Source code for Policies.UCBmin

# -*- coding: utf-8 -*-
r""" The UCB-min policy for bounded bandits, with a :math:`\min\left(1, \sqrt{\frac{\log(t)}{2 N_k(t)}}\right)` term.
Reference: [Anandkumar et al., 2010].
"""
from __future__ import division, print_function  # Python 2 compatibility

__author__ = "Lilian Besson"
__version__ = "0.1"

from math import sqrt, log
import numpy as np
np.seterr(divide='ignore')  # XXX dangerous in general, controlled here!

try:
    from .UCB import UCB
except ImportError:
    from UCB import UCB


[docs]class UCBmin(UCB): r""" The UCB-min policy for bounded bandits, with a :math:`\min\left(1, \sqrt{\frac{\log(t)}{2 N_k(t)}}\right)` term. Reference: [Anandkumar et al., 2010]. """
[docs] def computeIndex(self, arm): r""" Compute the current index, at time t and after :math:`N_k(t)` pulls of arm k: .. math:: I_k(t) = \frac{X_k(t)}{N_k(t)} + \min\left(1, \sqrt{\frac{\log(t)}{2 N_k(t)}}\right). """ if self.pulls[arm] < 1: return float('+inf') else: return (self.rewards[arm] / self.pulls[arm]) + min(1., sqrt(log(self.t) / (2 * self.pulls[arm])))
[docs] def computeAllIndex(self): """ Compute the current indexes for all arms, in a vectorized manner.""" indexes = (self.rewards / self.pulls) + np.minimum(1., np.sqrt((2 * np.log10(self.t)) / self.pulls)) indexes[self.pulls < 1] = float('+inf') self.index[:] = indexes