(0.5, 0.4)  # doctest: +ELLIPSIS
    0.871035...
    >>> klucbBern(0.5, 0.9)  # doctest: +ELLIPSIS
    0.956809...

    >>> klucbBern(0.9, 0.4)  # doctest: +ELLIPSIS
    0.999285...
    >>> klucbBern(0.9, 0.9)  # doctest: +ELLIPSIS
    0.999995...
    """
    upperbound = min(1., klucbGauss(x, d, sig2x=0.25))  # variance 1/4 for [0,1] bounded distributions
    # upperbound = min(1., klucbPoisson(x, d))  # also safe, and better ?
    return klucb(x, d, klBern, upperbound, precision)

def klucbExp(

x, d, precision=1e-06)

KL-UCB index computation for exponential distributions, using :func:klucb.

  • Influence of x:

klucbExp(0.1, 0.2) # doctest: +ELLIPSIS 0.202741... klucbExp(0.5, 0.2) # doctest: +ELLIPSIS 1.013706... klucbExp(0.9, 0.2) # doctest: +ELLIPSIS 1.824671...

  • Influence of d:

klucbExp(0.1, 0.4) # doctest: +ELLIPSIS 0.285792... klucbExp(0.1, 0.9) # doctest: +ELLIPSIS 0.559088...

klucbExp(0.5, 0.4) # doctest: +ELLIPSIS 1.428962... klucbExp(0.5, 0.9) # doctest: +ELLIPSIS 2.795442...

klucbExp(0.9, 0.4) # doctest: +ELLIPSIS 2.572132... klucbExp(0.9, 0.9) # doctest: +ELLIPSIS 5.031795...

def klucbExp(x, d, precision=1e-6):
    """ KL-UCB index computation for exponential distributions, using :func:`klucb`.

    - Influence of x:

    >>> klucbExp(0.1, 0.2)  # doctest: +ELLIPSIS
    0.202741...
    >>> klucbExp(0.5, 0.2)  # doctest: +ELLIPSIS
    1.013706...
    >>> klucbExp(0.9, 0.2)  # doctest: +ELLIPSIS
    1.824671...

    - Influence of d:

    >>> klucbExp(0.1, 0.4)  # doctest: +ELLIPSIS
    0.285792...
    >>> klucbExp(0.1, 0.9)  # doctest: +ELLIPSIS
    0.559088...

    >>> klucbExp(0.5, 0.4)  # doctest: +ELLIPSIS
    1.428962...
    >>> klucbExp(0.5, 0.9)  # doctest: +ELLIPSIS
    2.795442...

    >>> klucbExp(0.9, 0.4)  # doctest: +ELLIPSIS
    2.572132...
    >>> klucbExp(0.9, 0.9)  # doctest: +ELLIPSIS
    5.031795...
    """
    if d < 0.77:  # XXX where does this value come from?
        upperbound = x / (1 + 2. / 3 * d - sqrt(4. / 9 * d * d + 2 * d))
        # safe, klexp(x,y) >= e^2/(2*(1-2e/3)) if x=y(1-e)
    else:
        upperbound = x * exp(d + 1)
    if d > 1.61:  # XXX where does this value come from?
        lowerbound = x * exp(d)
    else:
        lowerbound = x / (1 + d - sqrt(d * d + 2 * d))
    return klucb(x, d, klGamma, upperbound, lowerbound, precision)

def klucbGamma(

x, d, precision=1e-06)

KL-UCB index computation for Gamma distributions, using :func:klucb.

  • Influence of x:

klucbGamma(0.1, 0.2) # doctest: +ELLIPSIS 0.202... klucbGamma(0.5, 0.2) # doctest: +ELLIPSIS 1.013... klucbGamma(0.9, 0.2) # doctest: +ELLIPSIS 1.824...

  • Influence of d:

klucbGamma(0.1, 0.4) # doctest: +ELLIPSIS 0.285... klucbGamma(0.1, 0.9) # doctest: +ELLIPSIS 0.559...

klucbGamma(0.5, 0.4) # doctest: +ELLIPSIS 1.428... klucbGamma(0.5, 0.9) # doctest: +ELLIPSIS 2.795...

klucbGamma(0.9, 0.4) # doctest: +ELLIPSIS 2.572... klucbGamma(0.9, 0.9) # doctest: +ELLIPSIS 5.031...

def klucbGamma(x, d, precision=1e-6):
    """ KL-UCB index computation for Gamma distributions, using :func:`klucb`.

    - Influence of x:

    >>> klucbGamma(0.1, 0.2)  # doctest: +ELLIPSIS
    0.202...
    >>> klucbGamma(0.5, 0.2)  # doctest: +ELLIPSIS
    1.013...
    >>> klucbGamma(0.9, 0.2)  # doctest: +ELLIPSIS
    1.824...

    - Influence of d:

    >>> klucbGamma(0.1, 0.4)  # doctest: +ELLIPSIS
    0.285...
    >>> klucbGamma(0.1, 0.9)  # doctest: +ELLIPSIS
    0.559...

    >>> klucbGamma(0.5, 0.4)  # doctest: +ELLIPSIS
    1.428...
    >>> klucbGamma(0.5, 0.9)  # doctest: +ELLIPSIS
    2.795...

    >>> klucbGamma(0.9, 0.4)  # doctest: +ELLIPSIS
    2.572...
    >>> klucbGamma(0.9, 0.9)  # doctest: +ELLIPSIS
    5.031...
    """
    if d < 0.77:  # XXX where does this value come from?
        upperbound = x / (1 + 2. / 3 * d - sqrt(4. / 9 * d * d + 2 * d))
        # safe, klexp(x,y) >= e^2/(2*(1-2e/3)) if x=y(1-e)
    else:
        upperbound = x * exp(d + 1)
    if d > 1.61:  # XXX where does this value come from?
        lowerbound = x * exp(d)
    else:
        lowerbound = x / (1 + d - sqrt(d * d + 2 * d))
    # FIXME specify the value for a !
    return klucb(x, d, klGamma, max(upperbound, 1e2), min(-1e2, lowerbound), precision)

def klucbGauss(

x, d, sig2x=0.25, precision=0.0)

KL-UCB index computation for Gaussian distributions.

  • Note that it does not require any search.

.. warning:: it works only if the good variance constant is given.

  • Influence of x:

klucbGauss(0.1, 0.2) # doctest: +ELLIPSIS 0.416227... klucbGauss(0.5, 0.2) # doctest: +ELLIPSIS 0.816227... klucbGauss(0.9, 0.2) # doctest: +ELLIPSIS 1.216227...

  • Influence of d:

klucbGauss(0.1, 0.4) # doctest: +ELLIPSIS 0.547213... klucbGauss(0.1, 0.9) # doctest: +ELLIPSIS 0.770820...

klucbGauss(0.5, 0.4) # doctest: +ELLIPSIS 0.947213... klucbGauss(0.5, 0.9) # doctest: +ELLIPSIS 1.170820...

klucbGauss(0.9, 0.4) # doctest: +ELLIPSIS 1.347213... klucbGauss(0.9, 0.9) # doctest: +ELLIPSIS 1.570820...

.. warning:: Using :class:Policies.klUCB (and variants) with :func:klucbGauss is equivalent to use :class:Policies.UCB, so prefer the simpler version.

def klucbGauss(x, d, sig2x=0.25, precision=0.):
    """ KL-UCB index computation for Gaussian distributions.

    - Note that it does not require any search.

    .. warning:: it works only if the good variance constant is given.

    - Influence of x:

    >>> klucbGauss(0.1, 0.2)  # doctest: +ELLIPSIS
    0.416227...
    >>> klucbGauss(0.5, 0.2)  # doctest: +ELLIPSIS
    0.816227...
    >>> klucbGauss(0.9, 0.2)  # doctest: +ELLIPSIS
    1.216227...

    - Influence of d:

    >>> klucbGauss(0.1, 0.4)  # doctest: +ELLIPSIS
    0.547213...
    >>> klucbGauss(0.1, 0.9)  # doctest: +ELLIPSIS
    0.770820...

    >>> klucbGauss(0.5, 0.4)  # doctest: +ELLIPSIS
    0.947213...
    >>> klucbGauss(0.5, 0.9)  # doctest: +ELLIPSIS
    1.170820...

    >>> klucbGauss(0.9, 0.4)  # doctest: +ELLIPSIS
    1.347213...
    >>> klucbGauss(0.9, 0.9)  # doctest: +ELLIPSIS
    1.570820...

    .. warning:: Using :class:`Policies.klUCB` (and variants) with :func:`klucbGauss` is equivalent to use :class:`Policies.UCB`, so prefer the simpler version.
    """
    return x + sqrt(2 * sig2x * d)

def klucbPoisson(

x, d, precision=1e-06)

KL-UCB index computation for Poisson distributions, using :func:klucb.

  • Influence of x:

klucbPoisson(0.1, 0.2) # doctest: +ELLIPSIS 0.450523... klucbPoisson(0.5, 0.2) # doctest: +ELLIPSIS 1.089376... klucbPoisson(0.9, 0.2) # doctest: +ELLIPSIS 1.640112...

  • Influence of d:

klucbPoisson(0.1, 0.4) # doctest: +ELLIPSIS 0.693684... klucbPoisson(0.1, 0.9) # doctest: +ELLIPSIS 1.252796...

klucbPoisson(0.5, 0.4) # doctest: +ELLIPSIS 1.422933... klucbPoisson(0.5, 0.9) # doctest: +ELLIPSIS 2.122985...

klucbPoisson(0.9, 0.4) # doctest: +ELLIPSIS 2.033691... klucbPoisson(0.9, 0.9) # doctest: +ELLIPSIS 2.831573...

def klucbPoisson(x, d, precision=1e-6):
    """ KL-UCB index computation for Poisson distributions, using :func:`klucb`.

    - Influence of x:

    >>> klucbPoisson(0.1, 0.2)  # doctest: +ELLIPSIS
    0.450523...
    >>> klucbPoisson(0.5, 0.2)  # doctest: +ELLIPSIS
    1.089376...
    >>> klucbPoisson(0.9, 0.2)  # doctest: +ELLIPSIS
    1.640112...

    - Influence of d:

    >>> klucbPoisson(0.1, 0.4)  # doctest: +ELLIPSIS
    0.693684...
    >>> klucbPoisson(0.1, 0.9)  # doctest: +ELLIPSIS
    1.252796...

    >>> klucbPoisson(0.5, 0.4)  # doctest: +ELLIPSIS
    1.422933...
    >>> klucbPoisson(0.5, 0.9)  # doctest: +ELLIPSIS
    2.122985...

    >>> klucbPoisson(0.9, 0.4)  # doctest: +ELLIPSIS
    2.033691...
    >>> klucbPoisson(0.9, 0.9)  # doctest: +ELLIPSIS
    2.831573...
    """
    upperbound = x + d + sqrt(d * d + 2 * x * d)  # looks safe, to check: left (Gaussian) tail of Poisson dev
    return klucb(x, d, klPoisson, upperbound, precision)