Policies.Experimentals.KLempUCB module¶
The Empirical KL-UCB algorithm non-parametric policy. Reference: [Maillard, Munos & Stoltz - COLT, 2011], [Cappé, Garivier, Maillard, Munos & Stoltz, 2012].
-
class
Policies.Experimentals.KLempUCB.
KLempUCB
(nbArms, maxReward=1.0, lower=0.0, amplitude=1.0)[source]¶ Bases:
IndexPolicy.IndexPolicy
The Empirical KL-UCB algorithm non-parametric policy. References: [Maillard, Munos & Stoltz - COLT, 2011], [Cappé, Garivier, Maillard, Munos & Stoltz, 2012].
-
__init__
(nbArms, maxReward=1.0, lower=0.0, amplitude=1.0)[source]¶ New generic index policy.
nbArms: the number of arms,
lower, amplitude: lower value and known amplitude of the rewards.
-
c
= None¶ Parameter c
-
maxReward
= None¶ Known upper bound on the rewards
-
pulls
= None¶ Keep track of pulls of each arm
-
obs
= None¶ UNBOUNDED dictionnary for each arm: keep track of how many observation of each rewards were seen. Warning: KLempUCB works better for discrete distributions!
-
computeIndex
(arm)[source]¶ Compute the current index, at time t and after \(N_k(t)\) pulls of arm k.
-
getReward
(arm, reward)[source]¶ Give a reward: increase t, pulls, and update count of observations for that arm.
-
__module__
= 'Policies.Experimentals.KLempUCB'¶
-