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Abstract—We implement an IoT network the following
way: one gateway, one or several intelligent (i.e., learning)
objects, embedding the proposed solution, and a traffic
generator that emulates radio interferences from many
other objects. Intelligent objects communicate with the
gateway with a wireless ALOHA-based protocol, which
does not require any specific overhead for the learning.
We model the network access as a discrete sequential
decision making problem, and using the framework and
algorithms from Multi-Armed Bandit (MAB) learning,
we show that intelligent objects can improve their access
to the network by using low complexity and decentralized
algorithms, such as UCB1 and Thompson Sampling.
This solution could be added in a straightforward and
costless manner in LoRaWAN networks, just by adding
this feature in some or all the devices, without any
modification on the network side.

I. INTRODUCTION

The monitoring of large scale systems, such as smart

grids and smart cities, requires the development of

networks dedicated to Internet-of-Things (IoT) appli-

cations. For instance, Low Power Wide Area Networks

(LPWAN) [1], as LoRaWAN or SigFox, are nowadays

deployed in unlicensed bands to handle a large number

of objects transmitting a few packets per day or week.

In order to reduce the energy consumption of end-

devices, these networks rely on pure ALOHA-based

Medium Access (MAC) protocols.

One of the challenges in the design of MAC solu-

tions for the IoT is to design solutions which improve

the performance of the network and reduce the Packet

Loss Ratio (PLR), without reducing the end-devices

battery life. In particular, many IoT standards operate

in unlicensed bands, that is why we have to find

solutions that do not increase the PLR due to the

interference caused by other standards and networks

which share the same band, without coordination.

As this interfering traffic is generated by different

standards and networks, it cannot be controlled, and

it is not evenly distributed in the different channels.

Multi-Armed Bandit (MAB) algorithms [2] have

been recently proposed as a solution to improve the

performance of IoT networks and in particular in

LPWAN [3], [4]. In this paper, we describe the way we

implemented a demo where we evaluate MAB algo-

rithms [2], used in combination with a pure ALOHA-

based protocol (such as the ones employed in LP-

WAN). This demonstration is the first implementation

which aims at assessing the potential gain of MAB

learning algorithms in IoT scenarios. Following our

recent work [5], we propose to model this problem

as Non-Stationary1 MAB. We suggest to use low-cost

algorithms, focusing on two well-known algorithms:

a frequentist one (UCB1) and a Bayesian one (TS).

We consider the Upper-Confidence Bound (UCB1)

[6], and the Thompson Sampling (TS) algorithms

[7]. Both algorithms have already been applied with

success in the context of wireless decision making,

both empirically for Opportunistic Spectrum Access

[8], and more recently for multi-users Cognitive Radio

problems [9] with a more theoretical approach.

We use a TestBed designed in 2017 by our team

SCEE [10], containing different USRP boards [11],

controlled by a single laptop using GNU Radio [12],

and where the intelligence of each object corresponds

to a learning algorithm, implemented as a GNU Radio

block [13] and written in Python or C++.

In our demo, we consider a simple wireless network,

consisting of one gateway (radio access point), and a

certain interfering background traffic, assumed to be

stationary (i.i.d.), which is generated by end-devices

communicating in other networks. Some dynamic in-

telligent objects (end-user or autonomous objects) try

to communicate with the gateway, with a low-overhead

protocol. This communication can be done in different

channels which are also shared by devices using other

networks. Once the gateway receives a packet trans-

mitted by a dynamic device in one channel, it transmits

back to it an acknowledgement in the same channel,

1 Note that non-stationarity only comes from the presence of
more than one dynamic object, as the background traffic is assumed
independent and identically distributed i.i.d..



after a fixed-time delay, as it is done in the LoRaWAN

standard. This ACK allows the device to learn about

the channel quality and thus, to use learning algorithms

for the purpose of best channel selection.

In this demo, we can generate scenarios with differ-

ent parameters (number of channels, interfering traffic,

etc) in order to evaluate the performance of learning

in various settings. Moreover, we compare the perfor-

mance of learning with that of the random uniform

access to channels, which is the current state-of-the-art

of commercial LPWAN solutions. This allows to check

that in case of uniform traffic, when there is nothing

to learn, the intelligent objects at least do not reduce

their successful communication rate in comparison

to the naive objects. This also shows that in case

of non-uniform stationary traffic, the MAB learning

algorithms indeed help to increase the global efficiency

of the network by improving the success rate of the

intelligent objects.

The rest of this paper is organized as follows. The

system model is introduced in Section 2. In Section 3,

we describe more formally both the UCB1 and the TS

algorithms. Our implementation is presented in Section

4, and results are given in Section 5.

II. SYSTEM MODEL

We consider the system model presented in Figure 1,

where a set of object sends uplink packets to the

network gateway, in the 433.5 MHz ISM band. The

communication between IoT devices and this gateway

is done through a simple pure ALOHA-based protocol

where devices transmit uplink packets of fixed duration

whenever they want. The devices can transmit their

packets in K ≥ 1 channels (e.g., K = 4). In the case

where the gateway receives an uplink in one channel,

it transmits an acknowledgement to the end-device in

the same channel, after a fixed delay (of 1 s).

These communications operate in unlicensed ISM

bands and, consequently, suffer from interference gen-

erated by uncoordinated neighboring networks. This

interfering traffic is uncontrolled, and can be unevenly

distributed over the K different channels.

We consider the network from the point of view

of one end-user. Every times the end-user has to

communicate with the gateway, it has to choose one

channel (at each transmission t ≥ 1, t ∈ N), denoted

as C(t) = k ∈ {1, . . . ,K}. Then, the end-users starts

waiting in this channel C(t) for an acknowledgement

sent by the gateway. Before sending another message

(i.e., at time t+ 1), the end-user knows if it received

or not this ACK message. For this reason, select-

ing channel (or arm) k at time t yields a (random)

feedback, called a reward, rk(t) ∈ {0, 1}, being 0

Fig. 1: In our system model, some dynamic devices

transmit packets to a gateway and suffer from the

interference generated by neighboring networks.

if no ACK was received before the next message,

or 1 if ACK was successfully received. The goal of

the end-user is to minimize its packet loss ratio, or

equivalently, it is to maximize its cumulative reward,

r1...T :=
∑T

t=1 rC(t)(t), as it is usually done in MAB

problems [7], [14], [15].

This problem is a special case of the so-called

“stochastic” MAB, where the sequence of rewards

drawn from a given arm k is assumed to be i.i.d.,

under some distribution νk, that has a mean µk. Several

types of reward distributions have been considered in

the literature, for example distributions that belong to

a one-dimensional exponential family (e.g., Gaussian,

Exponential, Poisson or Bernoulli distributions).

Rewards are binary in our model, and so we con-

sider only Bernoulli distributions, in which rk(t) ∼
Bern(µk), that is, rk(t) ∈ {0, 1} and P(rk(t) =
1) = µk ∈ [0, 1]. Contrary to many previous work

done in the CR field (e.g., Opportunistic Spectrum

Access), the reward rk(t) does not come from a

sensing phase before sending the t-th message, as it

would do for any “listen-before-talk” model. Rewards

come from receiving an acknowledgement from the

gateway, between the t-th and t+ 1-th messages.

The problem parameters µ1, . . . , µK are of course

unknown to the end-users, so to maximize its cumu-

lated reward, it must learn the distributions of the

channels, in order to be able to progressively focus

on the best arm (i.e., the arm with largest mean). This

requires to tackle the so-called exploration-exploitation

dilemma: a player has to try all arms a sufficient

number of times to get a robust estimate of their

qualities, while not selecting the worst arms too many

times.
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III. MAB ALGORITHMS

Before discussing the relevance of a MAB model

for our IoT application, we present two bandit algo-

rithms, UCB1 and Thompson Sampling, which are

both known to be efficient for stationary i.i.d. rewards

and are shown to be useful in our setting (in Sec. V).

A. The UCB1 Algorithm

A naive approach could be to use an empirical mean

estimator of the rewards for each channel, and select

the channel with highest estimated mean at each time;

but this greedy approach is known to fail dramatically

[15]. Indeed, with this policy, the selection of arms

is highly dependent on the first draws: if the first

transmission in one channel fails and the first one on

other channels succeed, the end-user will never use

the first channel again, even it is the best one (i.e., the

most available, in average).

Rather than relying on the empirical mean reward,

Upper Confidence Bounds algorithms instead use a

confidence interval on the unknown mean µk of

each arm, which can be viewed as adding a “bonus”

exploration to the empirical mean. They follow the

“optimism-in-face-of-uncertainty” principle: at each

step, they play according to the best model, as the

statistically best possible arm (i.e., the highest upper

confidence bound) is selected.

More formally, for one end-user, let Nk(t) =∑t

τ=1 1(C(τ) = k) be the number of times channel

k was selected up-to time t ≥ 1. The empirical

mean estimator of channel k is defined as the mean

reward obtained by selecting it up to time t, µ̂k(t) =
1/Nk(t)

∑t

τ=1 rk(τ)1(C(τ) = k). For UCB1, the

confidence term is Bk(t) =
√
α log(t)/Nk(t), giving

the upper confidence bound Uk(t) = µ̂k(t) + Bk(t),
which is used by the end-user to decide the channel

for communicating at time step t + 1: C(t + 1) =
argmax1≤k≤K Uk(t). UCB1 is called an index policy.

The UCB1 algorithm uses a parameter α > 0,

originally α was set to 2 [6], but empirically α = 1/2
is known to work better (uniformly across problems),

and α > 1/2 is advised by the theory [2]. In our

model, every dynamic end-user implements its own

UCB1 algorithm, independently. For one end-user, the

time t is the total number of sent messages from

the beginning, as rewards are only obtained after a

transmission.

B. Thompson Sampling

Thompson Sampling [7] was introduced early on,

in 1933 as the very first bandit algorithm, in the

context of clinical trials (in which each arm models the

efficacy of one treatment across patients). Given a prior

distribution on the mean of each arm, the algorithm

selects the next arm to draw based on samples from the

conjugated posterior distribution, which for Bernoulli

rewards is a Beta distribution.

A Beta prior Beta(ak(0) = 1, bk(0) = 1) (initially

uniform) is assumed on µk ∈ [0, 1], and at time t
the posterior is Beta(ak(t), bk(t)). After every channel

selection, the posterior is updated to have ak(t) and

bk(t) counting the number of successful and failed

transmissions made on channel k. So if the ACK

message is received, ak(t + 1) = ak(t) + 1, and

bk(t + 1) = bk(t), otherwise ak(t + 1) = ak(t), and

bk(t + 1) = bk(t) + 1. Then, the decision is done by

sampling an index for each arm, at each time step t,
from the arm posteriors: Xk(t) ∼ Beta(ak(t), bk(t)),
and the chosen channel is simply the channel C(t+1)
with highest index Xk(t). For this reason, Thompson

Sampling is called a randomized index policy.

The TS algorithm, although being simple and easy

to implement, is known to perform well for stochastic

problems, for which it was proven to be asymptotically

optimal [16], [17]. It is known to be empirically effi-

cient, and for these reasons it has been used success-

fully in various applications, including on problems

from Cognitive Radio [18], [19], and also in previous

work on decentralized IoT-like networks [20].

IV. GNU RADIO IMPLEMENTATION

In this section, we present our implementation of

MAB algorithms in our model of IoT networks. We

first describe the simplified physical layer of this demo,

then we present our GNU Radio implementation.

A. Physical Layer and Protocol

In this paper, we implement a PHY/MAC layers

solution in order to improve the performance of IoT

communications in unlicensed bands. We could have

used any physical layer and any ALOHA-based proto-

col. We choose to implement our own physical layer

and protocol, for both clarity and conciseness.

Regarding the physical layer, we consider a QPSK

constellation. Moreover, we use simplified packets

composed of two parts. The first part is the preamble

which is used for the purpose of synchronization

(phase correction). Then, we have the index of the user,

which is a sequence of QPSK symbols. For example,

this index can be a simple QPSK symbol (±1 ± 1j).

Once the gateway receives an uplink packet, it detects

this index and transmits an acknowledgement which

has the same frame structure, but where the index is

the conjugate of the index of the uplink packet (e.g.,

1 + j 7→ 1 − j). Thanks to this index, we can have

several devices communicating with the same gateway.
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Fig. 2: Schematic of our implementation that presents

the role of each USRP card.

In turn, the end-device that receives the acknowl-

edgement demodulates it, and checks if the index is

the conjugate of its own index. In this case, the ACK

was for him, and it knows that its packet has been

received and decoded correctly by the gateway.

B. Equipment

We use USRP N210 boards [11], from Ettus Re-

search (National Instrument). As illustrated in Fig-

ure 2, our implementation is composed of at least

3 USRP. The gateway, a USRP which emulates the

interfering traffic, and at least one dynamic device.

The boards have their own power supply, and are all

connected to a local Ethernet switch, itself connected

to a single laptop, running GNU/Linux and Ubuntu. To

ease the synchronization in both time and frequency

between the boards representing the dynamic objects

and the gateway, we use an Octoclock [21], also by

Ettus Research, and coaxial cables connecting every

card to the Octoclock for time (PPS) and frequency

synchronization, but this is not mandatory.

C. Implementation

We used GNU Radio Companion (GRC, version

3.7, 2017), and for the demonstration the laptop runs

one GRC design to configure and control each USRP

card. As such, a single laptop can run in parallel the

control program of any number of boards2.

2 Even if in practice, maximum efficiency is kept as long as there
is not more than one GRC design by CPU core.

GNU Radio applications are a flow-graph: a series

of signal processing blocks connected together to de-

scribe a data flow. For maximum efficiency, we wrote

all of our blocks in C++. GNU Radio Companion is a

graphical UI used to develop GNU Radio applications:

when a flow-graph is compiled in GRC, a Python code

is produced, which can be executed to connect to the

USRP, create the desired GUI windows and widgets,

and create and connect the blocks in the flow-graph.

D. User Interface

We have designed a user interface in order to

visualize the results obtained with our experimental

demonstration. This user interface is shown in Fig-

ure 3. We can see that it is made of three parts, one

for each USRP, as highlighted in red:

(1) The first part is the interface of the IoT traffic

generator, where we see the traffic generated by this

USRP, presented in a waterfall view in the time vs

frequency domain.

(2) The second part is the interface of the intelligent

device which is made of four parts. At the top left, we

observe the constellation of the transmitted packet (a).

At the bottom left, we have a time/frequency view of

the lasts packets transmitted by the object (b). We can

see, in this view that the object transmitted its last

9 packets in the two best channels (channel #3 and

#4). Then, at the top right of this interface (c), we can

see the traffic observed by this device, where we have

the interfering traffic (green), the uplink packets trans-

mitted by this object (red) and the acknowledgements

sent by the gateway (blue). Finally, at the bottom right

(d), we have four histograms showing the performance

indicators of the chosen MAB algorithm (number

of transmissions, number of successful transmissions,

UCB indexes and success rates, in each channel).

(3) The last part is the interface of the gateway,

where we can see the traffic observed by the gateway

(a) and the channels in which the last acknowledge-

ments have been sent (b).

V. RESULTS AND DISCUSSIONS

We compare the two algorithms described in Sec-

tion III-A against a uniform access algorithm, that

uniformly selects its channel at random. Three objects

are compared by their mean successful communication

rates, on a horizon of 2000 communication slots, and

were using three algorithms: uniform random access

(in cyan), Thompson Sampling (in green) and UCB1

(in red). Figure 4 shows the results averaged on 10
repetitions using the same conditions. Each experiment

takes about half a day, as we make objects generate one

message every 5 seconds, in order to artificially speed
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Fig. 3: User interface of our demonstration.

up the process and with no loss of generality. Learning

can be useful only when there is a large enough differ-

ence between “good” and “bad” channels, Each object

was learning to access 4 different non-overlapping

channels, that we chose to have occupancy rates of

[15%, 10%, 2%, 1%]. When facing the same stationary

background traffic, we see that the learning objects

are both very quickly more efficient than the naive

uniform object. We obtain an improvement in terms

of successful communication rate from 40% to about

60% in only 100 communications (about 16 min), and

up-to 80% in only 400 communications. In stationary

environments, both the TS and UCB1 algorithms are

very efficient and converge quickly, resulting in a very

strong decrease in collisions and failed communication

slots. UCB1 is faster to learn but eventually TS gives

a (slightly) better average performance.

Similar results are obtained for overlapping chan-

nels, when dynamic devices are learning in the pres-

ence of multiple devices, all using the same learning

algorithm. Empirical results confirm the simulations

presented in our paper [5, Fig.3]. Such results are

very encouraging, and illustrate well the various strong

possibilities of MAB learning applied to IoT networks.

VI. CONCLUSION

We presented in this article a demonstration, by

specifying the system model and explaining the two

MAB algorithms used in practice. We gave all the

necessary details on both the PHY and the MAC layer,

as well as details on the User Interface developed for

the demo. Results obtained in practice were discussed,

to highlight the interest of using learning algorithms

for radio online optimization problem, and especially

multi-armed bandit learning algorithms. By using such

low-cost algorithms, we demonstrated empirically that

a dynamically reconfigurable object can learn on its

own to favor a certain channel, if the environment

traffic is not uniform between the K different channels.

Possible future extensions of this work include: con-

sidering more dynamic objects (e.g., 100), implement-

ing a real-world IoT communication protocol (like the

LoRaWAN standard), and studying the interference in

case of other gateways located nearby. We are also

interested in studying the possible gain of using a

learning step when the transmission model follows

ALOHA-like retransmissions.

Availability of data and materials

The source code of our demonstration is fully

available online, open-sourced under GPLv3 license, at

bitbucket.org/scee_ietr/malin-multi-arm-

bandit-learning-for-iot-networks-with-grc/.

It contains both the GNU Radio Companion flowcharts

and blocks, with ready-to-use Makefiles to easily

compile, install and launch the demonstration.

A 6-minute video showing our demonstration is at

youtu.be/HospLNQhcMk. It shows examples of 3
dynamic devices learning simultaneously, confirming

the results of Fig. 4 for overlapping channels.
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