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1. INTRODUCTION & GOAL

Goal: fit more objects in a “Internet of Things” net-
works, keep a good Quality of Service.

• Hypothesis: objects choose channel k ∈ {1, . . . ,K},
to use for each communication.

• Idea: use on-line Machine Learning algorithms ?

• Not so easy: each device takes its own decisions,
without central control or communication, has
light CPU/memory etc. . .

• =⇒ Solution: Decentralized MAB algorithms !

2. MODEL: TIME/FREQUENCY PROTOCOL DEVICES IN THE NETWORK

Figure 1: Time-frequency slotted protocol.
Frame = fix-duration uplink slot ր (end-devices transmit
their packets) + Ack delay + downlink slot ւ (base station
replies with Ack if packet well received).

Model: One base station
K = 10 RF channels (of same bandwidth).
S + D = 2000 end-devices in the network, with
very low duty-cycle (one message every 1000 frame).

They are separated into two groups:

• S static devices : poor RF abilities, and use
only one channel to communicate with the base sta-
tion. Their choice is fixed in time (stationary) and
independent (i.i.d.). interfering traffic generated
by static devices. (Unknown) affectation to the K
channels: S = (S1, . . . , SK).

• D dynamic devices : richer RF abilities, can use
all the available channels, by quickly reconfiguring
their RF transceiver on the fly (dynamically).

3. SOME BASELINE ALGORITHMS

Performance = successful transmission rate.
Three algorithms used for baseline comparison.

• Naive algorithm: all the D dynamic devices
choose their channel ki(t) ∼ U({1, . . . ,K}) purely
uniformly at random.

• Optimal algorithms: exact algorithm (or a
greedy approximation), when a centralized agent
can affect the D dynamic devices to channels.

△!
Inapplicable in practice as we need
a decentralized approach, but it
gives a baseline for comparison.

4. MULTI-ARMED BANDITS ALGORITHMS

Every time t ∈ N
∗ a dynamic device needs to send :

1. it chooses a channel A(t) ∈ {1, . . . ,K}

2. it sends an uplink packet ր on that channel
2. then it observes a binary reward rA(t) ∈ {0, 1}

(1 if Ack ւ is well received, 0 if collision)

4.1. UPPER CONFIDENCE BOUND ALGO.

Simple frequentist approach :

• Selections of channel k, up-to time t

Nk(t) :=
∑t

τ=1
✶(A(τ) = k)

• Accumulated rewards
Xk(t) :=

∑t

τ=1
rk(τ)× ✶(A(τ) = k)

• UCB1 uses a confidence term (parameter α > 0)
Bk(t) :=

√
α log(t)/Nk(t)

• To compute its index (upper confidence bound)
Uk(t) := Xk(t)/Nk(t) +Bk(t) = µ̂k(t) +Bk(t)

• Use Uk(t) to decide the channel for next step:
A(t+ 1) ∈ argmax1≤k≤Nc

Uk(t)

=⇒ UCB1 is a deterministic index policy.

4.2. THOMPSON SAMPLING ALGORITHM

Old algorithm (1935), Bayesian approach :

• Start with a flat Beta prior, Beta(1, 1), on the (un-
known) parameter µk ∈ [0, 1]

• And at time t, the posterior counts the successes
and failures of channel k:

Πk(t) = Beta
(
1 +Xk(t), 1 +Nk(t)−Xk(t)

)

• Then sample a random index for each channel,
from the posteriors:

Ik(t) ∼ Πk(t)

• And choose:
A(t+ 1) ∈ argmax1≤k≤Nc

Ik(t)

=⇒ TS is a randomized index policy.

5. QUICK CONVERGENCE OF MAB ALGORITHMS
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Figure 2: Performance of 2 MAB algorithms, compared to baseline algorithms (naive or optimal), when the proportion of
dynamic end-devices in the network increases, for 10%, 30%, 50% and to 100% (limit scenario).

=⇒ Almost optimal performances! =⇒ Very quick convergence!

6. NEAR OPTIMAL PERFORMANCES

Proportion of dynamic devices (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

G
a

in
 c

o
m

p
a

re
d

 t
o

 r
a

n
d

o
m

 c
h

a
n

n
e

l 
s
e

le
c
ti
o

n

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Optimal strategy
UCB

1
, α=0.5

Thomson-sampling

Figure 3: Learning with UCB1 and TS, with more and
more dynamic devices. =⇒ For any configuration, TS
converges quickly to near optimal performances!

7. CONCLUSIONS

• Our approach is simple to set up: every dynamic
object runs a simple on-line Multi-Armed Bandit
algorithm to learn the quality of each channel, and aim
at the most available channel

• Economic: low runtime complexity, low memory
requirements

• In a fully decentralized manner, dynamic devices
learn to fit in the channels almost optimally !

• Convergence is very quick to attain: about 50 com-
munications for each device is enough !

• Surprising result: stochastic MAB algorithms also
work very well in non-stochastic environments !

=⇒ With lots of dynamic objects in a IoT network,
using MAB learning helps to improve the success-
ful transmission rate, and increase quality of service.
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