Source code for Policies.Experimentals.UCBlog10alpha

# -*- coding: utf-8 -*-
r""" The UCB1 (UCB-alpha) index policy, modified to take a random permutation order for the initial exploration of each arm (reduce collisions in the multi-players setting).
Note: :math:`\log10(t)` and not :math:`\log(t)` for UCB index.
Reference: [Auer et al. 02].
"""
from __future__ import division, print_function  # Python 2 compatibility

__author__ = "Lilian Besson"
__version__ = "0.2"

from math import sqrt, log10
import numpy as np
np.seterr(divide='ignore')  # XXX dangerous in general, controlled here!

# WARNING: this is a HUGE hack to fix a mystery bug on importing this policy
from sys import path
from os.path import dirname
path.insert(0, '/'.join(dirname(__file__).split('/')[:-1]))
try:
    from .UCBlog10 import UCBlog10
except ImportError:
    from UCBlog10 import UCBlog10

#: Default parameter for alpha
ALPHA = 4
ALPHA = 1


[docs]class UCBlog10alpha(UCBlog10): r""" The UCB1 (UCB-alpha) index policy, modified to take a random permutation order for the initial exploration of each arm (reduce collisions in the multi-players setting). Note: :math:`\log10(t)` and not :math:`\log(t)` for UCB index. Reference: [Auer et al. 02]. """
[docs] def __init__(self, nbArms, alpha=ALPHA, lower=0., amplitude=1.): super(UCBlog10alpha, self).__init__(nbArms, lower=lower, amplitude=amplitude) assert alpha >= 0, "Error: the alpha parameter for UCBalpha class has to be >= 0." # DEBUG self.alpha = alpha #: Parameter alpha
[docs] def __str__(self): return r"UCB($\alpha={:.3g}$, {})".format(self.alpha, r"$\log_{10}$")
[docs] def computeIndex(self, arm): r""" Compute the current index, at time t and after :math:`N_k(t)` pulls of arm k: .. math:: I_k(t) = \frac{X_k(t)}{N_k(t)} + \sqrt{\frac{\alpha \log_{10}(t)}{2 N_k(t)}}. """ if self.pulls[arm] < 1: return float('+inf') else: return (self.rewards[arm] / self.pulls[arm]) + sqrt((self.alpha * log10(self.t)) / (2 * self.pulls[arm]))
[docs] def computeAllIndex(self): """ Compute the current indexes for all arms, in a vectorized manner.""" indexes = (self.rewards / self.pulls) + np.sqrt((self.alpha * np.log10(self.t)) / (2 * self.pulls)) indexes[self.pulls < 1] = float('+inf') self.index[:] = indexes